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A Turing Machine
I a finite-state machine operating on a finite symbol

set,
I at each unit of time, the machine inspects the

program tape, writes some symbols on a work tape,
changes its state according to its transition table, and
calls for more program.

I reads from left to right only.

Figure: A Turing Machine

Most of the materials is copy-edited from[Cover et al., 1991].
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A Turing Machine

I The programs this Turing Machine reads form a
prefix-free set:

I no program leading to a halting computation can be
the prefix of another such program.

I We can view the Turing machine as a map:
I from a set of finite-length binary strings to the set of

finite- or infinite-length binary strings,
I The computation may halt or not.

Definition
The set of functions f : {0,1}∗ → {0,1}∗ ∪ {0, 1}∞
computable by Turing machines is called the set of
partial recursive functions .
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Turing Machine

I Turing argued that this machine could mimic the
computational ability of a human being.

I After Turing’s work, it turned out that every new
computational system could be reduced to a Turing
machine, and conversely.

I In particular,the familiar digital computer with its
CPU, memory, and input output devices could be
simulated by and could simulate a Turing machine.
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Turing’s Thesis

I The class of algorithmically computable numerical
functions (in the intuitive sense) coincides with the
class of partial recursive functions
[Li and Vitányi, 2008].

I All (sufficiently complex) computational models are
equivalent in the sense that they can compute the
same family of functions.
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The Universal Turing Machine

I Universal:
I All but the most trivial computers are universal,in the

sense that they can mimic the actions of other
computers.

I The universal Turing machine:
I the conceptually simplest universal computer.
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Kolmogorov Complexity of a String

Definition
The Kolmogorov complexity KU (x) of a string x with
respect to a universal computer U is defined as:

KU (x) = min
p:U(p)=x

`(p),

I x is a finite-length binary string,
I U is a universal computer,
I `(x) is the length of the string x ,
I U(p) is the output of the computer U when presented

with a program p.
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Kolmogorov Complexity of a String

Remark
I A useful technique for thinking about Kolmogorov

complexity is the following–if one person can
describe a sequence to another person in such a
manner as to lead unambiguously to a computation
of that sequence in a finite amount of time.

I The number of bits in that communication is an upper
bound on the Kolmogorov complexity.
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Kolmogorov Complexity of a String

Example
One can say"Print out the first 1,239,875,981,825,931
bits of the square root of e." We see that the Kolmogorov
complexity of this huge number is no greater than
(8)(73) = 584 bits.

The fact that there is a simple algorithm to calculate the
square root of e provides the saving in descriptive
complexity.
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Conditional Kolmogorov Complexity

Definition
If we assume that the computer already knows the length
of x, we can define the conditional Kolmogorov
complexity knowing `(x) as:

KU (x |`(x)) = min
p:U(p,`(x))=x

`(p),
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Universality of Kolmogorov Complexity

Theorem
If U is a universal computer, for any other computer A
there exists a constant cA such that

KU (x) ≤ KA(x) + cA.
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Universality of Kolmogorov Complexity

Proof. Assume pA is a program for computer A to print x .
Thus, A(pA) = x . sA is a simulation program which tells
computer U how to simulate computer A. The program
for U to print x is p = sApA and its length is

`(p) = `(sA) + `(pA) = cA + `(pA),

where cA is the length of the simulation program. Hence,

KU (x) = min
p:U(p)=x

`(p) ≤ min
p:A(p)=x

(`(p) + cA) = KA(x) + cA

for all strings x . �
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Universality of Kolmogorov Complexity

Remark
I The constant cA in the theorem may be very large.

I The crucial point is that the length of this simulation
program is independent of the length of x.

I For sufficiently long x, the length of this simulation
program can be neglected.

I We discuss Kolmogorov complexity without talking
about the constants.
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I The constant cA in the theorem may be very large.

I The crucial point is that the length of this simulation
program is independent of the length of x.

I For sufficiently long x, the length of this simulation
program can be neglected.

I We discuss Kolmogorov complexity without talking
about the constants.
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Universality of Kolmogorov Complexity

Remark
If A and U are both universal, we have
|KU (x)− KA(x)| < c for all x. Hence, we will drop all
mention of U in all further definitions. We will assume that
the unspecified computer U is a fixed universal computer.
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Upper Bound on Conditional Complexity

Theorem
(Conditional complexity is less than the length of the
sequence)

KU (x |`(x)) ≤ `(x) + c.

Proof. A program for printing x is

Print the following `-bit sequence: x1x2 . . . x`(x).

Note that no bits are required to describe ` since ` is given.
The program is self-delimiting because `(x) is provided and the
end of the program is thus clearly defined. The length of this
program is `(x) + c. �
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Upper Bound on Conditional Complexity

Remark
Without knowledge of the length of the string, we will
need an additional stop symbol or we can use a
self-punctuating scheme like the one described in the
proof of the next theorem.
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Upper Bound on Kolmogorov Complexity

Theorem

KU (x) ≤ KU (x |`(x)) + 2 log `(x) + c.

Proof.
I If the computer does not know `(x),we must have some

way of informing the computer when it has come to the
end of the string of bits that describes the sequence.

I We describe a simple but inefficient method that uses a
sequence 01 as a "comma."
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Proof.
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Proof Cont.

I Suppose that `(x) = n. To describe `(x), repeat every bit
of the binary expansion of n twice; then end the
description with a 01 so that the computer knows that it
has come to the end of the description of n.

