
Faultless Systems: Yes We Can!

This title is certainly provocative. Everyone knows that this claim corresponds to something that is im-
possible. No! One can not construct faultless systems, just have a look around. Should this have been
possible, it would have been already done for a long time. And to begin with: what is a “fault”?

So, how can someone imagine the contrary? You might think: yet another guru trying to sell us his latest
Universal Panacea. Dear reader, be reassured, this prologue does not contain any new bright solutions and
moreover it is not technical: you’ll have no complicated concepts to swallow. My intention is just to
remind you of a few simple facts and ideas that you might use if you wish to do so.

I would like to play the role of those who are faced with a terrible situation (yes, the situation of
computerized system developments is not far from being terrible: as a measurement, just consider the
money thrown out of the window with systems that fail). Faced with a terrible situation, one might decide
to change things in a brutal way: it never works. Another approach is to gradually introduce some simple
features which together will eventually result in a global improvement of the situation. The latter is my
philosophy.

Definition and Requirement Document

Since it is our intention to build correct systems, we need first to carefully define the way we can judge
that this is indeed the case. This is the purpose of a “Definitions and Requirement” document, which has
to be carefully written before embarking in any computerized system development.

But you can say that lots of industries have such documents: they already exist, so why bother? Well,
it is my experience that most of the time, requirement documents that are used in industry are very poor:
it is often very hard just to understand what the requirements are and thus to extract them from these
documents. People too often justify the appropriateness of their requirement documents by the fact that
they use some (expensive) tools!

I strongly recommend to rewrite requirement documents along the simple lines presented in this section.

This document should be made of two kinds of texts embedded in each other: the explanatory text
and the reference text. The former contains explanations needed to understand the problem at hand. Such
explanations are supposed to help a reader who encounters this problem for the first time and need some
elementary explanations. The latter contains definitions and requirements mainly in the form of short
natural language statements that are labelled and numbered. Such definitions and requirements are dryer
than the accompanying explanations. However, they must be self-contained and thus constitute the unique
reference for correctness.

The definition and requirement document bears an analogy with a book of mathematics where frag-
ments of the explanation text (where the author explains informally his approach and sometimes gives
some historical background) are intermixed with fragments of more formal items: definitions, lemmas,
and theorems, all of which form the reference text and can easily be separated from the rest of the book.

In the case of system engineering, we label our reference definitions and requirements along two axis.
The first one contains the purpose (functional, equipment, safety, physical units, degraded modes, er-
rors,...) while the second one contains the abstraction level (high, intermediate, low, ...).

The first axis must be defined carefully before embarking in the writing of the definition and require-
ment document since it might be different from one project to the other. Note that the “functional” label
corresponds to requirements dealing with the specific task of the intended software, whereas the “equip-
ment” label deals with assumptions (which we also call requirements) that has to be guaranteed concerning
the environment situated around our intended software. Such an environment is made of some pieces of
equipments, some physical varying phenomenons, other pieces of software, as well as system users. The

1



second axis places the reference items within a hierarchy going from very general (abstract) definitions or
requirements down to more and more specific ones imposed by system promoters.

It is very important that this re-writing of the definition and requirement document must be agreed upon
and signed by the stakeholders.

At the end of this phase however, we have no guarantee that the written desired properties of our
system can indeed be fulfilled. This is not by writing that an intended airplane must fly that it indeed will.
However, quite often after the writing of such a document, people rush into the programming phase and
we know very well what the outcome is. What is needed is an intermediate phase to be undertaken before
programming: this is the purpose of what is explained in the next section.

Modelling vs. Programming

Programming is the activity of constructing a piece of formal text that is supposed to instruct a computer
how to fulfil certain tasks. Our intention is not to do that. What we intend to build is a system within
which there is a certain piece of software (the one we shall construct), which is a component among many
others. This is the reason why our task is not limited to the software part only.

