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Introduction

» This lecture is a review on functional analsysis and
Fourier analysis for L' and L? functions and
tempered distributions.

Various function spaces will be briefly reviewed.

References are [Stein, 1970, Stein and Weiss, 1971,
Yosida, 1980, Homander, 1990, Rudin, 1991,
Natterer, 2001, Natterer and Wibbeling, 2001].
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Vector Spaces |

» Aset Xiscalleda vector spaceor liner space

over a field K if the following conditions are satisfied.
An addition + is defined on X such that X is an
abelian group,

(associativity of addition)
(xX+y)+z=x+(y+2), Vx,y,ze X; (1)
(commutativity of addition)
X+y=y-+X, vx,y € X; (2)

(identity element of addition) There exists an element
0 € X, called the zero vector, such that

X+ 0= x, Vx € X; (3)

(inverse elements of addition) for all x € X, there
exists an element u € X, called the inverse of x with
repect to the addition +, such that

X+u=4§. 4)
The inverse is denoted by —x, VX g X._
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where 1 is the multiplicative identity in the field K.
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» References

[Yosida, 1980, p. 20];
[Rudin, 1991, Chapter 1];

Vector space at Wikipedia.
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iii

d(va):d(yvx)a VX»YGX; (19)

d(x,y) <d(x,z)+d(z,y), Vx,y,ze X; (20)
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Topology in Metric Spaces

» In a metric space (X, d), the
at x € X and radius r > 0 is the set

B(x)={yeX:dx,y)<r}.

with center

A subset A C X is defined to be open if for every
a € A, there exists a ball with center at a and radius

e > 0 such that B.(a) C A.

Metrics are topological spaces in this way.
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Topological Definitions

In a topology space (X, 1),
» asubset E C Xis « c=ccifand only if its
complement is open;

the closure E of a subset E is the intersection of all
closed sets that contain E;

the interior of a subset E is the union of all open
sets that are subsests of E;

a neighborhood of a point x € X is any open set
that contains x;

T is @ Hausdorff topology if distinct points of X
have disjoint neighborhoods.
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» If X and Y are metric spaces with metrics d and p,

respectively, f is at xp, if Ve > 0, there
exists 6 > 0, such that

p(f(X),f(XO)) <¢g, (28)

whenever d(x, xg) < 6.
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» For xg € X, fis continuous at X, if for every
neighborhood V4, of f(xo), there exists a
neighborhood Uy, of xo such that f(Ux,) C Vix,)-

» fis continuous if f is continuous at every x € X.

» If X and Y are metric spaces with metrics d and p,

respectively, f is continuous at X, if Ve > 0, there
exists 6 > 0, such that

p(f(X),f(XO)) <¢g, (28)

whenever d(x, Xp) < 0.
» References
i [Dugundiji, 1966, Chapter Ill and IX].
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Topological Vector Spaces

» Suppose T is a topology on a vector space such that

7 is said to be a vector
topological vector

topologyon X and X is a
space.
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Topological Vector Spaces

» Suppose T is a topology on a vector space such that
i every point of X is a closed set;

T is said to be a vector topologyon X and Xis a
topological vector space.
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i every point of X is a closed set;
ii the vector space operations, + and -, are continuous
with respect to 7;
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Topological Vector Spaces

» Suppose T is a topology on a vector space such that
i every point of X is a closed set;

ii the vector space operations, + and -, are continuous
with respect to ;

T is said to be a vector topologyon X and Xis a
topological vector space.

» Theorem
Every topological vector space is a Hausdorff space.
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Topological Vector Spaces

» Suppose T is a topology on a vector space such that
i every point of X is a closed set;
ii the vector space operations, + and -, are continuous
with respect to 7;
T is said to be a vector topologyon X and Xis a
topological vector space.

» Theorem

Every topological vector space is a Hausdorff space.
» References

i [Rudin, 1991, Chapter 1].
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Seminorms

> A on a vector space X is a real valued
function p such that

p(x +y) <px)+py), Ix,yeX (29)

plax) = |a|p(x), Va € K,Vx € X; (30)

A family P of seminorms on X is said to be

separating if to each x # 0, there is at least on
p € P such that p(x) # 0.

References
[Rudin, 1991, Chapter 1].
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Metric by Countable Separating Family of
Seminorms

» fP={pi:i=1,2,3,---}is acountable separating
family of seminorms on X.
Let

— 1 px—y)
d(x,y) ;211+p(xy). €3))
d is a metric on X, and compatiable with the
topology induced by P.
{xn} converges to x if and only if p;(x, — x) — 0, Vi.
(X, d) is a topological vector space, Frechét
space, i.e., locally convex vector space
with a complete tranlation-invariant
metric.
A set E C X is bounded if and only if every p is
bounded on E.
References
[Rudin, 1991, Chapter 1].
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[Rudin, 1991, Chapter 1].
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Dual Spaces

» The of a topolological vector space is
the space X* whose elements are the continuous
linear functionals on X.
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c()

» Let Q be an open set of R".
» Q is the union of countable many compact sets K.

> is the vector space of all (complex) valued
continuous functions on Q, topologized by the
separating family of seminorms

pn(f) = sup{|f(x)| - x € Kn} (32)
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Let Q2 be an open set of R".
Q is the union of countable many compact sets K.

C(Q) is the vector space of all (complex) valued
continuous functions on Q, topologized by the
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pn(f) = sup{|f(x)| :

x € Kp}

(32)
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Notations for Analsis on R"

» The term denotes an ordered n-tuple
a:(a1,"'7an)7 (33)
of nonnegative integers.

With each multi-index « is associated the
differential operator

(’) Qq () Qn
gr =D = — ) ... |
‘ ((')x1> <<‘)x,,> '

whose order is

la] = a1+ -+ ap.

