
The Needham-Schroeder-Lowe Protocol with Event-B
J.R. Abrial1

1 Introduction

This text contains the formal development (with proofs) of the Needham-Schroeder-Lowe Protocol [1] [2]
using Event-B [3] and the Rodin Platform [4]. The Needham-Schroeder-Lowe Protocol is an authentica-
tion protocol. In other words, at the end of its execution the two agents involved in it (called respectively
the initiator and the recipient) must be sure that they speak to each other.

As it is well known, there is a standard attack to this protocol as defined initially by Needham and
Schroeder in [1]. By this attack, the authentication property is not guaranteed any more for the recipient
of the protocol. This attack was discovered by Lowe in [2]. It involves, as usual, the presence of a, so-
called, attacker having a bad behavior.

The purpose of the presentation of this example is to show how this attack of the protocol can be sim-
ulated without incorporating an attacker within the protocol, but rather by having one normal participant
doing a mistake. More precisely, in this example, the initiator of an execution of the protocol is not fol-
lowing exactly what is defined in the protocol. The net result of this approach is to simplify the formal
development.

Of course, what we describe here is just an example of such a simulation. At the moment, it is not
clear whether any protocol attack involving an attacker can be simulated by means of participants doing
mistakes.

2 Requirement Document

Before engaging in the formal development of this protocol in subsequent sections, it is advisable to define
it informally by means of a number of environmental assumptions (labeled ENV) as well as functional
requirements (labeled FUN).

2.1 General Requirements and Assumptions

This protocol involves some agents that are spread at different sites of a network

This system involves some agents situated on the sites of a network ENV-1

An initiator and a recipient are concerned with a specific execution of the protocol.

An execution of the protocol involves two agents: the initiator and the recipient ENV-2

1 jrabrial@neuf.fr

1



The initiative of an execution of the protocol is in the hands of an initiator.

An initiator of the protocol wants to speak to a recipient ENV-3

At the end of the execution of the protocol, when a recipient accepts to speak to an initiator, we want to
be sure that indeed the initiator will speak to the agent it intends to speak to, and conversely we want to
be sure that the recipient is indeed going to speak to the initiator that intended to speak to it initially. This
behavior is called "mutual authentication".

The protocol must ensure mutual authentication between initiators and recipients FUN-1

Since many protocol executions can happen simultaneously on the network, each agent uses, so-called,
nonces to identify executions of the protocol. Each nonce, generated by an agent, is guaranteed to be
unique over the network at all time.

Agents use unique nonces to identify specific executions of the protocol ENV-4

As a consequence, an execution of the protocol is identified by a unique pair of nonces: one of these
nonces is generated by the initiator, while the other is generated by the recipient.

A protocol execution is identified by a pair of nonces ENV-5

Agents communicate with each other by means of encrypted messages.

Encrypted messages are used for the communication between agents ENV-6

Encryption is ensured by means of public keys that are owned by each agent. More precisely, each agent
A owns a pair of keys KR and K−1

R . The key KR is public (known to every agents): it is used to encrypt
messages sent to A. But the key K−1

R is secret (known to A only): this key is used by A to decrypt
messages sent to him encrypted with key KR.

Message encryption is ensured by means of public keys ENV-7

2.2 The Needham-Schroeder Protocol

So far, we described general assumptions (ENV_1 to ENV_7) together with the basic property (FUN_1)
of an authentication protocol. Now, we are going to describe more specifically the Needham-Schroeder
protocol.

The protocol is defined as follows: an initiator I sends an encrypted message (with the public key KR

owned by R) to a recipient R. The message contains I’s name together with a new nonce NI generated
by I . The recipient R replies to this message by sending an encrypted message to I (encrypted with the
public key KI owned by I). This message contains the received nonce NI sent by I and the new nonce

2



NR generated by R. The initiator I replies to this message by sending an acknowledgment message to R
(encrypted with the public key KR). This message contains R’s nonce NR.

1. I → R : {I,NI}KR

2. R→ I : {NI , NR}KI
FUN-2

3. I → R : {NR}KR

This protocol seems to guarantee mutual authentication. More precisely, at step 2 the initiator I receives
a message, {NI , NR}KI

, containing the nonce NI that was sent previously by initiator I to recipient R
only. As a consequence, the message {NI , NR}KI

was certainly sent by the recipient R since nonces are
unique according to assumptions ENV-4 (no other agent could have generated the nonce NI ). In fact, I is
sure to have received this message {NI , NR}KI

from R because I sent to R the nonce NI in a message
encrypted with public key KR ({I,NI}KR

) that only R can decrypt. A similar argument applies for the
recipient R at step 3.

