12:45:21

Image Reconstruction

Course Introduction

Ming Jiang School of Mathematical Sciences Peking University February 21, 2011

Outline

- Image reconstruction problem
- Required preliminaries
- Syllabus
- References and resources
- · Examination scheme

12 45 2 Image reconstruction problem an inverse problem The problem is to reconstruct the image from measured data by "solving" the following equation Object x A(x) = b ${\cal A}$ ns of syste b In most cases, A is linear. on with co ous configuration in function spac

Reconstruction approaches

12:45:2

12:45:27

- In some problems, there are exact analytic inverse formulas.
- In some problems, there are not analytic inverse formulas. Iterative methods based on statistical criteria are utilized.
- Approximate inverse are advocated in practice.
 In X-ray CT, the inverse formula by Radon is not preferred, but the approximate filtered backprojection (FBP) is utilized.

12:45:21 **III-posed problems** characteristics of inverse problems

- not an issue in practical applications.
- Uniqueness may fail, due to insufficient data the nature of the physical

 - e.g., inverse source in bioluminescence tomography
 - To be addressed in this course

Stability could fail

- mall perturbation in rement may lead to big nce in solutions.
- ical with image ruction pr lem limited bandwidth in practice /inconsistent/inco
- data e.g., inverse heat conduction.

Outline

- Image reconstruction problem
- Required preliminaries
- Syllabus
- References and resources
- Examination scheme

Required preliminaries

12:45:21

12:45:21

- 实分析,泛函分析,偏微分方程 数值计算
- 信号处理,图像处理
- 统计学 X射线物理,光学
-

Outline

- Image reconstruction problem
- Required preliminaries
- Syllabus
- · References and resources
- · Examination scheme

Syllabus 1

1 P

- es, Banach spaces es, Banach spaces paces, L1, L2, Lp, C^Am, C^Alinfty, ex TVS, Schwartz space, Distributions ory for L1, L2 and Distributions ory for L1, L2 and Distributions minos: Ressel functions, Gegenbauer Polynomials, Spherical integral Operators with ors: Hilbert Transform, Singular Integral Operators with esz Transforms, Riesz Potentials, Mellin Transform,

- 2 Integral Geometry Radon Transform, Inversion via Riesz Potentials, via Spherical Harmonics
- r Transform, Inversion via Riesz Potentials ie Beam Transform, Inversion Formulas

Syllabus 2

12:45:2

12:45:27

• 3 Sampling Theory

- Paley-Wiener Theory
- Poisson's Summation Formula
- Shannon's Sampling Theorem
- Sampling on Oblique Grids
- 4 Regularization and SVD
 - Moore-Penrose inverse
 - Tikhonov's Theory for III-posed Problem
 - Singular Value Decomposition
 - Regularization

12:45:27

5 Statistical Inference

- Bayesian Inference
- Prior Information
 Data Models, Gaussian Noise, Poissonian noise, Poissonian + Gaussian Mixed Noise.

Syllabus 3

6 Markov Random Fields

- Markov Random FieldsGibbsian Random FieldsGibbs sampler

- Geman's Discrete Model
- Mumford and Shah's Model
- Algorithms

Syllabus 4

- 7 Optmization Tools
 - Gradient descent
 - Incremental Gradient descent
- 8 Iterative Image Reconstruction Methods
- EM algorithm
- Landweber Scheme
 Projection methods, Bregman and f- divergences
 Superorization methods,
- 9 Approximate Inverse
 - Approximate Inverse
 reconstruction of features

Syllabus 5

10 1 3 Ú C

- n Methods
- Parallel Scanning in 2D Fan Beam Scanning in 2D
- VD of Radon Transfo

13 Sampling Theory & Resolution of CT

12:45:21

12:45:21

- 14 li

- ruction of

- 12:45:21 Syllabus 6 16 Radiative Transfer Equation

 The Radiation Field
 Interaction of the Radiation Field with Matter
 The Equation of Radiative Transfer
 Boundary Conditions on the Equation of Transfer
 Diffusion Approximation of RTE

 18 Optical Molecular imaging Modalities

 DOT, FMT, BLT

 19 Bioluminescence Tomography

 BLT based on RTE
 BLT Based on Diffusion Approximation
 Solution Structure of BLT
 Reconstruction Methods for BLT
 Multi-spectral Bioluminescence Tomography

Outline

Resources

- Image reconstruction problem
- Required preliminaries
- Syllabus
- References and resources
- Examination scheme

References

12:45:2

- Censor, Y. and S. A. Zenios (1997). <u>Parallel optimization : t</u> algorithms, and applications. New York, Oxford University F
- Louis, A. K. (1989). Inverse und schlecht gestellte Probleme. Stuttgart, B.G.
- atterer, F. (2001). <u>The mathematics of computerized tomography</u>. hiadelphia, Society for Industrial and Applied Mathematics. atterer, F. and F. Wübbeling (2001). <u>Mathematical methods in imag</u> <u>construction</u>. Philadelphia, Society for Industrial and Applied Mathé
- ein, E. M. and G. L. Weiss (1975). Introduction to Fourier analysis on clidean spaces. Princeton, N.J., Princeton University Press.
- ilbarg, D. and N. S. Trudinger (2001). <u>Elliptic partial differential eq</u>t f <u>second order</u>. Berlin ; New York, Springer.

12:45:21

- <u>MathNet</u>
- IEEE Xplore
- EBSCO
- ISI Web of Science
- <u>Google at hk</u>

Outline

- Image reconstruction problem
- Required preliminaries
- Syllabus
- References and resources
- Examination scheme

Examination

12:45:20

- Submit a written report for a topic in this course. Discuss it with me before starting up. Implement at least two methods, conduct sufficie

- A introduction
 A introduction
 B fundamental
- •
- No Plagia