If || =0, D*f = f.
References

(39)
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of nonnegative integers.
» With each multi-index o is associated the

aspro (2 (2)
-0 = () (o) - G4

whose order is

lal =y + -+ + ap. (35)
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-0 = () (o) - G4

whose order is
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> is the vector space of all (complex) valued

continuous functions on Q which have continuous

partial derivatives of order up to and including k,

topologized by the separating family of seminorms

pn(f) = sup{|D*f(x)| : |o| < k,x € Kn},

forn=1,.--.

(36)
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Support

» If p € C(Q), the of ¢, denoted by supp ¢,
is the closure of the set

{x € Q:p(x) # 0}, (38)

i.e., supp ¢ is the smallest closed subset of Q2 such
that o =01in Q\ supp ¢.
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» If o € C(Q), the support of y, denoted by supp ¢,
is the closure of the set

{x € Q:p(x) # 0}, (38)

i.e., supp ¢ is the smallest closed subset of Q2 such
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CK(Q) and C4(Q)

» For a compact set K ¢ Q, let C/(©)) denote the
space of all f € C*(Q) whose support lies in K.

CK(Q) is a closed subspace of C¥(Q).

G () 2 | ck@), (39)

KCQ
where the union is for all compact subsets K C Q.

CX(Q) consists of functions in C¥(Q2) with compact
supports contained in Q.

This condition on function supports is written as
supp f € Q.
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Dk (£2) and D(Q2)

» For a compact set K C Q, let Dx(Q2) = C(Q2)

denote the space of all f € C>°(Q2) whose support

lies in K.

» Dk(R) is a closed subspace of C*>(Q).

D(Q) = CF(Q) 2 | cr@),
KcQ

(40)

where the union is for all compact subsets K C €.
D(Q2) = C5°(R2) consists of functions in C>°(€2) with
compact supports contained in €.

D(Q) = {f € C=(Q)
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For a compact set K C Q, let Dk(2) = C(2)
denote the space of all f € C>°(Q2) whose support
liesin K.

Dk(R) is a closed subspace of C>(Q).
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where the union is for all compact subsets K c Q.
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LP(Q)

» Another class of spaces is the space,

1 < p < oo, of all measurable functions f on Q such

that

1
il = ( [ 1P ax)” <oc.
(9]

||f||p is called the LP norm of .

For p = oo, the space L>(2) consists of all
essentially bounded measurable
functions on Q.

For f € L>°(Q), let ||f||oc be the essential
supremunm Of |f|(x).

LP(Q2) is a Banach space.

The dual of LP(Q2) (1 < p < o0) is LI(2), with

1,01
ptTg= 1.
References
[Adams, 2003, Chapter 2],

(43)
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» Another class of spaces is the LP(Q) space,
1 < p < oo, of all measurable functions f on Q such

that 1
Ifllp = (/ |fypdx>” < 5o, (43)
(9]

> ||f||p is called the P norm of .

» For p = o0, the space L>°(Q2) consists of all

on Q.
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I+i=1.
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LP(Q)

>

Another class of spaces is the LP(Q2) space,
1 < p < oo, of all measurable functions f on Q such

that 1
Ifllp = (/ |fypdx>” < 5o, (43)
(9]

||f||p is called the LP norm of .

For p = oo, the space L*>°(Q2) consists of all
essentially bounded measurable
functions on Q.

For f € L>°(Q), let ||f||oc be the essential
supremum Of |f|(x).

» LP(Q) is a Banach space.
» The dual of LP(2) (1 < p < oo) is LI(£2), with

1,1
s tg= 1.
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LP(Q)

>

Another class of spaces is the LP(Q2) space,
1 < p < oo, of all measurable functions f on Q such

that 1
Ifllp = (/ |fypdx>” < 5o, (43)
(9]

||f||p is called the LP norm of .

For p = oo, the space L*>°(Q2) consists of all
essentially bounded measurable
functions on Q.

For f € L>°(Q), let ||f||oc be the essential
supremum Of |f|(x).

» LP(Q) is a Banach space.
» The dual of LP(2) (1 < p < oo) is LI(£2), with

1,01
5+5_L
References

i [Adams, 2003, Chapter 2],
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Co(R"™)

>

is the subspace of C(R") of functions

lim f=0,

X—00

with the max-norm, or L°°-norm,

[flloo = sup{[f(x)] :

x € R"}

(44)

(45)
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Co(R"™)

» Co(9Q) is the subspace of C(R") of functions
vanishing at infinity,
lim f=0, (44)

X—00

with the max-norm, or L°°-norm,

[Iflloc = sup{If(x)| : x € R"} CS)

» |t is a Banach space.
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» Co(9Q) is the subspace of C(R") of functions
vanishing at infinity,

lim f=0, (44)

X—00

with the max-norm, or L°°-norm,

[Iflloc = sup{If(x)| : x € R"} CS)

» |t is a Banach space.
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Co(R"™)

» Co(9Q) is the subspace of C(R") of functions
vanishing at infinity,

lim f=0, (44)

X—00

with the max-norm, or L°°-norm,
|Ifllec = sup{|f(x)| : x € R"} (45)

» |t is a Banach space.
» References
i [Stein and Weiss, 1971, Chapter 1].
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Fourier transform

» If f € L'(R"), the K Ffoffis
the function Ff = f defined by

(FHE) =H&) = [ f(x)e?™ X adx, VeeR".

R
(46)
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Fourier transform

> If f e L1(R”), the Fourier transform Ffoffis
the function Ff = f defined by

(FHE) =H&) = [ f(x)e?™ X adx, VeeR".

Rn
(46)
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Fourier transform in L'

Theorem
([Stein and Weiss, 1971, Theorem .1.1-1.2))

The mapping F : f — f is a bounded linear

transform from LY(R™) into L>>(R™). In fact,
[ flloo < {If{l4-

Iff € L'(R"), then t is uniformly continuous.