2.3 An Attack to the Needham-Schroeder Protocol

However, there is a well-known attack to this protocol. It was discovered by Lowe [2]. Here is the story: an
initiator I sends a message (encrypted with the public key KA owned by A) to a recipient A that happens
to be an attacker. The attacker A decrypts this message and forward it to another recipient R using the
public key KR of R. The recipient R is misled, it believes to have received a message form I . R sends
back a message to I as in the normal protocol. The initiator I believes to have received a reply from A.
Therefore I sends to A the acknowledgment message. And now A decrypts this message and forward it
(encrypted with key KR) to R. Here is the more formal description of this attack:

1. I → A : {I,NI}KA

2. A→ R : {I,NI}KR

3. R→ I : {NI , NR}KI

4. I → A : {NR}KA

5. A→ R : {NR}KR

At the end of these message exchanges, the attacker A knows the nonce N_I (after step 1) and nonce NR

(after step 4) as well. The recipient R also knows these two nonces. Further messages can then be sent
to R by A using the pair N_I-N_R as a justification. When R receives such a message it believes that
it comes from I although it comes from A: the authentication is destroyed for R. For instance, if R is a
bank, A could send the following message to R:

{N_I,N_R, "transfer some money into A’s account"}KR

Now R, the banks, believes that this message comes from A and does the money transfer. Lowe provides
a correction to the protocol in order to prevent the attack: the recipient must send its name in the normal
step 2 of the protocol.

1. I → R : {I,NI}KR

2. R→ I : {NI , NR, R}KI

3. I → R : {NR}KR

When the initiator receives the second message it can check that the recipient sending this message is
indeed the recipient with which he wanted to speak to initially.

3



In the present approach (as we explained in the Introduction), this attack is simulated by supposing
that the Initiator I makes a mistake: rather than sending its initial message to the recipient R it intends
to speak to, it sends this message to possibly another agent S (note that S and R can be identical but
not necessarily). More precisely, in its first message, the initiator I uses public key KS rather than KR

it should have used. In order to cope with this mistake of I , S should send its name to I . Then I will
possibly discover its mistake by comparing S and R.

1. I → R : {I,NI}KS

2. S → I : {NI , NS , S}KI
FUN-3

if S = R then 3. I → R : {NR}KR

As can be seen, step 3 will never happen in case S and R are not indentical: the protocol execution never
terminates in this case.

3 Refinement Strategy

In what follows, we propose two distinct developments where we assume that there is no attacker within
the network. First a development without mistake on the part of the Initiator (section 4), and then a devel-
opment with a mistake on the part of the initiator (section 5).

In both cases, the developments contain an initial model where the agents do not send messages to
each other. In fact, each agent is supposed to locally store some data corresponding to what happens at
each phase of a protocol execution. We suppose then that each agent has the possibility to directly access
what other agents have recorded. Of course, it is very dangerous. But, if we suppose that the agents are
obedient, then nothing bad could happen and the authentication is ensured (and proved). In the subsequent
refinements, we see how we can enforce the obedience of the agents by means of encrypted messages.

4 The Protocol Without Mistake

4.1 Initial Model

Sets, Contants, and Axioms

Here we define a set AGT of agents and a set NNC of nonces. In order to simplify the development,
we suppose that the agents are splitt into two distinct sets: the Initiators and the Recipients

sets: AGT
NNC

constants: Initiator
Recipient

axm_1: partition(AGT, Initiator,Recipient)

These elements take account of assumptions ENV_1 and ENV_2.

This system involves some agents situated on the sites of a network ENV-1

An execution of the protocol involves two agents: the initiator and the recipient ENV-2

4



Variables and Invariants

We define the variable set nnc corresponding to nonces that have been generated so far. As for the
agents, we simplify matters by splitting this set into two incompatible sets: nni, the set of nonces generated
by Initiators, and, nnr, the set of nonces generated by the Recipients.

variables: nnc
nni
nnr

inv0_1: nnc ⊆ NNC

inv0_2: partition(nnc, nni, nnr)

These elements take partially account of assumption ENV_4.