In doing this as engineers, we are not supposed to instruct a computer, we are rather supposed to instruct
ourselves. For doing this in a rigorous way, we have no choice but to perform a complete modelling of our
future system including the software that will be constructed eventually, as well as its environment which
is made, again, of equipment, physical varying phenomenons, other software, and even users. Program-
ming languages are of no help for doing this. All this has to be carefully modelled so as to be able to know
the exact assumptions within which our software is going to behave.

Modelling is the main task of system engineers. Programming becomes then a sub-task which might
very well be performed automatically.

Computerized system modelling had been done in the past (and still now) with the help of simulation
languages such as SIMULA-67 (the ancestor of object oriented programming languages). What we pro-
pose here is also to perform a simulation, but rather than doing it with the help of a simulation language
whose outcome can be inspected and analyzed, we propose to do it by constructing mathematical models
which will be analyzed by doing proofs. Physicists or operational researchers do proceed in this way.
We’ll do the same.

Since we are not instructing a computer, we do not have to say what is to be done, we have rather to
explain and formalize what we can observe. But immediately comes the question: how can we observe
something that does not exist yet? The answer to this question is simple: it certainly does not exist yet in
the physical world but, for sure, it exists in our mind. Engineers or architects always proceed in this way:
they construct artefacts according to the pre-defined representation they have of them in their mind.

Discrete Transition Systems and Proofs

As said in the previous section, modelling is not just formalizing our mental representation of the future
system, it also consists in proving that this representation fulfils certain desired properties, namely those
stated informally in the definition and requirement document briefly described above.

In order to perform this joint task of simulation and proofs, we use a simple formalism, that of discrete
transition systems. In other words, whatever the modelling task we have to perform, we always repre-
sent the components of our future systems by means of a succession of states intermixed with sudden
transitions, also called events.

From the point of view of modelling, it is important to understand that there is no fundamental dif-
ferences between a human being pressing a button, a motor starting or stopping, or a piece of software

2



executing certain tasks, all of them being situated within the same global system. Each of these activi-
ties is a discrete transition system working on its own and communicating with others. They are together
embarked in the distributed activities of the system as a whole. This is the way we would like to do our
modelling task.

It happens that this very simple paradigm is extremely convenient. In particular, the proving task is
partially performed by demonstrating that the transitions of each component preserve a number of desired
global properties which must be permanently obeyed by the states of our components. These properties are
the so-called invariants. Most of the time, these invariants are transversal properties involving the states
of multiple components in our system. The corresponding proofs are called the invariant preservation
proofs.

States and Events

As seen in previous section, a discrete transition component is made of a state and some transitions. Let
us describe this here in simple terms.

Roughly speaking, a state is defined (as in an imperative program) by means of a number of variables.
However, the difference with a program is that these variables might be any integer, pairs, sets, relations,
functions etc. (i.e. any mathematical object representable within set theory), not just computer objects
(i.e. limited integer and floating numbers, arrays, files, and the like). Besides the variables definitions, we
might have invariant statements which can be any predicate expressed within the notation of first order
logic and set theory. By putting all this together, a state can be simply abstracted to a set.

Exercises: what is the state of the discrete system of a human being able to press a button? What is the
state of the discrete system of a motor able to start and stop?

Taken this into account, an event can be abstracted to a simple binary relation built on the state set. This
relation represents the connection existing between two successive states considered just before and just
after the event “execution”. However, defining an event directly as a binary relation would not be very
convenient. A better notation consists in splitting an event into two parts: the guards and the actions.

A guard is a predicate and all the guards conjoined together in an event form the domain of the cor-
responding relation. An action is a simple assignment to a state variable. The actions of an event are
supposed to be “executed” simultaneously on different variables. Variables that are not assigned are un-
changed.

This is all the notation we are using for defining our transition systems.

Exercises: What are the events of the discrete system of a human being able to press a button? What
are the events of the discrete system of a motor able to start and stop? What is the possible relationship
between both these systems?