(Riemann-Lebesgue) Iff € L'(R™), then
f(¢) — 0 as |¢| — oc.
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Fourier transform in L

Theorem
([Stein and Weiss, 1971, Theorem .1.1-1.2))
(a) The mapping F : f — f is a bounded linear
transform from LY(R™) into L>>(R™). In fact,
flloo < [Ifll1-
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Fourier transform in L

Theorem
([Stein and Weiss, 1971, Theorem .1.1-1.2))
(a) The mapping F : f — f is a bounded linear
transform from LY(R™) into L>>(R™). In fact,
flloo < [Ifll1-

(b) Iff € L'(R"), then f is uniformly continuous.
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Fourier transform in L

Theorem
([Stein and Weiss, 1971, Theorem .1.1-1.2))

(a) The mapping F : f — f is a bounded linear
transform from LY(R™) into L>>(R™). In fact,
1flloe < [Ifl]1-

(b) Iff € L'(R"), then f is uniformly continuous.

(c) ( ) If f € L'(R™), then
f(§) — 0 as|{| — oo.
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Convolution in L'

» In addition to the vector space operations, L'(R") is

endowed with a “multiplication” making it a

This operation, called convolution, is defined in

the following way.

If f and g € L'(R™), their convolution h=fxgis

the function defined by

h(x) = -/n f(x—y)g(y)dy, VvxeR".

References

CY)

Image
Reconstruction

Ming Jiang

Function Spaces
Functional Analysis
Function Spaces

Theory of the
Fourier Transform

The L' Theory of the
Fourier Transform

Inverse Fourier Transform

The L? Theory of the
Fourier Transform

Tempered
Distributions

Operators for Tempered
Distributions

Convolution
Differentiation

References



Convolution in L1

» In addition to the vector space operations, L'(R") is
endowed with a “multiplication” making it a Banach

algebra.

» This operation, called
the following way.
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Convolution in L1

» In addition to the vector space operations, L'(R") is
endowed with a “multiplication” making it a Banach
algebra.

» This operation, called convolution, is defined in
the following way.

» If fand g € L'(R™), their convolution h=fxgis
the function defined by

h(x) = o f(x—y)g(y)dy, V¥xeR". (47)
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Convolution in L1

» In addition to the vector space operations, L'(R") is
endowed with a “multiplication” making it a Banach
algebra.

» This operation, called convolution, is defined in
the following way.

» If fand g € L'(R™), their convolution h=fxgis
the function defined by

h(x) = o f(x—y)g(y)dy, V¥xeR". (47)

» References
i [Stein and Weiss, 1971, Chapter 1].
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Convolution in LP x L

More generally, h = f x g is defined for f € LP(R") and
g € L'(R"). In fact, we have the following result.

Theorem
([Stein and Weiss, 1971, Theorem 1.1.3]) If f € LP(R")

H

1<p<oo,andg < L'(R"), then h = f % g is well-defined

and belongs to LP(R"). Moreover,

[1Allo < 1Iflloll9ll1-

(48)
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Convolution Theorem

An essential feature is the fact that the Fourier transform
of the convolution of two functions isthe
(point-wise) product of their Fourier
transforms.

Theorem
([Stein and Weiss, 1971, Theorem I.1.4]) If f and

g € L'(R"), then

—

(fxg) =1fg. (49)
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Some notations

» Many other important operations of analysis have
particularly simple relations with the Fourier

transform.

Let 7, denote the translation operator by

h € R", defined by

(thf)(x) = f(x — h).

(50)

If a > 0, let D, denote the dilation operator,

defined by
(Daf)(x) = f(a- x).
References

(51)
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Some notations

» Many other important operations of analysis have
particularly simple relations with the Fourier
transform.

» Let 7, denote the translation operator by
h € R", defined by

(Taf)(x) = f(x = h). (50)

» If a> 0, let D, denote the ,
defined by
(Daf)(x) = f(a- x). (51)
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Some notations

\{

v

\4

\{

Many other important operations of analysis have
particularly simple relations with the Fourier

transform.

Let 7, denote the translation operator by

h € R", defined by

(thf)(x) = f(x — h).

(50)

If a > 0, let D, denote the dilation operator,

defined by

References

(Daf)(x) = f(a- x).

(51)
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Some notations
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v
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Many other important operations of analysis have
particularly simple relations with the Fourier
transform.

Let 7, denote the translation operator by
h € R", defined by

(thf)(x) = f(x — h).

(50)

If a > 0, let D, denote the dilation operator,

defined by
(Daf)(x) = f(a- x).

References
i [Stein and Weiss, 1971, Chapter 1].
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Convolution Properties e

Reconstruction

Theorem Miegliang
([Stein and Weiss, 1971, pp. 3 — 5]) Assume that f and Function Soaces
functions involved belong to L'(R") in the following. Then Functonal Ma.';is
_— RPN Function Spaces.
(7€) = e~27ER(e).
v ~ Th f th
(e2mh~x f(X))N(E) = (Thf)(E). Foﬁ?ig; ?ran:form
Daf(€) = HF(36)- R
In particular, if f is @ homogeneous TR
function of orderk, i.e., Daf = akf, for Fourir Transiorm
a > 0, then f is a homogenous function of Tempered
order —n — k Distributions
‘/)\f X : o~ gPevEton_'slurTempeved
2L (¢) = 2nitiF(e). i
(;)\ka (é) (72,/”-)0( f(X))ﬁ (5 ) Differentiation
If P(x) is a polynomial in the variables IREEREESS
Xi,--- ,Xp and P(0) is the associated
differential operator, i.e., we replace x* by
0%, then
P(9)F(€) = P(2ri€)F(€) (52)
P(9)F(€) = (P(—2mix)f(x))"(¢).  (53)
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i
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Theorem Miegliang
([Stein and Weiss, 1971, pp. 3 — 5]) Assume that f and Function Soaces
functions involved belong to L'(R") in the following. Then e Ma.';sis
() (maf)(€) = e~2mimeF(e), B
e ~ eory of the
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In particular, if f is @ homogeneous TR
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o, (6) = 2migF(€). Comoton
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Convolution Properties e