Agents use unique nonces to identify specific executions of the protocol ENV-4

Now, we define three variables i1, i2, and i3 that correspond to what Initiators are recording. The variable
i1 is a total function from the set nni to the set Initiator. When a pair ni 7→ i belongs to i1, it means
that the initiator i has started a protocol execution with nonce ni.

variables: i1 inv0_3: i1 ∈ nni→ Initiator

The variable i2 is a total function from the set nni to the set Recipient. When a pair ni 7→ r belongs to
i2, it means that the initiator i1(ni) has started a protocol execution in order to speak to recipient r.

variables: i2 inv0_4: i2 ∈ nni→Recipient

The variable i3 is supposed to be a partial injection from the set nni to the set nnr: a pair ni 7→ nr
belonging to i3 records the fact that (from the point of view of the initiator i1(ni)) there is a protocol
execution represented by this pair. A given nonce can only be involved in one protocol execution, hence
the injectivity of i3, which is only partial as an initiator cannot know initially the nonce generated by the
recipient.

variables: i3 inv0_5: i3 ∈ nni 7� nnr

Then, for the Recipients we have three variables r1, r2 and r3 that are similar to those of the Initiators
seen previously. Here r3 is a total injection because the recipient knows the nonce of the initiator when it
generates its own nonce.

variables: r1
r2
r3

inv0_6: r1 ∈ nnr→Recipient

inv0_7: r2 ∈ nnr→ Initiator

inv0_8: r3 ∈ nnr � nni

These elements take account of assumptions ENV_4 and ENV_5.

Agents use unique nonces to identify specific executions of the protocol ENV-4

5



A protocol execution is identified by a pair of nonces ENV-5

Events

Next are three events P1, P2, and P3, corresponding to the two first phases of the protocol as defined
in requirement FUN_2. However, in this initial model, we do not send messages.

1. I → R : {I,NI}KR

2. R→ I : {NI , NR}KI
FUN-2

3. I → R : {NR}KR

Event P1 corresponds to step 1 of the protocol where an initiator elaborates and send a message to a
recipient. Event P2 corresponds to a recipient elaborating and sending the message described in step 2.
Finally, event P3 correspond to an initiator receiving the message sent in step 2. The last step of the
protocol is not represented in this model. In the event P1, the Initiator i records its intention to speak to
the recipient r by using the new nonce ni. The event P1 is supposed to be "executed" by a recipient i.

P1
any ni, i, r where
ni /∈ ncc
i ∈ Initiator
r ∈ Recipient

then
ncc := ncc ∪ {ni}
nni := nni ∪ {ni}
i1 := i1 ∪ {ni 7→ i}
i2 := i2 ∪ {ni 7→ r}

end

In the event P2, recipient r (that is i2(ni)) records that initiator i (that is i1(ni)) wants to speak to r by
using nonce ni. This recipient r generates the new nonce nr (in r1) and connect nr to ni in r3. The event
P2 is supposed to be "executed" by the recipient i2(ni).

P2
any ni, i, r, nr where
ni ∈ nni \ ran(r3)
i = i1(ni)
r = i2(ni)
nr /∈ ncc

then
ncc := ncc ∪ {nr}
nnr := nnr ∪ {nr}
r1 := r1 ∪ {nr 7→ r}
r2 := r2 ∪ {nr 7→ i}
r3 := r3 ∪ {nr 7→ ni}

end

Finally, in the event P3, the initiator i (that is, i1(ni)) having generated the nonce ni records in i3 the
nonce nr connected to ni in recipient r. Notice that i1(ni) must be equal to r2(nr). The event P3 is

6



supposed to be "executed" by the initiator r2(nr)

P3
any ni, nr where
nr 7→ ni ∈ r3
ni /∈ dom(i3)

then
i3 := i3 ∪ {ni 7→ nr}

end

As can be seen, in this first model each participant of the protocol has free access to what the other has
recorded. In the event P2, the recipient r (that is, i2(ni)) has access to the initiator i1(ni) stored in the
site of the initiator i. Likewise, in the event P3, the initiator i (that is i1(ni)) has access to the nonce nr
connected to ni in r3: nr 7→ ni ∈ r3.