I For example, the number 5 (binary 101) will be described
as 11001101. This description requires 2dlog ne+ 2 bits.

I Thus, inclusion of the binary representation of `(x) does
not add more than 2dlog ne+ 2 bits to the length of the
program, and we have the bound in the theorem.

�
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Lower Bound on Kolmogorov Complexity

Remark
A more efficient method for describing n is to do so
recursively. The theorem above can be improved to

KU (x) ≤ KU (x |`(x)) + log∗ `(x) + c.



Kolmogorov
Complexity

Pei Wang

Definition
Models of Computation

Definitions

Examples

Kolmogorov
Complexity and
Entropy
Prefix Code

Kolmogorov Complexity and
Entropy

Algorithmically
Random and
Incompressible
Random and
Incompressible

Asymptotic Equipartition
Property

A Random Bernoulli
Sequence

Ω

Kolmogorov
Complexity and
Universal
Probability

Summary

References

Lower Bound on Kolmogorov Complexity

Theorem
The number of strings x with complexity K (x) < k
satisfies

|{x ∈ {0,1}∗ : K (x) < k}| < 2k . (1)
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Lower Bound on Kolmogorov Complexity

Proof. We list all the programs of length < k , we have

Λ,︸︷︷︸
1

0,1,︸︷︷︸
2

00,01,10,11,︸ ︷︷ ︸
4

. . . , . . . ,

k−1︷ ︸︸ ︷
11 . . . 1︸ ︷︷ ︸
2k−1

and the total number of such programs is

1 + 2 + 4 + . . .+ 2k−1 = 2k − 1 ≤ 2k .

Since each program can produce only one possible
output sequence, the number of sequences with
complexity < k is less than 2k . �
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I The Kolmogorov complexity will depend on the
computer, but only up to an additive constant.

I We consider a computer that can accept
unambiguous commands in English (with numbers
given in binary notation).
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I The Kolmogorov complexity will depend on the
computer, but only up to an additive constant.

I We consider a computer that can accept
unambiguous commands in English (with numbers
given in binary notation).
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Sequences of Zeros

Example
(A sequence of n zeros) If we assume that the computer
knows n, a short program to print this string is

Print the specified number of zeros.

The length of this program is a constant number of bits.
This program length does not depend on n. Hence, the
Kolmogorov complexity of this sequence is c, and

K (000 . . . 0|n) = c.
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Integer

Example
(Integer n) If the computer knows the number of bits in
the binary representation of the integer, we need only
provide the values of these bits. This program will have
length (c + log n).

In general, the computer will not know the length of the
binary representation of the integer. By informing the
computer in a recursive way when the description ends,
we see that the Kolmogorov complexity of an integer is
bounded by

K (n) ≤ log∗ n + c.
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A Notation

We introduce a notation for the binary entropy function

H0(p) = −(1− p) log(1− p)− p log p.

Thus, when we write H0( 1
n

∑n
i=1 xi ), we will mean

−X̄n log X̄n − (1− X̄n) log(1− X̄n), and not the entropy of
random variable X̄n. When there is no confusion, we shall
simply write H(p) for H0(p).
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An Inequality
Lemma
For k 6= 0,n, we have(

n
k

)
≤
√

n
πk(n − k)

2nH(k/n). (2)

Proof. Applying a strong form of Stirling’s approximation
[Feller, 2008], which states that

√
2πn

(n
e

)n
≤ n! ≤

√
2πn

(n
e

)n
e

1
12n (3)

We obtain(
n
k

)
≤

√
2πn

(n
e

)n e
1

12n

√
2πk

(k
e

)k √
2π(n − k)

(n−k
e

)(n−k)

≤
√

n
πk(n − k)

(
k
n

)−k (n − k
n

)−(n−k)

e
1

12n

≤
√

n
πk(n − k)

2nH(k/n),

since e
1

12n < e
1

12 = 1.087 <
√

2.
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Sequence Compress

Example
(Sequence of n bits with k ones) Can we compress a
sequence of n bits with k ones?

Consider the following program:

Generate, in lexicographic order, all sequences with k ones;
Of these sequences, print the ith sequence.

This program will print out the required sequence. The
only variables in the program are k ( with known range {0,
1,. . . , n} )and i ( with conditional range {1, 2,. . . ,

(n
k

)
} ).
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Sequence Compress

Example
The total length of this program is

`(p) = c + log n︸ ︷︷ ︸
to express k

+ log
(

n
k

)
︸ ︷︷ ︸
to express i

(4)

≤ c′ + log n + nH
(

k
n

)
− 1

2
log n, (5)

Since
(n

k

)
≤
√

n
πk(n−k) 2nH(k/n) by (2) for p = k

n and
q = 1− p and k 6= 0 and k 6= n. We have used log n bits
to represent k. Thus, if

∑n
i=1 xi = k ,then

K (x1, x2, . . . , xn|n) ≤ nH
(

k
n

)
+

1
2

log n + c. (6)
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Sequence Compress

Theorem
The Kolmogorov complexity of a binary string x is
bounded by

K (x1, x2, . . . , xn|n) ≤ nH

(
1
n

n∑
i=1

xi

)
+

1
2

log n + c. (7)
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Sequence Compress

Remark
I In general, when the length `(x) of the sequence x is

small, the constants that appear in the expressions
for the Kolmogorov complexity will overwhelm the
contributions due to `(x).