Reconstruction

Theorem Ming Jiang
([Stein and Weiss, 1971, pp. 3 — 5]) Assume that f and Function Spaces
functions involved belong to L'(R") in the following. Then A
— 2 I‘h{’\ Function Spaces
(T/-,f)(f) &= f(f);\ Theory of the
(i) (ez”””‘f(x))A(g) (7hf)(&). Fourier Transform
Daf(¢) = af(36). R oo
In particular, /ff iS @ homogeneous :‘::'ff:::;‘:;’?::'”’"
function qf order k, i.e., Dof = akf, for Fourier Transform
a > 0, then f is a homogenous function of Tempered
Distributions
O{\'fder n k N Operators for Tempered
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Convolution Properties

Theorem

([Stein and Weiss, 1971, pp. 3 — 5]) Assume that f and
functions involved belong to L'(R") in the following. Then
(i) (maf)(€) = -2 <F(¢).
(il) (€2 F(x))"(€) = (Tnf)(&)-
(iii) Daf(¢) = 2F(3€)-
In particular, if f is a
of order k, i.e., D,f = af, for

a>0,thenfisa homogenous function of
order —n — K.
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Convolution Properties

Theorem

([Stein and Weiss, 1971, pp. 3 — 5]) Assume that f and
functions involved belong to L'(R") in the following. Then
(i) (rf)(€) = e2m"<R(g).
(il) (€2 F(x))"(€) = (Tnf)(&)-
(iii) Daf() = &H(16).
In particular, if f is @ homogeneous
function of order k, i.e., Daf = a*f, for
a>0,thenfisa homogenous function of
order —n — K.

(iv) 2L(¢) = 2migkf(€).
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Convolution Properties

Theorem

([Stein and Weiss, 1971, pp. 3 — 5]) Assume that f and
functions involved belong to L'(R") in the following. Then

() (maf)(€) = e~27M<F(g)..
(i) (/Gi”’h'xf(x))f@) = (nf)(§)-
(iii) Daf(€) = ZF(39).
In particular, if f is @ homogeneous
function of order k, i.e., Daf = akf, for
a > 0, then f is a homogenous function of
order —n — K.
(iv) (%fk(f) = 2migkf(§)-
V) 5(€) = (~2min())"(©).
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Convolution Properties

Theorem
([Stein and Weiss, 1971, pp. 3 — 5]) Assume that f and
functions involved belong to L'(R") in the following. Then

(') (mnf)(€) = @72 ER(¢).

(ii) (ez”’“f(X))A(ﬁ) (Thf)(E)-

(ii) Daf(€) = HH(L6).
In partrcular If f is a homogeneous
function of order k, i.e., Daf = a*f, for
a>0,thenfisa homogenous function of
order —n— K.

(v) () = 2rii(€).
v) ZL(€) = (~2mixf(x))\().

(vi) If P(x) is a polynomial in the variables

Xi,---,Xp and P(9) is the associated
differential operator, i.e., we replace x* by
0%, then

P(0)H(¢) = P(2mi€)f(¢) (52)

P(d)F(€) = (P(—2mixi)f(x))\(€).  (53)
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Multiplication Formula

Another important property is the multiplication
formula.

Theorem
([Stein and Weiss, 1971, Theorem 1.1.15]) If f and
g € L'(R"), then

f(x)g(x)ax = [ f(x)g(x) dx (54)
Rn Rn
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Inverse Fourier Transform

» If g e L'(R"), the inverse Fourier transform
of g is the function f defined by

300 = [ g(@eFriends, vxe RN (55)

However, the Fourier transform of f € L'(R") is not
always integrable.

Hence, the inverse Fourier transfrom may not be
applied directly to obtain f from f by the inverse
transform.
In order to get around this difficulty, we shall use
certain summability methods for integrals.
References

[Stein and Weiss, 1971, Chapter 1].
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Inverse Fourier Transform

» If g € L'(R"), the inverse Fourier transform

of g is the function f defined by
g(x) = [ g(¢)e*™*d¢, vxeR".  (55)
Rn

» However, the Fourier transform of f € L'(R") is not
always integrable.

Hence, the inverse Fourier transfrom may not be
applied directly to obtain f from f by the inverse
transform.

In order to get around this difficulty, we shall use
certain summability methods for integrals.
References
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Abel method of summability
» For each e > 0, define the 2bel mean,

A(f)=A = | f(x)e Xl ax, (56)
Rn
If f  L'(RM),
lim A (f) = 'fuyu. (57)
e—0 JRn

On the other hand, these Abel means are
well-defined even when f is not integrable.
Nevertheless, their limit
lim Ac(f) (58)
e—0
may exist.
Whenever, the limit in Eq. (58) exists and is finite we

say the g, f(x) dx is Abel summable to this limit.
References
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» On the other hand, these Abel means are

well-defined even when f is not integrable.

Nevertheless, their limit
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may exist.

(58)

» Whenever, the limit in Eq. (58) exists and is finite we
say the [z, f(x)dx is to this limit.
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Gauss summability

is defined by the

G.(f) = G, = / f(x)e I gix.
Rn

Jgn f(X) dx is Gauss summable to

lim Ac(f),
lim Ae(f)

€

if this limit exists and is finite.
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Methods of summability

» Both the methods can be put in the form

M, o(f) = M(f) = /R f)e(ex)dx,  (61)

where ¢ € G (cf. slide 11) and ¢(0) = 1.
Then [z, f(x) dx is summable to /if lim._,o M(f) = I.

We call M.(f) the & means of this integral.

We shall need the Fourier transform of the functions
e*‘HX\ 2 and e*‘HX\ .
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Theorem on summability

Theorem

([Stein and Weiss, 1971, Theorem 1.1.13 and 1.14])
For all o > 0,

it —ralIxI 2 N _ mlix|?
/ e 2mig Xa ma|X|| dx = a n/2e .
JRn

e’

(62)
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—2mi§- —2m o
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Weierstrass-Gauss kernel and Poisson kernel

» In the following, let W and P be the Fourier
transforms of
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Characterization of the ® Means

Theorem
([Stein and Weiss, 1971, Theorem 1.1.16]) If f and

® e L'(R") and ¢ = &, then

et ero(e) g = [ f(y)pdx—y)dy,

Rn
where
1 x —
pex) = ¢(7) = (DD)(x).
In particular,

(69)

/ H(e)e?miexe2relxl g = / F(X)P(x — y.c) dy. (70)
R Rn

and

Rn

F()emisxg—4n"ellxll g — /R HOW(x —y,€)dy.