Formalizing Mutual Authentication

Finally, we have now to see which additional invariants are necessary in order to ensure the authentica-
tion properties as defined in the requirement FUN_1:

The protocol must ensure mutual authentication between initiators and recipients FUN-1

First, i3 and r3 are converse of each other (inv0_9) meaning that both participants use the same pair of
nonces. We have no equality here because i3 is completed (in the event P3) after r3 (in the event P2).
What this invariant states is that the initiator connected to nonce ri and the recipient connected to nr share
the same nonces.

inv0_9: i3−1 ⊆ r3

Then the mutual authentication is expressed as follows:

1. If the pair nr 7→ ni belongs to r3 and the pair nr 7→ r belongs to r1 (that is, if ni 7→ r ∈ r3−1 ; r1),
then it means that the recipient r believes that he will speak to the initiator associated with nonce ni.
So, we must be sure that the pair ni 7→ r belongs to i2. In other words, the recipient r must indeed be
sure to speak to the initiator that wants to speak to him. This leads to the following invariant:

inv0_10: r3−1 ; r1 ⊆ i2

This invariant is easily maintained by our three events.

2. Conversely, if the pair ni 7→ nr belongs to i3 and the pair ni 7→ i belongs to i1 (that is, if nr 7→ i ∈
i3−1 ; i1), then it means that the initiator i wants to speak to the recipient associated with nonce nr.
So, we must be sure that the pair nr 7→ i belongs to r2. In other words, the initiator i must indeed be
sure to speak to the recipient r that speak to him. This leads to the following:

thm0_1: i3−1 ; i1 ⊆ r2

7



The statement is thm0_1 in fact a theorem that is easily proved thanks to the following invariant
(maintained by all events) and previous invariant inv0_9 (i3−1 ⊆ r3):

inv0_11: r3 ; i1 = r2

Proofs

The Proof Obligation Generator of the Rodin Platform produces 31 proof obligations (invariant and
well-definedness), all proved automatically by the prover of the Rodin Platform.

4.2 Refinement

In this refinement, we introduce the encrypted messages. As a consequence, each participant does not use
any more what is recorded in the other, it only uses the contents of the message it can decrypt.

Sets

We introduce here the set of possible messages.

sets: MSG

Variables and Invariants

The variable msg is the set of messages circulating so far in the network. This set is partitioned into
three sets msg1, msg2, and msg3. As all messages are encrypted, the variable crypto records the agent
owning the public key encrypting each message.

variables: msg
msg1
msg2
msg3
crypto

inv1_1: msg ⊆ MSG

inv1_2: partition(msg,msg1,msg2,msg3)

inv1_3: crypto ∈ msg→AGT

Variables m1_ini and m1_nni record the contents of messages belonging to msg1 as indicated in the
description of the protocol:

1. I → R : {I,NI}KR

2. R→ I : {NI , NR}KI
FUN-2

3. I → R : {NR}KR

These message fields are the initiator (inv1_4) and its nonce (inv1_5). Notice that m1_nni is a bijection
towards the set nni. The cryptographic key associated with messages of the set msg1 corresponds to the
recipient recorded by the initiator (inv1_6). Invariant inv1_6 will not be valid any more below (section

8



5) when the initiator will make a mistake. The initiator contained in a message belonging to msg1 is the
initiator associated with the nonce contained in that message (inv1_7).

variables: m1_ini
m1_nni

inv1_4: m1_ini ∈ msg1→ Initiator

inv1_5: m1_nni ∈ msg1�� nni

inv1_6: m1_nni−1 ; crypto = i2

inv1_7: m1_nni−1 ;m1_ini = i1

Variables m2_nnr and m2_nni record the contents of messages belonging to msg2: the recipient nonce
which is unique (inv1_8) and the initiator nonce (inv1_9).. The recipient nonce stored in the message is
exactly the nonce associated with the initiator nonce in r3 (inv1_10).

variables: m2_nni
m2_nnr

inv1_8: m2_nnr ∈ msg2�� nnr

inv1_9: m2_nni ∈ msg2→ nni

inv1_10: ∀m ·m ∈ msg2 ⇒ m2_nnr(m) 7→ m2_nni(m) ∈ r3

Finally, we have the contents of messages belonging to msg3. Such messages are not used here.

variables: m3_nnr inv1_11: m3_nnr ∈ msg3→ nnr

We take accounts of the encrypted messages, as described in ENV_6, and of the contents of these mes-
sages as described in FUN_2.