I Hence, the theory is useful primarily when `(x) is
very large. In such cases we can safely neglect the
terms that do not depend on `(x).
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Prefix Code

Definition
A code is called a prefix code or an instantaneous
code if no codeword is a prefix of any other codeword

Theorem
(Kraft inequality) For any instantaneous code (prefix
code) over an alphabet of size D, the codeword lengths
`1, `2, . . . , `m must satisfy the inequality∑

i

D−`i ≤ 1. (8)

Conversely, given a set of codeword lengths that satisfy
this inequality,there exists an instantaneous code with
these word lengths.
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Kraft Inequality
Proof. Consider a D-ary tree.
I Let the branches of the tree represent the symbols of the

codeword.
I Then each codeword is represented by a leaf on the tree. The

path from the root traces out the symbols of the codeword.
I A binary example of such a tree is shown in Figure (2).
I The prefix condition on the codewords implies that each

codeword eliminates its descendants as possible codewords.

Figure: Code tree for the Kraft inequality
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Proof Cont.

I Consider all nodes of the tree at level `max . Some of them are
codewords, some are descendants of codewords, and some are
neither.

I A codeword at level `i has D`max−`i descendants at level `max .
Each of these descendant sets must be disjoint.

I Also, the total number of nodes in these sets must be less than
or equal to D`max .

Hence, ∑
D`i−lmax ≤ D`max (9)

Thus, ∑
D`i ≤ 1. (10)
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Proof Cont.

I Consider all nodes of the tree at level `max . Some of them are
codewords, some are descendants of codewords, and some are
neither.

I A codeword at level `i has D`max−`i descendants at level `max .
Each of these descendant sets must be disjoint.

I Also, the total number of nodes in these sets must be less than
or equal to D`max .

Hence, ∑
D`i−lmax ≤ D`max (9)

Thus, ∑
D`i ≤ 1. (10)
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Proof Cont.

I Conversely, given any set of codeword lengths `1, `2, . . . , `m that
satisfy the Kraft inequality,we can always construct a tree like the
one in Figure (2)

I Label the first node (lexicographically) of depth `1 as codeword
1, and remove its descendants from the tree.

I Then label the first remaining node of depth `2 as codeword 2,
and so on.

I Proceeding this way, we construct a prefix code with the
specified `1, `2, . . . , `m. �
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Proof Cont.
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Proof Cont.
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Proof Cont.
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1, and remove its descendants from the tree.
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and so on.

I Proceeding this way, we construct a prefix code with the
specified `1, `2, . . . , `m. �
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Extended Kraft Inequality

Theorem
For any countably infinite set of codewords that form a
prefix code, the codeword lengths satisfy the extended
Kraft inequality,

∞∑
i

D−`i ≤ 1. (11)

Conversely, given any `1, `2, . . . satisfying the extended
Kraft inequality, we can construct a prefix code with these
codeword lengths.
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Extended Kraft Inequality

Proof. Let the D-ary alphabet be 0, 1, . . . ,D − 1. Consider the ith
codeword y1y2 . . . y`i . Let 0.y1y2 . . . y`i be the real number given by the
D-ary expansion

0.y1y2 . . . y`i =

`i∑
j=1

yjD−j . (12)

This codeword corresponds to the interval[
0.y1y2 . . . y`i , 0.y1y2 . . . y`i +

1
D−`i

)
the set of all real numbers whose D-ary expansion begins with
0.y1y2 . . . y`i . This is a subinterval of the unit interval [0, 1]. By the
prefix condition, these intervals are disjoint. Hence, the sum of their
lengths has to be less than or equal to 1. This proves that

∞∑
i

D−`i ≤ 1. (13)
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Proof Cont.

I Just as in the finite case, we can reverse the proof to construct
the code for a given `1, `2, . . . that satisfies the Kraft inequality.

I First, reorder the indexing so that `1 ≤ `2 ≤ . . . Then simply
assign the intervals in order from the low end of the unit interval.

I For example, if we wish to construct a binary code with
`1 = 1, `2 = 2, . . ., we assign the intervals [0, 1

2 ), [ 1
2 ,

1
4 ), . . . to the

symbols, with corresponding codewords 0, 10, . . .
�
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Expected Code Length

Theorem
The expected length L of any instantaneous D-ary code
for a random variable X is greater than or equal to the
entropy HD(X ); that is,

L ≥ HD(X ). (14)
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Expected Code Length

Proof. We can write the difference between the expected length and
the entropy as

L− HD(X ) =
∑

pi`i −
∑

pi logD
1
pi

(15)

= −
∑

pi logD D−`i +
∑

pi logD pi . (16)

Letting ri = D−`i/
∑

j D−`j and c =
∑

j D−`j ,we obtain

L− H = −
∑

pi logD
pi

ri
− logD c (17)

= D(p‖r) + logD
1
c

(18)

≥ 0 (19)

by the nonnegativity of relative entropy and the fact (Kraft inequality)
that c ≤ 1. Hence, L ≤ H with equality iff pi = D−`i (i.e., iff − logD pi is
an integer for all i). �
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Kraft Inequality

Lemma
For any computer U , ∑

p:U(p)halts

2−`(p) ≤ 1. (20)

Proof. If the computer halts on any program, it does not
look any further for input. Hence, there cannot be any
other halting program with this program as a prefix. Thus,
the halting programs form a prefix-free set, and their
lengths satisfy the Kraft inequality. �
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Kolmogorov Complexity and Entropy

Theorem
Let the stochastic process {Xi} be drawn i.i.d. according
to the probability mass function f (x), x ∈ X , where X is a
finite alphabet. Let f (xn) =

∏n
i=1 f (xi). Then there exists

a constant c such that

H(X ) ≤ 1
n

∑
xn

f (xn)K (xn|n) ≤ H(X ) +
(|X | − 1) log n

n
+

c
n

(21)
for all n. Thus

E
1
n

K (xn|n)→ H(X ). (22)
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Kolmogorov Complexity and Entropy
Proof.
I Consider the lower bound. The allowed programs satisfy

the prefix property, and thus their lengths satisfy the Kraft
inequality.