(71)
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Approximation Properties of the ® Means

Theorem
([Stein and Weiss, 1971, Theorem 1.1.18]) Let
¢ € L'(R™), with [p. p(x) dx =1, and for e > 0, let

2ex) = Tol5).

€
Iff e [P(R"),1 < p<oo,orfe Cyc LR, then
||f* @ — f||[p = 0 as e — 0. In particular,
u(x,e) = / f(X)P(x — y,e€)dy,
Rn

and

s(x,¢) = - f(xX)W(x—y,e)dy,

converges to f in the LP norm as ¢ — 0.
If [ano(x)dx =0, then ||f x ¢c||p — 0 ase — 0.
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L' Convergence of the ® Means

Theorem
([Stein and Weiss, 1971, Theorem 1.1.20]) If ® and its
Fourier transform o = ® are integrable and

Jrne(x)dx =1 (i.e., ®(0) = 1), then the of the
integral

F(e)e?™ X de (75)
Rn
converges to f(x) in the L' norm.

In particular, the Abel and Gauss means of this integral
converges to f(x) in the L' norm, respectively.
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Point-wise Convergence of the ¢ Means

Theorem

([Stein and Weiss, 1971, Corollary 1.18]) If both f and

f e L'(R"), then
f(x)

for almost every x.

Rn

F(e)e*me de

(76)
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A Corollary for Inverse Fourier Transform in

NGy

Corollary

If both f and f are integrable, then

for almost every x.

(" = f(~x)
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Extension of F from L'(R") to L2(R")

([Stein and Weiss, 1971, Theorem 1.2.1]) If
f € L'(R") N L?(R"), then

|| Ffll2 = [Ifl]2. (78)

It follows that

F is a bounded linear operator defined on the dense
subset € L'(R") N L2(R") of L2(R");

there exists a unique bounded extension, F (using
the same notation), to all of L2(R").

F will be called the Fourier transform on
LZ(R”).

«0O0» «F>» «=» «

>

DA
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Distributions are Linear Functionals

» The basic idea in the theory of is
to consider them as linear functionals on some

space of “regular” functions — the so-called “testing
functions”.

The space of testing functions is assumed
to be well-behaved with respect to the operations
(differentiation, Fourier transform, convolution,
translation, etc).

We are naturally led to the definition of such a space
of testing functions by the following considerations.

References
[Stein and Weiss, 1971, Chapter 1].
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Space of Testing Functions

» Suppose we want these operations to be defined on
a function space, S, and to preserve it.

Then it would certainly have to consist of functions
that are indefinitely differentiable.

This, in view of Property (vi) in Theorem 2.4,
indicates that each function of S, after being
multiplied by a polynomial, must still be in S.

References
[Stein and Weiss, 1971, Chapter 1].
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The Function Space S |

» The space S of

is defined to be the class of all those
C® functions ¢ on R” such that

sup |x*(D7p)(x)| < o0 (81)

xeR?

for all n-tuples « and 3 of nonnegative integers.
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» The space S of rapidly decreasing
functions is defined to be the class of all those
C® functions ¢ on R” such that

sup [x*(D%¢)(x)| < oo (81)
xeRN

for all n-tuples « and 3 of nonnegative integers.
» The space S is called the Schwartz space.
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The Function Space S |l

» S contains the space D of all C* functions with
compact support.

If P is a polynomial in n variables and ¢ € S, then
P(x)¢(x) and P(0)¢(x) are again in S.

The space Cp and LP(R"), 1 < p < oo, contains S.

Each subspace is a dense subspace of its “parent”
space.

References
[Stein and Weiss, 1971, Chapter 1].
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S under Fourier Transform

By Property (vi) of Theorem 2.4,

Theorem

([Stein and Weiss, 1971, Theorem 1.3.2]) If p € S, then
peS.
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S under Convolution

» If p and ¢ € S, the above theorem implies that ¢ and
P e S.
Therefore, ,Ef* S

Since (¢ *x )" = @1, applying the inverse Fourier
transform shows that

u]
o)
I
i
it
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S under Convolution

» If p and ¢ € S, the above theorem implies that ¢ and
P ES.
» Therefore, ¢i) € S.

Since (¢ * 1)" = ¢1), applying the inverse Fourier
transform shows that
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S under Convolution

> Ii pand ¥ € S, the above theorem implies that ¢ and
e S.
» Therefore, ¢1) € S.

» Since (i * ¥)" = @1, applying the inverse Fourier
transform shows that
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S under Convolution

> Ii pand ¥ € S, the above theorem implies that ¢ and
e S.
» Therefore, ¢1) € S.
» Since (i * ¥)" = @1, applying the inverse Fourier
transform shows that
Theorem
([Stein and Weiss, 1971, Theorem 1.3.3]) If p and ) € S,
SO IS @ * ).
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Metricon S ueee

Reconstruction

. . Ming Jiang
» For each ordered pair of n-tuples nonnegative

integer indices («, ), define, in view of Eq. (81), Flunction Spaces
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Metricon S
» For each ordered pair of n-tuples nonnegative
integer indices («, 3), define, in view of Eq. (81),

pap(p) = sup [x*(DPp)(x)|, VeeS.  (82)

xeRN

» {pap}isacountable family of separting
seminorms.

» Define

oo =Y s es(e), (89

Q,

for p and ¢ € S.
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Metricon S

» For each ordered pair of n-tuples nonnegative
integer indices («, 3), define, in view of Eq. (81),

pap(p) = sup [x*(DPp)(x)|, VeeS.  (82)

xeRN

» {pap}isacountable family of separting
seminorms.