At this stage, we might be slightly embarrassed and discover that it is not so easy to answer the last
question. In fact, to begin with, we have not followed our own prescriptions! Perhaps, would have it be
better to first write down a definition and requirement document concerned with the user/button/motor
system. In doing this, we might have discovered that this relationship between the motor and the button
is not that simple after all. Here are some questions that might come up: do we need a single button or
several of them (i.e. a start button, and a stop button)? Is the latter a good idea? In case of several buttons,
what can we observe if the start button is pressed while the motor is already started? In this case, do we
have to release the button to later re-start the motor? And so on. We could also have figured out that rather
than considering separately a button system and a motor system and then composing them, it might have
been better to consider first a single problem which might later be decomposed into several. Now, how
about putting a piece of software between the two? And so on.

3



Horizontal Refinement and Proofs

The modelling of a large system containing many discrete transition components is not a task that can be
done in one shot. It has to be done in successive steps. Each of these steps make the model richer by first
creating and then enriching the states and transitions of its various components, first in a very abstract
way and later by introducing more concrete elements. This activity is called horizontal refinement (or
superposition).

In doing this, the system engineer explores the definition and requirement document and gradually
extract from it some elements to be formalized: he thus starts the traceability of the definitions and re-
quirements within the model. Notice that quite often he discovers by modelling that the definition and
requirement document is incomplete or inconsistent: he has then to edit it accordingly.

By applying this horizontal refinement approach, we have to perform some proofs, namely that a more
concrete refinement step does not invalidate what has been done in a more abstract step: these are the
refinement proofs.

Note finally that the horizontal refinement steps are complete when there does not remain any definition
and requirement that have not been taken into account in the model.

In doing horizontal refinement we do not care about implementability. Our mathematical model is done
using the set-theoretic notation to write down the state invariants and the transitions.

When doing an horizontal refinement, we extend the state of a model by adding new variables. We can
strengthen the guards of an event or add new guards. We also add new actions in an event. Finally, it is
possible to add new events.

Vertical Refinement and Proofs

There exists a second kind of refinement that takes place when all horizontal refinement steps have been
performed. As a result, we do not enter any more new details of the problem in the model, we rather
transform some state and transitions of our discrete system so that it can easily be implemented on a
computer. This is called vertical refinement (or data refinement). It can often be performed by a semi-
automatic tool. Refinement proofs have also to be performed in order to be sure that our implementation
choice is coherent with the more abstract view.

A typical example of vertical refinement is the transformation of finite sets into boolean arrays together
with the corresponding transformations of set theoretic operations (union, intersection, inclusion, etc.)
into program loops.

When doing a vertical refinement, we can remove some variables and add new ones. An important
aspect of vertical refinement is the so-called gluing invariant linking the concrete and abstract states.

Communication and Proofs

A very important aspect of the modelling task is concerned with the communication between the various
components of the future system. One has to be very careful here to also proceed by successive refine-
ments. It is a mistake to model immediately the communication between components as they will be in
the final system. A good approach to this is to consider that each component has the “right" to access di-
rectly the state of other components (which are still very abstract too). In doing that we “cheat" of course
as it is clearly not the way it works in reality. But it is a very convenient way to be used in the initial
horizontal refinement steps as our components are gradually refined with their communication becoming
also gradually richer as one goes down the refinement steps. Only at the end of the horizontal refinement

4



steps, is it appropriate to introduce various channels corresponding to the real communication schemes
at work between components and to possibly decompose our global system into several communicating
sub-systems.

One can then figure out that each component reacts to the transitions of others with a fuzzy picture of
their states. This is because the messages between the components do take some time to travel. One has
then to prove that in spite of this time shift, things remain “as if" such a shift did not exist. This is yet
another refinement proof that one has to perform.

Being Faultless: What does it Mean?

We are now ready to make precise what we mean by a "faultless" system, which represents our ultimate
goal as the title of this prologue indicates.