I We assign to each xn the length of the shortest program p
such that U(p,n) = xn.These shortest programs also
satisfy the Kraft inequality.

I We know from the theory of source coding (9) that the
expected codeword length must be greater than the
entropy.

Hence, ∑
xn

f (xn)K (xn|n) ≥ H(X1,X2, . . . ,Xn) = nH(x). (23)

We first prove the upper bound when X is binary
(i.e.,X1,X2, . . . ,Xn are i.i.d. Bernoulli(θ)).
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Proof Cont.
Using result (7), we can bound the complexity of a binary string
by

K (x1, x2, . . . , xn|n) ≤ nH0

(
1
n

n∑
i=1

xi

)
+

1
2

log n + c. (24)

EK (X1,X2, . . . ,Xn|n) ≤ nEH0

(
1
n

n∑
i=1

Xi

)
+

1
2

log n + c (25)

(a)

≤ nH0

(
1
n

n∑
i=1

EXi

)
+

1
2

log n + c (26)

= nH0 (θ) +
1
2

log n + c, (27)

where (a) follows from Jensen’s inequality and the concavity of
the entropy. Thus, we have proved the upper bound in the
theorem for binary processes.
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Proof Cont.

I We can use the same technique for the case of a
nonbinary finite alphabet.

I We first describe the type of the sequence (the empirical
frequency of occurrence of each of the alphabet symbols
as defined later) using (|X | − 1) log n bits (the frequency
of the last symbol can be calculated from the frequencies
of the rest).

I Then we describe the index of the sequence within the set
of all sequences having the same type. The type class
has less than 2nH(Pxn ) elements (where Pxn is the type of
the sequence xn) as shown later.
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frequency of occurrence of each of the alphabet symbols
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of the last symbol can be calculated from the frequencies
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Proof Cont.

Therefore the two-stage description of a string xn has length

K (xn|n) ≤ nH (Pxn )) + (|X − 1|) log n + c (28)

Again, taking the expectation and applying Jensen’s inequality
as in the binary case, we obtain

EK (Xn|n) ≤ nH (X ) + (|X − 1|) log n + c (29)

Dividing this by n yields the upper bound of the theorem. �
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Type of Sequence

Let X1,X2, . . . ,Xn be a sequence of n symbols from an
alphabet X = {a1,a2, . . . ,a|X |}. We use the notation xn

and x interchangeably to denote a sequence
x1, x2, . . . , xn.

Definition
The type Px (or empirical probability distribution) of a
sequence x1, x2, . . . , xn is the relative proportion of
occurrences of each symbol of X (i.e., Px(a) = N(a|x)/n
for all a ∈ X , where N(a|x) is the number of times the
symbol a occurs in the sequence x ∈ X n).It is a probability
mass function on X .
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Type of Sequence

Definition
Let Pn denote the set of types with denominator n.
For example, if X = {0,1}, the set of possible types with
denominator n is

Pn =

{
(P(0),P(1)) :

(
0
n
,
n
n

)
,

(
1
n
,
n − 1

n

)
, , . . . ,

(
n
n
,

0
n

)}
.
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Type Class

Definition
If P ∈ Pn, the set of sequences of length n and type P is
called the type class of P, denoted T (P):

T (P) = {x ∈ X n : Px = P} .

The type class is sometimes called the composition class
of P.
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Type Class

Example
Let X = {1,2,3}, a ternary alphabet. Let x = 11321.Then the
type Px is:

Px(1) =
3
5
, Px(2) =

1
5
, Px(3) =

1
5
.

The type class of Px is the set of all sequences of length 5 with
three 1’s, one 2, and one 3. There are 20 such sequences, and

T (Px) = {11123,11132,11213, . . . ,32111}.

The number of elements in T (P)is

|T (P)| =

(
5

3,1,1

)
=

5!

3!1!1!
= 20.
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Probability to Same Type Class

Theorem
If X1,X2, . . . ,Xn are drawn i.i.d. according to Q(x), the
probability of x depends only on its type and is given by

Qn(x) = 2−n(H(Px)+D(Px‖Q)).
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Probability to Same Type Class
Proof.

Qn(x) =
n∏

i=1

Q(xi)

=
∏
a∈X

Q(a)N(a|x)

=
∏
a∈X

Q(a)nPx

=
∏
a∈X

2nPx log Q(a)

=
∏
a∈X

2n(Px log Q(a)−Px log Px+Px log Px)

= 2n
∑

a∈X (−Px log Px
Q(a)

+Px log Px)

= 2−n(H(Px)+D(Px‖Q)).
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Probability to Same Type Class

Corollary
If x is in the type class of Q, then

Qn(x) = 2−nH(Q).
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Size of a Type Class

Theorem
For any type P ∈ Pn,

|T (P)| ≤ 2nH(P).