» Define

oo =Y s es(e), (89

Q,

for p and ¢ € S.
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Metricon S

» For each ordered pair of n-tuples nonnegative
integer indices («, 3), define, in view of Eq. (81),

pap(p) = sup [x*(DPp)(x)|, VeeS.  (82)

xeRN

» {pap}isacountable family of separting
seminorms.

» Define

oo =Y s es(e), (89

Q,

for p and ¢ € S.

» References
i [Stein and Weiss, 1971, Chapter 1].
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(S, d) as a Topological Vector Space

Theorem
([Stein and Weiss, 1971, p. 21])

The mapping o(x) — x*(DPp)(x) is
continuous.

Ifp eS8, thenlimp_omhe = .

(S, d) is a complete metric space (F-space).

The Fourier transform is @ homeomorphism
of S onto itself.

D is a dense subset of S.
S is separable.

it
)
0
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(S, d) as a Topological Vector Space

Theorem
([Stein and Weiss, 1971, p. 21])

(a) The mapping ¢(x) — x*(D?p)(x) is
continuous.
Ifp eS8, thenlimp_omhe = .
(S, d) is a complete metric space (F-space).

The Fourier transform is a homeomorphism
of S onto itself.

D is a dense subset of S.
S is separable.
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(S, d) as a Topological Vector Space

Theorem
([Stein and Weiss, 1971, p. 21])

(a) The mapping ¢(x) — x*(D?p)(x) is

continuous.
(b) Ifp € S, thenlimp_oThp = .

(S, d) is a complete metric space (F-space).
The Fourier transform is @ homeomorphism

of S onto itself.
D is a dense subset of S.
S is separable.
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(S, d) as a Topological Vector Space

Theorem
([Stein and Weiss, 1971, p. 21])

(a) The mapping o(x) — x*(D’p)(x) is
continuous.

(b) Ifp €S, thenlimp_oThe = ©.

(c) (S,d) is a complete metric space (F-space).

Image
Reconstruction

Ming Jiang

Function Spaces
Functional Analysis
Function Spaces

Theory of the
Fourier Transform

The L' Theory of the
Fourier Transform

Inverse Fourier Transform

The L? Theory of the
Fourier Transform

Tempered
Distributions

Operators for Tempered
Distributions

Convolution
Differentiation

References



(S, d) as a Topological Vector Space

Theorem
([Stein and Weiss, 1971, p. 21])

(a) The mapping o(x) — x*(D’p)(x) is
continuous.

(b) Ifp €S, thenlimp_oThe = ©.

(c) (S,d) is a complete metric space (F-space).

(d) The Fourier transform is a
of S onto itself.

Image
Reconstruction

Ming Jiang

Function Spaces
Functional Analysis
Function Spaces

Theory of the
Fourier Transform

The L' Theory of the
Fourier Transform

Inverse Fourier Transform

The L? Theory of the
Fourier Transform

Tempered
Distributions

Operators for Tempered
Distributions

Convolution
Differentiation

References



(S, d) as a Topological Vector Space

Theorem
([Stein and Weiss, 1971, p. 21])

(a) The mapping o(x) — x*(D’p)(x) is
continuous.

(b) Ifp €S, thenlimp_oThe = ©.
(c) (S,d) is a complete metric space (F-space).

(d) The Fourier transform is a homeomorphism
of S onto itself.

(e) D is adense subset of S.
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(S, d) as a Topological Vector Space

Theorem
([Stein and Weiss, 1971, p. 21])

(a) The mapping o(x) — x*(D’p)(x) is
continuous.

(b) Ifp € S, thenlimp_oThp = .

(c) (S,d) is a complete metric space (F-space).

(d) The Fourier transform is a homeomorphism
of S onto itself.

(e) D is adense subset of S.
(f) S is separable.
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Tempered Distributions

» The collection S’ of all continuous linear functionals
on S is called the space of
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Tempered Distributions

» The collection S’ of all continuous linear functionals
on § is called the space of tempered
distributions.

» |tis also called
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Tempered Distributions

» The collection S’ of all continuous linear functionals
on § is called the space of tempered
distributions.

» ltis also called generalized functions.

» References
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Tempered Distributions

» The collection S’ of all continuous linear functionals
on § is called the space of tempered
distributions.

» ltis also called generalized functions.

» References
i [Stein and Weiss, 1971, Chapter 1].
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LP(R™) Functions as Tempered Distributions

Example

([Stein and Weiss, 1971, p. 21]) For f € LP(R"),
1 < p < o0, the linear functional L = Ly defined by

L) =Lle) = [ fopax, (@)

for p € S, is a tempered distribution.
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Measures as Tempered Distributions

Example

([Stein and Weiss, 1971, p. 21]) If u is a finite Borel
measure, the linear functional L = L,, defined by

L(p) = Lu(p) = /Rnsodm (86)

forp € S, is a tempered distribution.
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Tempered LP Functions
Example
([Stein and Weiss, 1971, pp. 21 — 22])
A measurable function f such that

f(x)

G+ mper € FRD: (67)

for some 1 < p < oo and some positive integer k, is
called a tempered LP function.

The linear functional L = L; defined by

L) = Li(g) = [ f(x)p(x) dx,

(88)
JRn

forp € S, is a tempered distribution.

When p = oo, such a function is often called a
slowly increasing function.

=] =
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Tempered LP Functions
Example
([Stein and Weiss, 1971, pp. 21 — 22])
» A measurable function f such that

f(x) n
T MEF © LP(R™), (87)

for some 1 < p < oo and some positive integer k, is
called a tempered LP function.
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Tempered LP Functions

Example
([Stein and Weiss, 1971, pp. 21 — 22])
» A measurable function f such that

f(x) n
T MEF © LP(R™), (87)

for some 1 < p < oo and some positive integer k, is
called a tempered LP function.

