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Saptial Dependence & Markov Random
Fields

I Each pixel value
I depends only on neighboring pixel values;
I is independent from far away pixel values.

I Markov random fields provide a flexible mechanism
for

I modeling spatial dependence,
I image attributes.

I General references for this section are
i [Geman, 1990].
ii [Wrinkler, 1995].
iii [Li, 2009].

I Most of the materials is copy-edited from
[Geman, 1990].
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Measure on State Space

I Assume that there is a positive measure defined on
each state space Λ, respectively, i.e.,

I (Λ, E) is a measurable space with positive measure κ
on the σ-algebra E .

I The state space Λ is generally a subset of Rq.

I Two typical cases are
I if Λ is not of zero measure, E is the Borel algebra

and κ some Borel measure;

I if Λ is a finite or countable subset of Rq , E is the
subset algebra and κ the counting measure.
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Random Fields

I A probability measure on T defines a random
field:

Definition
Let S be a finite site set and (Λ, E , κ) be a state space.
The triple (Ω, T ,Π) is called a random field with the site
set S and state space Λ if:

I (Ω, T ) = (Λ, E)S;
I Π is a probability measure

I a positive measure such that Π(Ω) = 1.
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Local Characteristics

I The local characteristics refer to the family
of univariable, conditional distributions, for s ∈ S and
x ∈ Ω, and λ ∈ Λ,

Π(λ|x(s)) , Πs(xs|x(s)) (1)

= Pr(Xs = xs|Xr = xr , r 6= s), (2)

where λ = xs and x(s) = (xr )r 6=s.

I Theorem
The distribution Π of the random field (Ω, T ,Π) is
determined by its local characteristics.
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Proof I

I We will verify that for any x = (xi) and y = (yi),

Π(x)

Π(y)
=

N∏
i=1

Π(xi |x1, · · · , xi−1, yi+1, · · · , yN)

Π(yi |x1, · · · , xi−1, yi+1, · · · , yN)
. (3)

I Assume (3) holds and that two probability measures
Π and µ have the same local characteristics.

I It implies that
Π(x)

Π(y)
=
µ(x)

µ(y)
. (4)

I It follows that

Π(x)µ(y) = µ(x)Π(y), (5)

I Summing over y ∈ Ω leads to the result Π = µ.



Proof I

I We will verify that for any x = (xi) and y = (yi),

Π(x)

Π(y)
=

N∏
i=1

Π(xi |x1, · · · , xi−1, yi+1, · · · , yN)

Π(yi |x1, · · · , xi−1, yi+1, · · · , yN)
. (3)

I Assume (3) holds and that two probability measures
Π and µ have the same local characteristics.

I It implies that
Π(x)

Π(y)
=
µ(x)

µ(y)
. (4)

I It follows that

Π(x)µ(y) = µ(x)Π(y), (5)

I Summing over y ∈ Ω leads to the result Π = µ.



Proof I

I We will verify that for any x = (xi) and y = (yi),

Π(x)

Π(y)
=

N∏
i=1

Π(xi |x1, · · · , xi−1, yi+1, · · · , yN)

Π(yi |x1, · · · , xi−1, yi+1, · · · , yN)
. (3)

I Assume (3) holds and that two probability measures
Π and µ have the same local characteristics.

I It implies that
Π(x)

Π(y)
=
µ(x)

µ(y)
. (4)

I It follows that

Π(x)µ(y) = µ(x)Π(y), (5)

I Summing over y ∈ Ω leads to the result Π = µ.



Proof I

I We will verify that for any x = (xi) and y = (yi),

Π(x)

Π(y)
=

N∏
i=1

Π(xi |x1, · · · , xi−1, yi+1, · · · , yN)

Π(yi |x1, · · · , xi−1, yi+1, · · · , yN)
. (3)

I Assume (3) holds and that two probability measures
Π and µ have the same local characteristics.

I It implies that
Π(x)

Π(y)
=
µ(x)

µ(y)
. (4)

I It follows that

Π(x)µ(y) = µ(x)Π(y), (5)

I Summing over y ∈ Ω leads to the result Π = µ.



Proof I

I We will verify that for any x = (xi) and y = (yi),

Π(x)

Π(y)
=

N∏
i=1

Π(xi |x1, · · · , xi−1, yi+1, · · · , yN)

Π(yi |x1, · · · , xi−1, yi+1, · · · , yN)
. (3)

I Assume (3) holds and that two probability measures
Π and µ have the same local characteristics.

I It implies that
Π(x)

Π(y)
=
µ(x)

µ(y)
. (4)

I It follows that

Π(x)µ(y) = µ(x)Π(y), (5)

I Summing over y ∈ Ω leads to the result Π = µ.



Proof: ′′ ⇐=′′ (2)
−VA(x) =

∑
B⊂A

(−1)|A−B| log Π(xB
s |xB

(s))

=
∑

B⊂A,s/∈B,t /∈B

(−1)|A−B| log Π(xB
s |xB

(s)) +
∑

B⊂A,s∈B,t /∈B

(−1)|A−B| log Π(xB
s |xB

(s))

+
∑

B⊂A,s/∈B,t∈B

(−1)|A−B| log Π(xB
s |xB

(s)) +
∑

B⊂A,s∈B,t∈B

(−1)|A−B| log Π(xB
s |xB

(s))

=
∑

B⊂A−{s}−{t}

(−1)|A−B| log Π(xB
s |xB

(s)) +
∑

s∈B1⊂A−{t}

(−1)|A−B1| log Π(xB1
s |x

B1
(s))

+
∑

t∈B2⊂A−{s}

(−1)|A−B2| log Π(xB2
s |x

B2
(s)) +

∑
{s,t}⊂B3⊂A

(−1)|A−B3| log Π(xB3
s |x

B3
(s))

=
∑

B⊂A−{s}−{t}

(−1)|A−B| log Π(xB
s |xB

(s))

+
∑

B⊂A−{s}−{t}

(−1)|A−B−{s}| log Π(xB∪{s}
s |xB∪{s}

(s) )

+
∑

B⊂A−{s}−{t}

(−1)|A−B−{t}| log Π(xB∪{t}
s |xB∪{t}

(s) )

+
∑

B⊂A−{s}−{t}

(−1)|A−B−{s}−{t}| log Π(xB∪{s,t}
s |xB∪{s,t}

(s) ).
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Squared-error Loss and MMSE
I Squared-error loss function

L(θ, θ̂) = ‖θ − θ̂‖2 =
∑

s

|θs − θ̂s|2. (6)

I The Bayesian risk

R̂ =

∫
X

∫
Θ
‖θ − θ̂(x)‖2Pr(θ, x) (7)

=

∫
X

∫
Θ

{
‖θ‖2 − 2

〈
θ, θ̂(x)

〉
+ ‖θ̂(x)‖2

}
Pr(θ, x)

(8)

=

∫
X

∫
Θ
‖θ‖2Pr(θ, x)−

∫
X

{
2
〈
θMMSE (x), θ̂(x)

〉
− ‖θ̂(x)‖2

}
m(x)

(9)

=

∫
X

∫
Θ
‖θ‖2Pr(θ, x)−

∫
X
‖θMMSE (x)‖2m(x) +

∫
X

{
‖θMMSE (x)− θ̂(x)‖2

}
m(x)

(10)

is minimized when θ̂(x) = θMMSE (x).
I References

i [Wrinkler, 1995].
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