Proof. Since a type class must have probability ≤ 1, we
have

1 ≥ Pn(T (P))

=
∑

x∈T (P)

Pn(x)

=
∑

x∈T (P)

2−nH(P)

= |T (P)|2−nH(P),

Thus, |T (P)| ≤ 2nH(P). �
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Compression

I We now show that although there are some simple
sequences, most sequences do not have simple
descriptions.

I Hence, if we draw a sequence at random, we are likely to
draw a complex sequence.

I The next theorem shows that the probability that a
sequence can be compressed by more than k bits is no
greater than 2−k .
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Compression

Theorem
Let X1,X2, . . . ,Xn be drawn according to a Bernoulli

( 1
2

)
process. Then

P(K (X1,X2, . . . ,Xn|n) < n − k) < 2−k . (30)
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Compression

Proof.

P(K (X1,X2, . . . ,Xn|n) < n − k)

=
∑

(x1,x2,...,xn:K (x1,x2,...,xn|n)<n−k)

p(x1, x2, . . . , xn)

=
∑

(x1,x2,...,xn:K (x1,x2,...,xn|n)<n−k)

2−n

= |(x1, x2, . . . , xn : K (x1, x2, . . . , xn|n) < n − k)|2−n

< 2n−k2−n

= 2−k .
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Compression

Remark
Thus, most sequences have a complexity close to their
length. For example, the fraction of sequences of length n
that have complexity less than n − 5 is less than 1/32.
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Algorithmically Random

Definition
A sequence x1, x2, . . . , xn is said to be
algorithmically random if

K (x1, x2, . . . , xn|n) ≥ n. (31)

Remark
Note that by the counting argument, there exists, for each
n, at least one sequence xn such that K (xn|n) ≥ n.
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Incompressible String

Definition
We call an infinite string x incompressible if

lim
n→∞

K (x1, x2, x3, . . . , xn|n)

n
= 1. (32)
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Incompressible String

Theorem
(Strong law of large numbers for incompressible
sequences) If a string x1, x2, . . . is incompressible, it
satisfies the law of large numbers in the sense that

1
n

n∑
i=1

xi →
1
2
. (33)

Hence the proportions of 0’s and 1’s in any
incompressible string are almost equal.
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Incompressible String

Proof.
I Letθn = 1

n

∑n
i=1 xi denote the proportion of 1’s in

x1, x2, . . . , xn.

I Then using the method of Example in section 1 one
can write a program of length nH(θn) + 2log(nθn) + c
to print xn.

I Thus,

K (xn|n)

n
< H0(θn) + 2

log n
n

+
c′

n
. (34)
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Proof Cont.

By the incompressibility assumption, we also have the
lower bound for large enough n,

1− ε ≤ K (xn|n)

n
< H0(θn) + 2

log n
n

+
c′

n
. (35)

Thus,

H0(θn) > 1− 2
log n + c′

n
− ε. (36)

Inspection of the graph of H0(p) (Figure (3)) shows that
θn is close to 1

2 for large n. Specifically, the inequality
above implies that

θn ∈
(

1
2
− δn,

1
2

+ δn

)
, (37)
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Proof Cont.
where δn is chosen so that

H0(
1
2
− δn) = 1− 2

log n + cn + c′

n
. (38)

which implies that δn → 0 as n→∞. Thus,
θn = 1

n

∑n
i=1 xi → 1

2 as n→∞. �

Figure: H0(P) vs. p
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Incompressible String

Remark

I We have now proved that incompressible sequences look
random in the sense that the proportion of 0’s and 1’s are
almost equal.

I In general, we can show that if a sequence is
incompressible, it will satisfy all computable statistical
tests for randomness.

I Otherwise, identification of the test that x fails will reduce
the descriptive complexity of x, yielding a contradiction.

I In this sense, the algorithmic test for randomness is the
ultimate test, including within it all other computable tests
for randomness.
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AEP

I In information theory, the analog of the law of large
numbers is the asymptotic equipartition property (AEP).

I The law of large numbers states that for independent,
identically distributed (i.i.d.) random variables, 1

n

∑n
i=1 Xi

is close to its expected value EX for large values of n.

I The AEP states that 1
n log 1

p(X1,X2,...,Xn) is close to the
entropy H,where X1,X2, . . . ,Xn are i.i.d. random variables.

I Thus, the probability p(X1,X2, . . . ,Xn) assigned to an
observed sequence will be close to 2−nH .
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AEP

I This enables us to divide the set of all sequences into two
sets, the typical set, where the sample entropy is close to
the true entropy, and the nontypical set, which contains
the other sequences.

I Any property that is proved for the typical sequences will
then be true with high probability and will determine the
average behavior of a large sample.
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AEP

I This enables us to divide the set of all sequences into two
sets, the typical set, where the sample entropy is close to
the true entropy, and the nontypical set, which contains
the other sequences.

I Any property that is proved for the typical sequences will
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average behavior of a large sample.