Events

In this section, we follow exactly the description of the protocol as decribed in FUN_2:

1. I → R : {I,NI}KR

2. R→ I : {NI , NR}KI
FUN-2

3. I → R : {NR}KR

Here are the concrete version of the events. In these events we take account of the encryption by public
keys as described in assumptions ENV_6 and ENV_7:

Encrypted messages are used for the communication between agents ENV-6

Message encryption is ensured by means of public keys ENV-7

9



The event P1 is an extension of its abstraction (more guards and more actions). Besides recording some
data as in the abstraction, it generates a new message belonging to msg1.

P1
any ni, i, r,m1 where
ni /∈ ncc
i ∈ Initiator
r ∈ Recipient
m1 /∈ msg

then
ncc := ncc ∪ {ni}
nni := nni ∪ {ni}
i1 := i1 ∪ {ni 7→ i}
i2 := i2 ∪ {ni 7→ r}
msg := msg ∪ {m1}
msg1 := msg1 ∪ {m1}
crypto(m1) := crypto ∪ {m1 7→ r}
m1_nni := m1_nni ∪ {m1 7→ ni}
m1_ini := m1_ini ∪ {m1 7→ i}

end

(abstract-)P1
any ni, i, r where

ni /∈ ncc
i ∈ Initiator
r ∈ Recipient

then
ncc := ncc ∪ {ni}
nni := nni ∪ {ni}
i1 := i1 ∪ {ni 7→ i}
i2 := i2 ∪ {ni 7→ r}

end

The event P2 now uses the encryped message it receives in order to record data equivalent to what it was
doing in the abstraction. It also generates a new message belonging to msg2.

P2
any m1, r, nr,m2 where
m1 ∈ msg1
m1_nni(m1) /∈ ran(r3)
nr /∈ ncc
r = crypto(m1)
m2 /∈ msg

with
ni = m1_nni(m1)
i = m_ini(m1)

then
ncc := ncc ∪ {nr}
nnr := nnr ∪ {nr}
r1 := r1 ∪ {nr 7→ r}
r2 := r2 ∪ {nr 7→ m1_ini(m1)}
r3 := r3 ∪ {nr 7→ m1_nni(m1)}
msg := msg ∪ {m2}
msg2 := msg2 ∪ {m2}
m2_nni(m2) := m1_nni(m1)
m2_nnr(m2) := nr
crypto(m2) := m1_ini(m1)

end

(abstract-)P2
any ni, i, r, nr where
ni ∈ nni \ ran(r3)
i = i1(ni)
r = i2(ni)
nr /∈ ncc

then
ncc := ncc ∪ {nr}
nnr := nnr ∪ {nr}
r1 := r1 ∪ {nr 7→ r}
r2 := r2 ∪ {nr 7→ i}
r3 := r3 ∪ {nr 7→ ni}

end

As can be seen, event r (that is crypto(m1)) who is able to decrypt the message m1 does not look at the
intitiator state. All needed information are those given in the message m1.

10



The event P3 now uses the encrypted message. More precisely, initiator i (that is crypto(m1)) uses the
nonce it recives in the message to update its state.

P3
any m2 where
m2 ∈ msg2
m2_nni(m2) /∈ dom(i3)
i1(m2_nni(m2)) = crypto(m2)

with
ni = m2_nni(m2)
nr = m2_nnr(m2)

then
i3 := i3 ∪ {m2_nni(m2) 7→ m2_nnr(m2)}

end

(abstract-)P3
any ni, nr where
nr 7→ ni ∈ r3
ni /∈ dom(i3)

then
i3 := i3 ∪ {ni 7→ nr}

end

Proofs

The Proof Obligation Generator of the Rodin Platform produces 49 proof obligations (invariant, refine-
ment, and well-definedness), all proved automatically by the prover of the Rodin Platform.

5 The Protocol With a Mistake Made by the Initiator and its Discovery

We now present another development where the initiator i records, as in the previous section, the recipient
r it wants to speak to. But the initiator i, rather than sending its message m1 with the public key of r,
sends its message with the public key of any recipient s. Notice again that s might be identical to r but
not necessarily. This mistake of the initiator will break invariant inv1_6, that is m1_nni−1 ; crypto = i2,
saying that the public key used in the message m1 is that of the recipient recorded by the initiator (in
variable i2).

In order for the initiator to detect the mistake, the recipient will send its name in its reply message m2
so that the initiator can discover that this is not the recipient it wants to speaks to. If this is the case, then
the initiator stops the execution of the protocol.