If a program controlling a train network is not developed to be correct by construction, then after writing
it, you can certainly never prove that this program will guarantee that two trains never collide. It is too
late. The only thing you might sometimes (not always unfortunately) be able to test or prove is that such
a program has not got array accesses that are out of bounds, or dangerous null pointers that might be
accessed, or else that it does not contain the risk of some arithmetic overflow (although, remember, this
was precisely this undetected problem that caused the Ariane 5 crash in its maiden voyage).

There is an important difference between a solution validation versus a problem validation. It seems
that there is a large confusion here as people do not make any clear distinction between the two.

A solution validation is concerned solely with the constructed software and it validates this piece of code
against a number of software properties as mentioned above (out of bound array access, null pointers,
overflows). On the contrary, a problem validation is concerned with the overall purpose of our system
(i.e. to ensure that trains safely travel within a given network). For doing this, we have to prove that all
components of this system (not the software only) harmoniously participate in this global goal.

For proving that our program will guarantee that two trains will never collide we have to construct
this program by modelling the problem. And, of course, a significant part of this is that the property in
question must be part of the model to begin with.

One should notice however that people sometimes succeed in doing some sort of problem proofs di-
rectly on the solution (the program). This is done by incorporating some, so-called, ghost variables dealing
with the problem inside the program. Such variables are then removed on the final code. We consider that
this approach is a rather artificial afterthought. The disadvantage of this approach is that it focuses atten-
tion on the software rather than on the wider problem. In fact, this use of ghost variables just highlights
the need for abstraction when reasoning at the problem level. The approach advocated here is precisely to
start with the abstractions, reason about those, and introduce the programs later.

During the horizontal refinement phase of our model development we shall take account of many prop-
erties. At the end of the horizontal refinement phase, we shall then be able to know exactly what we
mean by this non-collision property. In doing so, we shall make precise all assumptions (in particular
environment assumptions) under which our model will guarantee that two trains will never collide.

As can be seen, the property alone is not sufficient. By exhibiting all these assumptions, we are doing
a problem validation that is completely different in nature than the one we can perform on the software
only.

Using this kind of approach for all properties of our system will allow us to claim that, at the end of our
development, our system is faultless by construction. For this, we have made very precise what we call
the “faults” under consideration (and in particular their relevant assumptions).

However, one should note a delicate point here. We pretended that this approach allows us to produce
a final software that is correct by construction relative to its surrounding environment. In other words, the

5



global system is faultless. This has been done by means of proofs performed during the modelling phase
where we constructed a model of the environment. Now we said earlier that this environment was made of
equipment, physical phenomenons, pieces of software, and also users. It is quite clear that these elements
cannot be formalized completely. Rather than to say that our software is correct relative to its environment,
it would be more appropriate to be more modest by saying that our software is correct relative to the model
of the environment we have constructed. This model is certainly only an approximation of the physical
environment. Should this approximation be too far from the real environment then it will be possible that
our software fails under unforeseen external circumstances.

In conclusion, we can only pretend for a relative faultless construction, not an absolute one, which is
clearly impossible. A problem whose solution is still in its infancy is that of finding the right methodology
to perform an environment modelling that is a "good" approximation of the real environment. It is clear
that a probabilistic approach would certainly be very useful for doing this.

About Proofs

In previous sections, we mentioned several times that we have to perform proofs during the modelling
process. First of all, it must be clear that we need a tool for generating automatically what we have
to prove. It would be foolish (and error prone) to let a human being write down explicitly the formal
statements that must be proved for the simple reason that it is common to have thousands of such proofs.
Second, we also need a tool to perform the proofs automatically: a typical desirable figure here is to have
90% of the proofs being discharged automatically.

An interesting question is then to study what happens when an automatic proof fails. It might be be-
cause: (1) the automatic prover is not smart enough, or (2) the statement to prove is false, or else (3) the
statement to prove cannot be proved. In case (1), we have to perform an interactive proof (see the "Tool"
section below). In case (2), the model has to be significantly modified. In case (3), the model has to be
enriched. Cases (2) and (3) are very interesting; they show that the proof activity plays the same role for
models as the one played by testing for programs.