Kolmogorov
Complexity

Pei Wang

Definition
Models of Computation

Definitions

Examples

Kolmogorov
Complexity and
Entropy
Prefix Code

Kolmogorov Complexity and
Entropy

Algorithmically
Random and
Incompressible
Random and
Incompressible

Asymptotic Equipartition
Property

A Random Bernoulli
Sequence

Ω

Kolmogorov
Complexity and
Universal
Probability

Summary

References

AEP

Theorem
If X1,X2, . . . are i.i.d.∼ p(x), then

−1
n

log p(X1,X2, . . . ,Xn)→ H(X ) in probability. (39)

Proof. Functions of independent random variables are
also independent random variables. Thus, since the Xi
are i.i.d., so are log p(Xi).Hence,by the weak law of large
numbers,

−1
n

log p(X1,X2, . . . ,Xn) = −1
n

∑
i

log p(Xi)

→ −E log p(X ) in probability
= H(x).

�
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Typical Set

Definition
The typical set A(n)

ε with respect to p(x) is the set of
sequences (X1,X2, . . . ,Xn) ∈ X n with the property

2−n(H(X)+ε) ≤ p(X1,X2, . . . ,Xn) ≤ 2−n(H(X)−ε). (40)
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Typical Set

As a consequence of the AEP, we can show that the set
A(n)
ε has the following properties:

Theorem

1. If (X1,X2, . . . ,Xn) ∈ A(n)
ε , then

H(X )− ε ≤ − 1
n log p(X1,X2, . . . ,Xn) ≤ H(X ) + ε.

2. Pr(A(n)
ε ) > 1− ε for n sufficiently large.

3. |A(n)
ε | ≤ 2n(H(x)+ε).

4. |A(n)
ε | ≥ (1− ε)2n(H(x)−ε) for n sufficiently large.
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Typical Set

Proof. Property (3) follows from:

1 =
∑

x∈X n

p(x)

≥
∑

x∈A(n)
ε

p(x)

≥
∑

x∈A(n)
ε

2−n(H(X)+ε)

= 2−n(H(X)+ε)|A(n)
ε |.
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Proof Cont.

For sufficiently large n,

Pr(A(n)
ε ) > 1− ε,

so that

1− ε < Pr(A(n)
ε )

≤
∑

x∈A(n)
ε

2−n(H(X)−ε)

= 2−n(H(X)−ε)|A(n)
ε |.
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A Random Bernoulli Sequence

Theorem
Let X1,X2, . . . ,Xn be drawn i.i.d.∼ Bernoulli(θ). Then

1
n

K (X1,X2, . . . ,Xn|n)→ H0(θ)in probability. (41)
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A Random Bernoulli Sequence

Proof. LetX̄n = 1
n

∑n
i=1 Xi denote the proportion of 1’s in

X1,X2, . . . ,Xn. Then using the method described in
section 1, we have

K (X1,X2, . . . ,Xn|n) < nH0(X̄n) + 2 log n + c, (42)

and since by the weak law of large numbers, X̄n → θ in
probability, we have

Pr(
1
n

K (X1,X2, . . . ,Xn|n)− H0(θ) ≥ ε)→ 0. (43)
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Proof cont.

I Conversely, we can bound the number of sequences
with complexity significantly lower than the entropy.

I From the AEP, we can divide the set of sequences
into the typical set and the nontypical set.

I There are at least (1− ε)2n(H0(θ)−ε) sequences in the
typical set.

I At most 2n(H0(θ)−c) sequences in the typical set. of
these typical sequences can have a complexity less
than n(H0(θ)− c).
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I There are at least (1− ε)2n(H0(θ)−ε) sequences in the
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Proof cont.

The probability that the complexity of the random
sequence is less than n(H0(θ)− c)is

Pr(K (X n|n) < n(H0(θ)− c))

≤ Pr(X n 6∈ A(n)
ε ) + Pr(X n ∈ A(n)

ε ,K (K n|n) < n(H0(θ)− c))

≤ ε+
∑

X n∈A(n)
ε ,K (K n|n)<n(H0(θ)−c)

p(xn)

≤ ε+
∑

X n∈A(n)
ε ,K (K n|n)<n(H0(θ)−c)

2−n(H0(θ)−ε)

≤ ε+ 2n(H0(θ)−c)2−n(H0(θ)−ε)

= ε+ 2−n(c−ε),

which is arbitrarily small for appropriate choice of ε, n,
and c.



Kolmogorov
Complexity

Pei Wang

Definition
Models of Computation

Definitions

Examples

Kolmogorov
Complexity and
Entropy
Prefix Code

Kolmogorov Complexity and
Entropy

Algorithmically
Random and
Incompressible
Random and
Incompressible

Asymptotic Equipartition
Property

A Random Bernoulli
Sequence

Ω

Kolmogorov
Complexity and
Universal
Probability

Summary

References

Proof cont.

Hence with high probability, the Kolmogorov complexity of
the random sequence is close to the entropy, and we
have

1
n

K (X1,X2, . . . ,Xn|n)→ H0(θ)in probability. (44)

�
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Epimenides Liar Paradox

Consider the following paradoxical statement:

This statement is false.

This paradox is sometimes stated in a two-statement
form:

The next statement is false.
The preceding statement is true.

It illustrates the pitfalls involved in self-reference.
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Gödel’s Incompleteness Theorem

I In 1931, Gödel used this idea of self-reference to
show that any interesting system of mathematics is
not complete; there are statements in the system that
are true but that cannot be proved within the system.

I To accomplish this, he translated theorems and
proofs into integers and constructed a statement of
the above form, which can therefore not be proved
true or false.
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The Halting Problem

I The halting problem is an essential example of
Gödel’s incompleteness theorem.