5.1 Initial Model

Sets, Contants, and Axioms

The sets, constants, and axioms are as in section 4.1

sets: AGT
NNC

constants: Initiator
Recipient

axm_1: partition(AGT, Initiator,Recipient)

Variables and Invariants

In this section, the local invariants are prefixed by 2. Next to the local invariants, we put the correspond-
ing invariants of section 4.1 that are prefixed with 0. In this way, we can see the differences between the
two developments (with or without mistake of the initiator).

11



The three variables nnc, nni, and nnr are as in section 4.1.

variables: nnc
nni
nnr

inv2_1: nnc ⊆ NNC

inv2_2: partition(nnc, nni, nnr)

inv0_1: nnc ⊆ NNC

inv0_2: partition(nnc, nni, nnr)

Likewise, the three variables i1, i2, and i3 are as in section 4.1.

variables: i1
i2
i3

inv2_3: i1 ∈ nni→ Initiator

inv2_4: i2 ∈ nni→Recipient

inv2_5: i3 ∈ nni 7� nnr

inv0_3: i1 ∈ nni→ Initiator

inv0_4: i2 ∈ nni→Recipient

inv0_5: i3 ∈ nni 7� nnr

Things are modified a bit now. Due to the mistake made by the initiator, the variable r3 is now a partial
injection only. We introduce a new variable r4 recording what the recipient "believes" to be the connection
between the two nonces. Of course, it can be erroneous because the recipient might not be the one that the
initiator wanted to speak to (due to its mistake). The variable r3 is the corrected connection: as we shall
see below, r3 can only be extended by event P4.

variables: r1
r2
r3
r4

inv2_6: r1 ∈ nnr→Recipient

inv2_7: r2 ∈ nnr→ Initiator

inv2_8: r3 ∈ nnr 7� nni

inv2_9: r4 ∈ nnr � nni

inv0_6: r1 ∈ nnr→Recipient

inv0_7: r2 ∈ nnr→ Initiator

inv0_8: r3 ∈ nnr � nni

Next are the authentication invariants. We can see that inv2_11 is the same as inv0_10, and that inv2_12
is the same as thm0_1. As inv0_10 and thm0_1 were the authentication properties in section 4, we can
then deduce that the authentication properties are the same as in section 4.

inv2_10: r3−1 ⊆ i3

inv2_11: r3−1 ; r1 ⊆ i2

inv2_12: i3−1 ; i1 ⊆ r2

inv2_13: r4 ; i1 = r2

inv2_14: i3−1 ⊆ r4

inv0_9: i3−1 ⊆ r3

inv0_10: r3−1 ; r1 ⊆ i2

thm0_1: i3−1 ; i1 ⊆ r2

inv0_11: r3 ; i1 = r2

Events

In this section, the events are named Q1, Q2, and Q3. Next to each of them, we put the corresponding
events P1, P2, and P3 of section 4 so that we can see their differences.

12



As can be seen, Q1 and P1 are the same.

Q1
any ni, i, r where
ni /∈ ncc
i ∈ Initiator
r ∈ Recipient

then
ncc := ncc ∪ {ni}
nni := nni ∪ {ni}
i1(ni) := i
i2(ni) := r

end

P1
any ni, i, r where
ni /∈ ncc
i ∈ Initiator
r ∈ Recipient

then
ncc := ncc ∪ {ni}
nni := nni ∪ {ni}
i1(ni) := i
i2(ni) := r

end

The difference between Q2 and P2 corresponds to the mistake made by the initiator. This can be seen
in the third guard of Q2 where the recipient r is any recipient, whereas in P2 it was indeed the recipient
recorded by the initiator (that is i2(ni)). In the action part, one can see that the event Q2 does not update
r3 as in P2. As a matter of fact, Q2 updates r4 only since it is not sure that it is correct.

Q2
any ni, i, r, nr where
ni ∈ nni \ ran(r4)
i = i1(ni)
r ∈ Recipient
nr /∈ ncc

then
ncc := ncc ∪ {nr}
nnr := nnr ∪ {nr}
r1 := r1 ∪ {nr 7→ r}
r2 := r2 ∪ {nr 7→ i}
r4 := r4 ∪ {nr 7→ ni}

end

P2
any ni, i, r, nr where
ni ∈ nni \ ran(r3)
i = i1(ni)
r = i2(ni)
nr /∈ ncc

then
ncc := ncc ∪ {nr}
nnr := nnr ∪ {nr}
r1 := r1 ∪ {nr 7→ r}
r2 := r2 ∪ {nr 7→ i}
r3 := r3 ∪ {nr 7→ ni}

end

Here the difference between the two events Q3 and P3.