Also notice that the final percentage of automatic proofs is a good indication of the quality of the model.
If there are too many interactive proofs it might signify that the model is too complicated. By simplifying
the model we often also significantly augment the percentage of automatically discharged proofs.

Design Pattern

Design patterns have been made very popular some years ago by the book written on them for object
oriented software developments [3]. But the idea is more general than that: it can be fruitfully extended to
any particular engineering discipline and in particular to system engineering as envisaged here.

The idea is to write down some predefined little engineering recipes that can be reused in many different
situations provided these recipes are instantiated accordingly. In our case, it takes the form of some proved
parameterized models which can be incorporated in a large project. The nice effect is that it saves redoing
proofs that have been done once and for all in the pattern development. Tools can be developed to easily
instantiate and incorporate patterns in a systematic fashion.

Animation

Here is a strange thing: in previous sections we heavily proposed to base our correctness assurance on
modelling and proving. And in this section we are going to say that, well, it might also be good to "ani-
mate" (that is "execute") our models!

6



But, we thought that mathematics was sufficient and precisely that there was no need to execute. Is there
any contradiction here? Are we in fact not so sure after all that our mathematical treatment was sufficient,
that mathematics are always "true"? No, after a proof of the Pythagorean Theorem, no mathematician
would think of measuring the hypotenuse and the two legs of a right triangle to check the validity of the
theorem! So why executing our models?

We have certainly proved something and we have no doubts about our proofs, but more simply are we
sure that what we proved was indeed the right thing to prove? Things might be difficult to swallow here:
we (painfully) wrote the definition and requirement document precisely for that reason, to know exactly
what we have to prove. And now we claim that perhaps what the requirement document said was not what
is wanted. Yes, that is the way it is: things are not working in a linear fashion.

Animating directly the model (we are not speaking here of doing a special simulation, we are using the
very model which we proved) and showing this animation of the entire system (not only the software part)
on a screen is very useful to check in another way (besides the requirement document) that what we want
is indeed what we wrote. Quite often, by doing this, we discover that our requirement document was not
accurate enough or that it required properties that are not indispensable or even different from what we
want.

Animation complements modelling. It allows us to discover that we might have to change mind very
early on. The interesting thing is that it does not cost that much money, far less indeed than doing a real
execution on the final system and discovering (but far too late) that the system we built is not the system
we want.

It seems that animation has to be performed after proving (as an additional phase before the program-
ming one). No, the idea is to use animation as early as possible during the horizontal refinement phase,
even on very abstract steps. The reason is that if we have to change our requirements (and thus redo some
proofs) it is very important to know exactly what we can save in our model and where we have to modify
our model construction.

There is another positive outcome in animating and proving simultaneously. Remember, we said that
proving was a way to debug our model: a proof that cannot be done is an indication that we have a "bug"
in our model or that our model is too poor. The fact that an invariant preservation proof cannot be done can
be pointed out and explained by an animation even before doing the proof. Deadlock freedom counter-
examples are quite often discovered very easily by animation. Notice that animation does not mean that
we can suspend our proof activity, we just wanted to say that it is a very useful complement to it.

Tools

Tools are important to develop correct systems. Here we propose to depart from the usual approach where
one would have a (formal) text file containing models and their successive refinement. It is far more
appropriate to have a database at one’s disposal. This database handles modelling objects such as models,
variables, invariant, events, guards, actions, and their relationships as we have presented them in previous
sections.

Usual Static Analyzers can be used on these components for lexical analysis, name clash detection,
mathematical text syntactic analysis, refinement rules verification and so on.

As said above, an important tool is the one, called the Proof Obligation Generator, that analyzes the
models (invariants, events) and their refinements in order to produce corresponding statements to prove.

