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depends only on neighboring pixel values;
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is independent from far away pixel values.
Markov random fields provide a flexible mechanism
for
modeling spatial dependence,
image attributes.

General references for this section are
[Geman, 1990].

[Wrinkler, 1995].
[Li, 2009].

Most of the materials is copy-edited from
[Geman, 1990].
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Measure on State Space

» Assume that there is a positive .-~ =1+« defined on
each state space A, respectively, i.e.,

(A, €) is a measurable space with positive measure «
on the o-algebra €£.

The state space A is generally a subset of RY.

Two typical cases are
if A'is not of zero measure, £ is the Borel algebra
and xk some Borel measure;

if A is a finite or countable subset of RY, £ is the

subset algebra and « the count ing measure.
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» A probability measure on 7 definesa - ~ncon
field:

References

Let S be a finite site set and (A, €, k) be a state space.
The triple (2, T, 1) is called a random field with the site
set S and state space A if:
(2,7) = (A£€)S;
I is a probability measure

a positive measure such that NM(Q2) = 1

«0O0» «F>» «=» «
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» The refer to the family
of univariable, conditional distributions, for s € S and
xeQ,and A € A,

M(AlX(s)) = Ms(xs|X(s)) (1)
= Pr(Xs = xs| Xy = Xr, r # 5), (2)

where A = xs and X(s) = (Xr)rzs-
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of univariable, conditional distributions, for s € S and Random Fiecs
X e Q, and A c /\’ References
M(AlX(s)) = Ms(xs|X(s)) (1)

= PI‘(XS = X3’Xr = )(r7 r # S), (2)

where A = xs and X(s) = (Xr)rzs-

» Theorem
The distribution I of the random field (2, T, M) is
determined by its local characteristics.
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» We will verify that for any x = (x;) and y = (¥)),

e Xie1y, Vi, ayN)

: — )
i (y/|X1,"' y Xi—1; Yitt, - ayN)
Assume (3) holds and that two probability measures
N and 1 have the same local characteristics.

It implies that
M(x X
(x) _ p(x) @
¥) )
It follows that
Nx)u(y) = p(x)N(y)

Summing over y € Q leads to the result 1 = p
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L(6.0) =16 - 0] = Z 165 — s[> (6) Markov Randorn
Fields
The Bayesian risk
R= / / 16 — 8(x)||2Pr(6, x)

Random Field:

= [ [ {vere-

References
()

2(0,00x)) + 10112} Pr(6, %)

(8)
A/@ H@\\ZPr(e,x)a/;{2<HMMSE<x>.é( )) = 180012 } m(x)

©)
. [ 161EPr(o.20 = [ 1omsc00Pm) + [ {iowmset0 - i mG

(10)
is minimized when 6(x) = Opmuse(X)
References

[Wrinkler, 1995]
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