Q3
any ni, nr where

nr 7→ ni ∈ r4
ni /∈ dom(i3)
i2(ni) = r1(nr)

then
i3 := i3 ∪ {ni 7→ nr}

end

P3
any ni, nr where
nr 7→ ni ∈ r3
ni /∈ dom(i3)

then
i3 := i3 ∪ {ni 7→ nr}

end

There is now an additional events, Q4 in order to update r3

Q4
any ni, nr where
ni 7→ nr ∈ i3
nr /∈ dom(r3)
i2(ni) = r1(nr)

then
r3 := r3 ∪ {nr 7→ ni}

end

13



Proofs The Proof Obligation Generator of the Rodin Platform produces 49 proof obligations (invariant,
well-definedness), all proved automatically by the prover of the Rodin Platform.

5.2 Refinement
Contants

As in section 4.2

sets: MSG

Variables and Invariants

As in section 4.2

variables: msg
msg1
msg2
msg3
crypto

inv3_1: msg ⊆ MSG

inv3_2: partition(msg,msg1,msg2,msg3)

inv3_3: crypto ∈ msg→AGT

inv1_1: msg ⊆ MSG

inv1_2: partition(msg,msg1,msg2,msg3)

inv1_3: crypto ∈ msg→AGT

Here we see that inv1_6 has disappeared.

variables: m1_ini
m1_nni

inv3_4: m1_ini ∈ msg1→ Initiator

inv3_5: m1_nni ∈ msg1�� nni

inv3_7: m1_nni−1 ;m1_ini = i1

inv1_4: m1_ini ∈ msg1→ Initiator

inv1_5: m1_nni ∈ msg1�� nni

inv1_6: m1_nni−1 ; crypto = i2

inv1_7: m1_nni−1 ;m1_ini = i1

Here we see that messages belonging to msg2 have an additional "field", m2_rcv, correponding to the
name of the recipient that has received the message m1.

variables: m2_nnr
m2_nni
m2_rcv

14



In section 4.2 the invariant were mentioning r3, here it is r4 instead.

inv3_8: m2_nni ∈ msg2→ ran(r4)

inv3_9: m2_nnr ∈ msg2�� nnr

inv3_10: m2_nnr = m2_nni ; r4−1

inv3_11: m2_rcv ∈ msg2→Recipient

inv1_8: m2_nni ∈ msg2→ ran(r3)

inv1_9: m2_nnr ∈ msg2�� nnr

inv1_10: m2_nnr = m2_nni ; r3−1

variables: m3_nnr inv3_12: m3_nnr ∈ msg3→ nnr

There are other invariants that are rather technical and omitted in this text. They were discovered gradually
while doing the interactive proofs.

Events

The only difference between the refinement event Q1 and the refinement event P1 corresponds to the
introduction of the additional recipient s that is used (instead of r in the event P1) in the variable crypto.

Q1
any ni, i, r,m1, s where
ni /∈ ncc
p ∈ Initiator
q ∈ Recipient
m1 /∈ msg
s ∈ Recipient

then
ncc := ncc ∪ {ni}
nni := nni ∪ {ni}
i1 := i1 ∪ {ni 7→ i}
i2 := i2 ∪ {ni 7→ r}
msg := msg ∪ {m1}
msg1 := msg1 ∪ {m1}
crypto := crypto ∪ {m1 7→ s}
m1_nni := m1_nni ∪ {m1 7→ ni}
m1_ini := m1_ini ∪ {m1 7→ i}

end

P1
any ni, i, r,m1 where
ni /∈ ncc
i ∈ Initiator
r ∈ Recipient
m1 /∈ msg

then
ncc := ncc ∪ {ni}
nni := nni ∪ {ni}
i1 := i1 ∪ {ni 7→ i}
i2 := i2 ∪ {ni 7→ r}
msg := msg ∪ {m1}
msg1 := msg1 ∪ {m1}
crypto(m1) := crypto ∪ {m1 7→ r}
m1_nni := m1_nni ∪ {m1 7→ ni}
m1_ini := m1_ini ∪ {m1 7→ i}

end

15



The only difference between the refinement event Q2 and the refinement event P2 is the updating of the
additional field m2_rcv of the message m2