Finally, some Proving Tools (automatic and interactive) are needed to discharge the proof obligations
provided by the previous tool. An important thing to understand here is that the proofs to be performed
are not the kind of proofs a professional mathematician would do (and be interested in). Our proving tool
has to take this into account.

7



In a mathematical project, the mathematician is interested by proving one theorem (say, the four color
theorem) together with some lemmas (say, 20 of them). The mathematician does not use mathematics to
accompany the construction of an artefact. During the mathematical project, the problem does not change
(this is still the four color problem).

In an engineering project, thousands of predicates have to be proved. Moreover, what we have to prove
is not known right from the beginning. Note that again we do not prove that trains do not collide: we prove
that the system we are constructing ensures that, under certain hypotheses about the environment, trains
do not collide. What we have to prove evolves with our understanding of the problem and our (non linear)
progress in the construction process.

As a consequence, an engineering prover needs to have some functionalities which are not needed in
provers dedicated to perform proofs for mathematicians. To cite two of these functionalities: differential
proving (how to figure out which proofs have to be redone when a slight modification in our model occurs)
and proving in the presence of useless hypotheses.

Around the tools we presented in this section, it is very useful to add a number of other tools using
the same core database: animating tools, model-checking tools, UML transformation tools, design pattern
tools, composition tools, decompositions tools, and so on. It means that our tooling system must be built
in such a way that this extension approach is facilitated. A tool developed according to this philosophy is
the Rodin Platform which can be freely downloaded from [4].

The Problem of Legacy Code

The legacy code question has a dual aspect: either (1) we want to develop a new piece of software which
is connected to some legacy code, or (2) we want to renovate a certain legacy code.

Problem (1) is the most common one: it is almost always found in the development of a new piece
of software. In this case, the legacy code is just an element of the environment of our new product. The
challenge is to be able to model the behavior we can observe of the legacy code so that we can enter it in the
model as we do it with any other element of the environment. For doing this, the requirement document
of our new product must contain some elements concerned with the legacy code. Such requirements
(assumptions) have to be defined informally as we explained above.

The goal is to develop in our model the minimal interface which is compatible with the legacy code. As
usual, the key is abstraction and refinement: how can we gradually introduce the legacy code in our model
in such a way that we take full account of the concrete interface it offers.

Problem (2) is far more difficult than the previous one. In fact, such renovations often give very dis-
appointing results. People tend to consider that the legacy code "is" the requirement document of the
renovation. This is an error.

The first step is to write a brand new requirement document not hesitating to depart form the legacy
code by defining abstract requirements which are independent from the precise implementation seen in
the legacy code.

The second step is to renovate the legacy code by developing and proving a model of it. The danger
here is to try to mimic too closely the legacy code because it might contain aspects that are not compre-
hensible (except for the absent legacy code programmer(s)) and that are certainly not the result of a formal
modelling approach.

Our advice here is to think two times before embarking in such a light renovation. A better approach
is to develop a new product. People think it might be more time and money consuming than a simple
renovation: experience shows that it is rarely the case.

8



The Use of Set-theoretic Notation

Physicists or operational researchers, who also proceed by constructing models, never invented specific
languages to do so: they all use classical set-theoretic notations.

Computer scientists, because they have been educated to program only, believe that it is necessary to
invent specific languages to do the modelling. This is an error. Set-theoretic notations are well suited to
perform our system modelling and, moreover, we can understand what it means when we write a formal
statement!

One can also hear very frequently that one must hide the usage of mathematical notation, because
engineers will not understand them and be afraid by them: this is non-sense. Could one imagine that it is
necessary to hide the mathematical notation used in the design of an electrical network because electrical
engineers would be afraid by them?

Other Validation Approaches

For decades, there has been various approaches dedicated to the validation of software. Among them are
tests, abstract interpretation, and model checking.