I In essence, it states that for any computational
model, there is no general algorithm to decide
whether a program will halt or not (go on forever).

I Note that it is not a statement about any specific
program. The halting problem says that we cannot
answer this question for all programs.
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The Noncomputability of Kolmogorov
Complexity

I One of the consequences of the nonexistence of an
algorithm for the halting problem is the
noncomputability of Kolmogorov complexity.

I The only way to find the shortest program in general
is to try all short programs and see which of them
can do the job.

I There is no effective (finite mechanical) way to tell
whether or not they will halt and what they will print
out.
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Chaitin’s Mystical, Magical Number, Ω

Definition

Ω =
∑

p:U(p)halts

2−`(p). (45)

Note that Ω = Pr(U(p)halts), the probability that the given
universal computer halts when the input to the computer
is a binary string drawn according to a Bernoulli(1

2)
process.
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Chaitin’s Mystical, Magical Number, Ω

Since the programs that halt are prefix-free, their lengths
satisfy the Kraft inequality, and hence the sum above is
always between 0 and 1. Let Ωn = .ω1ω2 . . . ωn denote the
first n bits of Ω.
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Chaitin’s Mystical, Magical Number, Ω

The properties of Ω are as follows:
1. Ω is noncomputable.
2. Ω is a "philosopher’s stone".
3. Ω is algorithmically random.
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Ω : noncomputable

There is no effective (finite, mechanical) way to check
whether arbitrary programs halt (the halting problem), so
there is no effective way to compute Ω.



Kolmogorov
Complexity

Pei Wang

Definition
Models of Computation

Definitions

Examples

Kolmogorov
Complexity and
Entropy
Prefix Code

Kolmogorov Complexity and
Entropy

Algorithmically
Random and
Incompressible
Random and
Incompressible

Asymptotic Equipartition
Property

A Random Bernoulli
Sequence

Ω

Kolmogorov
Complexity and
Universal
Probability

Summary

References

Ω : a "philosopher’s stone"

I Knowing Ω to an accuracy of n bits will enable us to decide the
truth of any provable or finitely refutable mathematical theorem
that can be written in less than n bits.

I Actually, all that this means is that given n bits of Ω, there is an
effective procedure to decide the truth of n-bit theorems; the
procedure may take an arbitrarily long (but finite) time.

I Without knowing Ω, it is not possible to check the truth or falsity
of every theorem by an effective procedure (Gödel’s
incompleteness theorem).
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Ω : a "philosopher’s stone"

We run all programs until the sum of the masses 2−`(p) contributed by
programs that halt equals or exceeds Ωn = .ω1ω2 . . . ωn. Then, since

Ω− Ωn < 2−n, (46)

we know that the sum of all further contributions of the form 2−`(p) to
Ω from programs that halt must also be less than 2−n.This implies that
no program of length ≤ n that has not yet halted will ever halt, which
enables us to decide the halting or nonhalting of all programs of length
≤ n.
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Ω :algorithmically random

Theorem
Ω cannot be compressed by more than a constant; that
is, there exists a constant c such that

K (ω1ω2 . . . ωn) ≥ n − c, for all n. (47)
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Ω :algorithmically random

Proof.
I If we are given n bits of Ω, we can determine whether or not any

program of length ≤ n halts.
I Using K (Ωn) bits, we can calculate n bits of Ω, then we can

generate a list of all programs of length ≤ n that halt, together
with their corresponding outputs.

I We find the first string x0 that is not on this list. The string x0 is
then the shortest string with Kolmogorov complexity K (x0) ≥ n.

I The complexity of this program to print x0 is K (Ωn) + c, which
must be at least as long as the shortest program for
x0.Consequently, for all n,

K (Ωn) + c ≥ K (x0) > n.
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Universal Probability

I From our earlier discussions, it is clear that most sequences of
length n have complexity close to n.

I Since the probability of an input program p is 2−`(p) ,shorter
programs are much more probable than longer ones; and when
they produce long strings, shorter programs do not produce
random strings; they produce strings with simply described
structure.

I The probability distribution on the output strings is far from
uniform. Under the computer-induced distribution, simple strings
are more likely than complicated strings of the same length.
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Universal Probability

Definition
The universal probability of a string x is

PU (x) =
∑

p:U(p)=x

2−`(p) = Pr(U(p) = x), (48)

which is the probability that a program randomly drawn as
a sequence of fair coin flips p1,p2, . . . will print out the
string x.
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Universal Probability

This probability mass function is called universal because
of the following theorem.

Theorem
For every computer A,

PU (x) ≥ c′APA(x) (49)

for every string x ∈ {0,1}∗, where the constant c′A
depends only on U and A.
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Universal Probability

Proof. From the discussion of Section 2, we recall that for
every program p′ for A that prints x , there exists a program p
for U of length not more than `(p′) + c′A produced by prefixing
a simulation program for A. Hence,

PU (x) =
∑

p:U(p)=x

2−`(p) =
∑

p′:A(p′)=x

2−`(p′)−c′A = c′APA(x),

�
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Universal Probability

Remark

I Any sequence drawn according to a computable
probability mass function on binary strings can be
considered to be produced by some computer A acting on
a random input (via the probability inverse transformation
acting on a random input).

I Hence, the universal probability distribution includes a
mixture of all computable probability distributions.
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a random input (via the probability inverse transformation
acting on a random input).