» The linear functional L = L defined by
L) = Lo = | f0p(ak (@)

for p € S, is a tempered distribution.
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Tempered LP Functions
Example
([Stein and Weiss, 1971, pp. 21 — 22])
» A measurable function f such that

f(x) n
T MEF © LP(R™), (87)

for some 1 < p < oo and some positive integer k, is
called a tempered LP function.

» The linear functional L = L defined by

L) = Lo = | f0p(ak (@)

for p € S, is a tempered distribution.

» When p = oo, such a function is often called a
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Dirac -function image

Reconstruction

Exam p|e Ming Jiang
([Stein and Weiss, 1971, p. 22]) Function Spaces

Functional Analysis

For xo € R"” and an n tuple , Function Spaces
(0]

Theory of the
8 Fourier Transform
— The L' Theory of the
L(()D) 7 (D (p)(XO)7 (89) Fourier Transform
Inverse Fourier Transform
The L? Theory of the

for p € S, defines a tempered distribution. Foutr Tansirm

The Dirac 6-function at Xy 35:533154‘5’“"‘“‘*’“
onvolution
Differentiation
L((p) — (P(XO)y (90) References

This is a special case of the measures having mass
1 concentrated at z;.

When D° = 2., i.e., L(¢) = 5£(0), it is a tempered
distribution that is not within the previous four types
of distributions.

o = = =
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Dirac -function image

Reconstruction

Example Ming Jiang
([Stein and Weiss, 1971, p. 22]) Function Spaces

Functional Analysis

b For XO 6 Rn and an n tup/e B’ Function Spaces

Theory of the
Fourier Transform

L((p) = (DB(P)(XO)y (89) The L' Theory of the

Fourier Transform
Inverse Fourier Transform
The L? Theory of the

for o € S, defines a tempered distribution. Fourer Tansorm

Tempered
Distributions

. - B Operators for Tempered
The Dirac d-function at Xy rars

Distributions
L(¢)

Convolution
This is a special case of the measures having mass
1 concentrated at z,.

Differentiation

;,D(Xo), (90) References

When D” = 2, i.e., L() = 52(0), it is a tempered
distribution that is not within the previous four types

of distributions. e -




Dirac ¢-function
Example
([Stein and Weiss, 1971, p. 22])
» For xo € R" and an n tuple j,

L(¢) = (D°¢)(x0), (89)
for p € S, defines a tempered distribution.
» The at xp

L(¢) = ¢(x0), (90)

This is a special case of the measures having mass
1 concentrated at z;.
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Dirac ¢-function
Example
([Stein and Weiss, 1971, p. 22])
» For xo € R" and an n tuple j,

L(p) = (DP¢)(x), (89)

for p € S, defines a tempered distribution.
» The Dirac d-function at Xy

L(¢) = ¢(x0), (90)

This is a special case of the measures having mass
1 concentrated at z;.

> When D° = 2 i.e., L(p) = 52(0), it is a tempered
distribution that is not within the previous four types
of distributions.
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Functions and Tempered Distributions

» The tempered distributions of in
Example 3.4, or more generally,
Example 3.6, are called functions.
Example 3.5 and Example 3.7 define the
distributions that are called measures.

We shall write, in these cases, f and p, instead of L;
and L,.

These functions and measures may be considered
as embedded in S'.
References

[Stein and Weiss, 1971, Chapter 1].
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Functions and Tempered Distributions

» The tempered distributions of LP functions in
Example 3.4, or more generally, tempered LP
functions Example 3.6, are called functions.

» Example 3.5 and Example 3.7 define the
distributions that are called
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Functions and Tempered Distributions

» The tempered distributions of LP functions in
Example 3.4, or more generally, tempered LP
functions Example 3.6, are called functions.

» Example 3.5 and Example 3.7 define the
distributions that are called measures.

» We shall write, in these cases, f and p, instead of L
and L,,.
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» The tempered distributions of LP functions in
Example 3.4, or more generally, tempered LP
functions Example 3.6, are called functions.

» Example 3.5 and Example 3.7 define the
distributions that are called measures.

» We shall write, in these cases, f and p, instead of L
and L,,.

» These functions and measures may be considered
as embedded in S'.
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Functions and Tempered Distributions

» The tempered distributions of LP functions in
Example 3.4, or more generally, tempered LP
functions Example 3.6, are called functions.

» Example 3.5 and Example 3.7 define the
distributions that are called measures.

» We shall write, in these cases, f and p, instead of L
and L,,.

» These functions and measures may be considered
as embedded in S'.
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Functions and Tempered Distributions

» The tempered distributions of LP functions in
Example 3.4, or more generally, tempered LP
functions Example 3.6, are called functions.

» Example 3.5 and Example 3.7 define the
distributions that are called measures.

» We shall write, in these cases, f and p, instead of L
and L,,.

» These functions and measures may be considered
as embedded in S'.

» References

i [Stein and Weiss, 1971, Chapter 1].

Image
Reconstruction

Ming Jiang

Function Spaces
Functional Analysis
Function Spaces

Theory of the
Fourier Transform

The L' Theory of the
Fourier Transform

Inverse Fourier Transform

The L? Theory of the
Fourier Transform

Tempered
Distributions

Operators for Tempered
Distributions

Convolution
Differentiation

References



Characterization of Tempered Distributions

Theorem

([Stein and Weiss, 1971, Theorem 1.3.11]) A linear
functional L on § is a tempered distribution if and only if
there exists a constant C and integers m and k such that

L@I<C D pasly) (91)

loe|<m,|B|<k

forallp € S.
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Operations for Tempered Distributions

» Operations on functions
convolution,
differentiation,
translastion,
dilation,

Fourier transform,

can be extended to tempered distributions in S’.