These approaches are validating the solution, the software, not the problem, the global system. In each
case, you construct a piece of software and then (and only then) you try to validate it (although it is not
entirely the case with model checking which is also used for problem validation). For doing so, you think
of a certain desired property and check that indeed your software is consistent with it. If it is not the case
then you have to modify the software and thus, quite often, introduce more problems. It is also well known
that such approaches are very expensive, far more than the pure development cost.

We do not think that these approaches alone are appropriate. However, we are not saying of course that
one should reject them. We are just saying they might complement the modelling and proving approach.

Innovation

Big industrial corporations are often unable to innovate. They sometimes do so however provided a very
large amount of money is given to them precisely for this: needless to say, it is very rare. It is well known
that many, so-called, R&D divisions of big companies are not providing any significant technologies for
their business units.

Nevertheless, financing agencies still insist to have practical research proposals connected with such
large companies. This is an error. They should do a better job by accepting connections with far smaller
more innovative entities.

It is my belief that the introduction in industry of the approach advocated in this prologue should be
done through small innovative companies rather than big corporations

Education

Most of the people presently involved in large software engineering projects are not correctly educated.
Companies think that programming jobs can be done by junior people with little or no mathematical back-
ground and interest (quite often programmers do not like mathematics: this is why they choose computing
in the first place). All this is bad. The basic background of a system engineer must be a mathematical
education at a good (even high) level.

9



Computing should come second, after the necessary mathematical background has been well under-
stood. As long as this is not the case, things cannot be improved. Of course, it is clear that many academics
will disagree with that: it is not the smallest problem one has to face. Many academics still confuse com-
putation and mathematics.

It is far less expensive to have a few well educated people than an army of people who are not educated
at the right level. This is not an elitist attitude: who would think that a doctor or an architect can perform
well without a proper education in his discipline? Again, the fundamental basic discipline of a system and
software engineers is (discrete) mathematics.

Two specific topics to be taught to future software engineers are (1) the writing of requirement doc-
uments (this is barely present in practical software engineering curriculum), and (2) the construction of
mathematical models. Here the basic approach is a practical one: it has to be taught by means of many
examples and projects to be done by the students. Experience shows that the mastering of the mathe-
matical approach (including the proofs) is not a problem for students with a good previous mathematical
background.

Technology Transfer

Technology transfer of this kind of approach in industry is a serious problem. It is due to the extreme
reluctance of managers to modify their development process. Usually such processes are difficult to define
and more difficult to be put into practice. This is the reason why managers do not like to modify them.

The incorporation in the development process of an important initial phase of requirement document
writing followed by another important phase of modelling is usually regarded as dangerous as these ad-
ditional phases impose some significant expenses to be done at the beginning of a project. Again here,
managers do not believe that spending more initially will mean spending less at the end. However, expe-
rience shows that the expenditure is drastically reduced since the very costly testing phase at the end can
be significantly reduced, as well as the considerable efforts needed to patch design errors.

But above all, the overall initial action to be done in order to transfer a technology to industry is to
perform a very significant preliminary education effort. Without that initial effort any technology transfer
attempt is due to fail.

It should be noted that there exist also some fake technology transfers where people pretend using a
formal approach (although they did not) just to get the "formal" stamp given to them by some authority.

Bibliography

The ideas presented in this short prologue are not new. Most of them come from the seminal ideas of
Action Systems developed in the eighties and nineties. Important papers on Action Systems (among many
others) are [1] and [2].

More recently, some of the ideas presented in this prologue have been put into practice. You can consult
the web site [4] and, of course, read this book for more information, examples, and tool description.

References
1. R. Back and R. Kurki-Suonio. Decentralization of process Nets with Centralized Control 2nd ACM SIGACT-

SIGOPS Symposium on Principles of Distributing Computing (1983)
2. M. Butler. Stepwise Refinement of Communicating Systems Science of Computer Programming (1996)
3. E. Gamma et al. Design Patterns: Elements of Reusable Object Oriented Software Addison-Wesley, 1995.
4. http://www.event-b.org

10