I Hence, the universal probability distribution includes a
mixture of all computable probability distributions.



Kolmogorov
Complexity

Pei Wang

Definition
Models of Computation

Definitions

Examples

Kolmogorov
Complexity and
Entropy
Prefix Code

Kolmogorov Complexity and
Entropy

Algorithmically
Random and
Incompressible
Random and
Incompressible

Asymptotic Equipartition
Property

A Random Bernoulli
Sequence

Ω

Kolmogorov
Complexity and
Universal
Probability

Summary

References

Universal Probability

Remark
(Bounded likelihood ratio)

I In particular, Theorem above guarantees that a likelihood
ratio test of the hypothesis that X is drawn according to U
versus the hypothesis that it is drawn according to A will
have bounded likelihood ratio.

I If U and A are universal, then PU (x)/PA(x) is bounded
away from 0 and infinity for all x.

I Apparently, U , which is a mixture of all computable
distributions, can never be rejected completely as the true
distribution of any data drawn according to some
computable probability distribution.
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Kolmogorov Complexity and Universal
Probability

Theorem
(Equivalence of K (x) and log 1

PU (x) ) There exists a constant c,
independent of x, such that

2−K (x) ≤ PU (x) ≤ c2−K (x) (50)

for all strings x. Thus, the universal probability of a string x is
determined essentially by its Kolmogorov complexity.
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Remark
This implies that K (x) and log 1

PU (x) have equal status as
universal complexity measures, since

K (x)− c′ ≤ log
1

PU (x)
≤ K (x) (51)
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Remark
I Notice the striking similarity between the relationship of K (x)

and log 1
PU (x) in Kolmogorov complexity and the relationship of

H(x) and log 1
p(x) in information theory.

I The ideal Shannon code length assignment
`(x) = log 1

p(x) achieves an average description length
H(x),while in Kolmogorov complexity theory, the ideal
description length log 1

PU (x) is almost equal to K (x).

I Thus, log 1
p(x) is the natural notion of descriptive complexity of x

in algorithmic as well as probabilistic settings.
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Proof. Our objective in the proof is to find a short program to
describe the strings that have high PU (x).
I We want to construct a code tree in such a way that strings with

high probability have low depth.
I Since we cannot calculate the probability of a string, we do not

know a priori the depth of the string on the tree.
I Instead, we assign x successively to the nodes of the tree,

assigning x to nodes closer and closer to the root as our
estimate of PU (x) improves.

I We want the computer to be able to recreate the tree and use
the lowest depth node corresponding to the string x to
reconstruct the string.
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Definition. The Kolmogorov complexity KU (x) of a string x is

KU (x) = min
p:U(p)=x

`(p),

KU (x |`(x)) = min
p:U(p,`(x))=x

`(p),

Universality of Kolmogorov complexity. There exists a
universal computer U such that for any other computer A,

KU (x) ≤ KA(x) + cA.

for any string x , where the constant cA does not depend on x .
If U and A are universal, |KU (x)− KA(x)| ≤ c for all x .
Upper bound on Kolmogorov complexity.

KU (x |`(x)) ≤ `(x) + c.

KU (x) ≤ KU (x |`(x)) + 2 log `(x) + c.
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Kolmogorov complexity and entropy. If X1,X2, . . .are i.i.d.
integer valued random variables with entropy H, there exists a
constant c such that for all n,

H ≤ E
1
n

K (xn|n) ≤ H +
(|X | − 1) log n

n
+

c
n

Lower bound on Kolmogorov complexity. There are no
more than 2k strings x with complexity K (x) < k . If
X1,X2, . . .Xn are drawn according to a Bernoulli

( 1
2

)
process,

P(K (X1,X2, . . . ,Xn|n) < n − k) < 2−k .

Definition. A sequence x is said to be incompressible if
K (x1, x2, x3, . . . , xn|n)

n
→ 1.

Strong law of large numbers for incompressible
sequences.

K (x1, x2, x3, . . . , xn|n)

n
→ 1⇒ 1

n

n∑
i=1

xi →
1
2
.



Kolmogorov
Complexity

Pei Wang

Definition
Models of Computation

Definitions

Examples

Kolmogorov
Complexity and
Entropy
Prefix Code

Kolmogorov Complexity and
Entropy

Algorithmically
Random and
Incompressible
Random and
Incompressible

Asymptotic Equipartition
Property

A Random Bernoulli
Sequence

Ω

Kolmogorov
Complexity and
Universal
Probability

Summary

References

Definition. Ω =
∑

p:U(p)halts 2−`(p) = Pr(U(p)halts) is the
probability that the computer halts when the input p to the
computer is a binary string drawn according to a Bernoulli( 1

2 )
process.
Properties of Ω.

Ω is noncomputable.
Ω is a "philosopher’s stone".
Ω is algorithmically random.

Definition. The universal probability of a string x is

PU (x) =
∑

p:U(p)=x

2−`(p) = Pr(U(p) = x),

Universality of PU (x). For every computer A,

PU (x) ≥ c′APA(x)

for every string x ∈ {0,1}∗, where the constant c′A depends
only on U and A.
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Equivalence of K (x) and log 1
PU (x) . There exists a constant c

independent of x such that∣∣∣∣log
1

PU (x)
− K (x)

∣∣∣∣ ≤ c

for all strings x . Thus, the universal probability of a string x is
essentially determined by its Kolmogorov complexity.
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