The basid approach is to use the adjoint
operator for testing functions

(T, ) = (0, T)

and then use the result to define extended
operations.
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Convolution for Tempered Distributions |

» If g is any function on R”, its , 9,1
defined as

9(x) = g(—x). (93)

Fubini’s theorem implies, if u, ¢ and ¢ are all in S,

/n(u * ©)(X)Y(x) dx =

/in u(x)(@ =) (x) dx. (94)
The mappings

b — s [ (o) (x)w(x) dx, (95)
J RN

u
(=

u(x)0(x) dx,
JR"

(96)

are continuous linear functionals on S, respectively.
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defined as

9(x) = g(—x). (93)
» Fubini’s theorem implies, if u, ¢ and ¢ are allin S,
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Convolution for Tempered Distributions
» Denoting them by u * ¢ and u, Eq. (94) implies

(U @) (¥) = u(@ * ). (97)

If ue S’ and ¢, ¥ € S, the right-hand side of Eq. (97)
is well-defined since

Gx € S. (98)

Furthermore, the mapping

u
Y — @xp — u(P x 1)), (99)

being the composition of two continuous functions, is
continuous.

Thus, the convolution of the distribution u with the
testing function ¢, u x ¢, is defined by Eq. (97).
References

[Stein and Weiss, 1971, Chapter Q.
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being the composition of two continuous functions, is
continuous.

Thus, the convolution of the distribution u with the
testing function ¢, u * ¢, is defined by Eq. (97).
References

u]
o)
I
i
it

Image
Reconstruction

Ming Jiang

Function Spaces
Functional Analysis
Function Spaces

Theory of the
Fourier Transform
The L' Theory of the
Fourier Transform
Inverse Fourier Transform

The L? Theory of the
Fourier Transform

Tempered
Distributions

Operators for Tempered
Distributions

Convolution
Differentiation

References




Convolution for Tempered Distributions
» Denoting them by u * ¢ and u, Eq. (94) implies
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is well-defined since
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» Furthermore, the mapping
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Y — Gxp —> u(@* ), ()

being the composition of two continuous functions, is
continuous.
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Ming Jiang

» Denoting them by u * ¢ and u, Eq. (94) implies
Function Spaces

(ux p)() = u(@ * ). (07)

Function Spaces

Theory of the

» If ue S and ©, (AS S, the right—hand side of Eq (97) Fourier Transform
is well-defined since oo o™

The L? Theory of the

@ * /llz) 6 S‘ (98) Fourier Transform
Tempered
. Distributions
» Furthermore, the mapping Operators for Tempered
Distributions
Cw .
/llZ} — Pk ¢ — U(SD * 17[})7 (99) References

being the composition of two continuous functions, is
continuous.

» Thus, the convolution of the distribution u with the
testing function ¢, u x ¢, is defined by Eq. (97).
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» Denoting them by u * ¢ and u, Eq. (94) implies
Function Spaces

(ux p)() = u(@ * ). (07)

Function Spaces

Theory of the

» If ue S and ©, (AS S, the right—hand side of Eq (97) Fourier Transform
is well-defined since oo o™

The L? Theory of the

@ * /llz) 6 S‘ (98) Fourier Transform
Tempered
. Distributions
» Furthermore, the mapping Operators for Tempered
Distributions
Cw .
/llZ} — Pk ¢ — U(SD * 17[})7 (99) References

being the composition of two continuous functions, is
continuous.
» Thus, the convolution of the distribution u with the
testing function ¢, u x ¢, is defined by Eq. (97).
» References
i [Stein and Weiss, 1971, Chapter 1].



Convolution for Tempered Distributions Il

» This convolution is associative in the sense that

(Ux @) xp=ux*(p*),

forue S"and p, ¢ € S.

(100)
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Convolution for Tempered Distributions Il

» This convolution is associative in the sense that

(Ux @) xp=ux*(p*),

(100)
forue S"and p, ¢ € S.

([Stein and Weiss, 1971, Theorem 1.3.13]) If u € S’ and

p € S, then the convolution u ¢ is the function f, whose
value at x € R", is

f(x) = u(7x@). (101)
Moreover, f belongs to C>, and it, as well as all its
derivatives, are slowly increasing.
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Ming Jiang

» This convolution is associative in the sense that i

(Ux @) *x = Ux(p*1), (100)  Forer Tangtom

The L' Theory of the
Fourier Transform

Inverse Fourier Transform

forue S"and p, ¢ € S.

Fourier Transform

Tempered

> Theorem Distributions
([Stein and Weiss, 1971, Theorem 1.3.13]) If u € §' and oaios o Toored

¢ € S, then the convolution u * ¢ is the function f, whose Conluon
oo
value at x € R , IS References

f(x) = u(7xp). (101)

Moreover, f belongs to C*>, and it, as well as all its
derivatives, are



Differentiation for Tempered Distributions |

» Integration by parts implies

| (000 dx = () [ ux) (D% o)) e

(102)
foru, ¢ € S.

The mapping

DPu '
;%/ (DPu)(x)p(x)dx,  (103)

o | u(x)0(x) dx, (104)
JRn

are continuous linear functionals on S, repectively.
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Function Spaces

» Integration by parts implies

Function Spaces

& — | ﬂ‘ lziﬁ;yr %atrr:zform
( D U) ( ) ( ) dX ) ) dX ;he L '_f(hem'y of the
Rn urier Transform

( 1 02) Inverse Fourier Transform
2

The L® Theory of the

Fourier Transform
for u, ¥ < S Tgmpergd
» The mapping ?St:bu?ornsd
Comuon
Dﬁ u Differentiation
o — (D’BU)(X)(,O(X) dX, (1 03) References
R
u
6 —— u(x)0(x) dx, (104)
R"

are continuous linear functionals on S, repectively.



Differentiation for Tempered Distributions Il

» Denoting them by D?u and u, Eq. (102) implies
(DPu)(e) = (=1)"lu(D%). (105)

The right-hand side is well-defined since D’y € S.
Furthermore, , the mapping

p u p
o — DPo — u(DPy), (106)

being the composition of two continuous functions, is
continuous.
Thus, the the partial derivative DPu of the
distribution v, is defined by Eq. (105).
References

[Stein and Weiss, 1971, Chapter 1].
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