Q2
any m1, r, nr,m2 where
m1 ∈ msg1
m1_nni(m1) /∈ ran(r4)
nr /∈ ncc
r = crypto(m1)
m2 /∈ msg

with
ni = m1_nni(m1)
i = m_ini(m1)

then
ncc := ncc ∪ {nr}
nnr := nnr ∪ {nr}
r1 := r1 ∪ {nr 7→ q}
r2 := r2 ∪ {nr 7→ m1_ini(m1)}
r4 := r4 ∪ {nr 7→ m1_nni(m1)}
msg := msg ∪ {m2}
msg2 := msg2 ∪ {m2}
m2_nni(m2) := m1_nni(m1)
m2_nnr(m2) := nr
crypto(m2) := m1_ini(m1)
m2_rcv(m2) := r

end

P2
any m1, r, nr,m2 where
m1 ∈ msg1
m1_nni(m1) /∈ ran(r3)
nr /∈ ncc
r = crypto(m1)
m2 /∈ msg

with
ni = m1_nni(m1)
i = m_ini(m1)

then
ncc := ncc ∪ {nr}
nnr := nnr ∪ {nr}
r1 := r1 ∪ {nr 7→ r}
r2 := r2 ∪ {nr 7→ m1_ini(m1)}
r3 := r3 ∪ {nr 7→ m1_nni(m1)}
msg := msg ∪ {m2}
msg2 := msg2 ∪ {m2}
m2_nni(m2) := m1_nni(m1)
m2_nnr(m2) := nr
crypto(m2) := m1_ini(m1)

end

Here the difference between Q3 and P3 is more important than in previous cases. The very fundamental
guard in the event Q3 is the fourth one, m2_rcv(m2) = i2(m2_nni(m2)), where it is checked that
the message m2 is indeed received from the expected recipient. Besides the updating of i3 (as in the
event P3), the actions contains the sending of message m3. Notice that when the guard m2_rcv(m2) =
i2(m2_nni(m2)) does not hold then the protocol does not terminate since the message m3 is never sent
to the recipient.

Q3
any m2,m3 where
m2 ∈ msg2
m2_nni(m2) /∈ dom(i3)
i1(m2_nni(m2)) = crypto(m2)
m2_rcv(m2) = i2(m2_nni(m2))
m3 /∈ msg

with
ni = m2_nni(m2)
nr = m2_nnr(m2)

then
i3 := i3 ∪ {m2_nni(m2) 7→ m2_nnr(m2)}
msg := msg ∪ {m3}
msg3 := msg3 ∪ {m3}
m3_nnr := m3_nnr ∪ {m3 7→ m2_nnr(m2)}
crypto := crypto ∪ {m3 7→ m2_rcv(m2)}

end

P3
any m2 where

m2 ∈ msg2
m2_nni(m2) /∈ dom(i3)
i1(m2_nni(m2)) = crypto(m2)

with
ni = m2_nni(m2)
nr = m2_nnr(m2)

then
i3 := i3 ∪ {m2_nni(m2) 7→ m2_nnr(m2)}

end

16



This last event updates the variable r3 when the recipient receives the message m3

Q4
any m3 where
m3 ∈ msg3
m3_nnr(m3) /∈ dom(r3)
r1(m3_nnr(m3)) = crypto(m3)

with
ni = r4(m3_nni(m3))
nr = m3_nnr(m3)

then
r3 := r3 ∪ {m3_nnr(m3) 7→ r4(m3_nnr(m3))}

end

Proofs

The Proof Obligation Generator of the Rodin Platform produces 97 proof obligations (invariant, refine-
ment, well-definedness), with 11 of them proved interactively.

6 Conclusion

We presented a formal development with proofs of the Needham-Schroeder-Lowe protocol. The purpose
of this exercise was to show that the classical attack of this protocol can be simulated by means of one of
the participants making a mistake, Further work is needed to see whether this approach to attacks can be
generalized to other protocols

References

1. R.M. Needham and M.D. Schroeder Using encryption for authentication in large networks of computers. CACM
21 (1978)

2. G. Lowe A Breaking and fixing the Needham-Schroeder public-key protocol using FDR. TACAS 1996 LNCS
vol.1055 (1996)

3. J.R. Abrial. Modeling in Event-B: System and Software Engineering. Cambridge University Press 2010
4. http: //www.event-b.org Rodin Platform

17


