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1.1 Digital image processing: What, Why and How
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1.1.1 What is and why we need digital image processing

• Image is better than any other information form for our human being to per-
ceive. Vision allows humans to perceive and understand the world surrounding
us.

• Human are primarily visual creatures. Not all animals depend on their eyes, as
we do, for 99% ([Russ, 1995]) (some says it is 90% [hua Zhao and hua Zhong, 1982])
or more of the information received about the world.

• Giving computers the ability to see is not an easy task — we live in a three
dimensional (3D) world, and when computers try to analyze objects in 3D
space, available visual sensors (e.g., TV cameras) usually give two dimensional
(2D) images, and this projection to a lower number of dimensions incurs an
enormous loss of information. Dynamic scenes such as those to which we are
accustomed, with moving objects or a moving camera, make this task even
more complicated.

• Image understanding, image analysis, and computer vision aim to duplicate
the effect of human vision by electronically ( = digitally, in the present context)
perceiving and understanding image(s).

Let’s first look at an example in § 1.1.2, which illustrate a few common issues.
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1.1.2 Example: Detection of Ozone Layer Hole

(a) An ozone layer hole over Antarctica. (b) An ozone layer image in 1990.

The image in Fig. 1.1(a) shows the ozone () layer hole over Antarctica, as
captured by apparatus on board NASA’s Nimbus 7 satellite over a period of years:
‘TOMS’ here stands for Total Ozone Mapping Spectrometer, and Dobson units
are standard units (multiple of molecules per cubic centimeter) used used in ozone
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mapping — the normal value is about 300 Dobson units and so depletion () is
obvious in these pictures.

It is natural to develop methods by which pictures like this may be analyzed
automatically — the qualitative conclusion that there is a trend toward ozone
depletion should be available from the changes in colors between the successive
pictures, and we might also hope for some quantitative conclusions saying exactly
(can we?) how much change is occurring. In fact, though, these pictures contain
formidable quantities of information that make them far from trivial to analyze.

In the picture presented, a great deal of computer processing has already been
applied: intensity normalization (normalization of the differences due to different
scene environment conditions), geometric transformation, and a number of other
filters which will be described in the course.
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Example 1.1.1. Delimit accurately (can we?) the ozone regions of different Dobson
units in the picture and then draw conclusions about overall concentrations and
trends.

Let us look at the most latest picture at 1990 in Fig. 1.1(b).
The Khoros workspace for this example is here ozone example.
The result by thresholding is in Fig. 1.1(c). The result by using “Optimal Dif-

ference Recursive Filter for Edge Detection” is in Fig. 1.1(d).

(c) Image obtained by thresh-
olding.

(d) Image obtained by using
the “Optimal Difference Re-
cursive Filter for Edge Detec-
tion”.

file:../program/ozone.wk�
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We see that

• While some of the clear evidence in the original is still visible, not all of it.
There are a significant amount of further work to do on the early processing
before being able to proceed.

• Several of the region boundaries are incomplete, while some significant infor-
mation has disappeared altogether.

These are problems that will be discussed and solutions presented in this course.

Following this stage would come higher-level analysis in which values derived
from the scale on the right of Fig. 1.1(a) would be attached to the region of
Fig. 1.1(d). We would make reference to the color detected with the region lo-
cated (the spectrometer information about its spectrum), and would probably de-
ploy high-level (“domain”) knowledge, such as expecting ozone concentration to
vary continuously across the globe.

This sequence of operations — image capture, early processing, region extrac-
tion, region labeling, high-level identification, qualitative/quantitative conclusion —
is characteristics of image understanding and computer vision problems.
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1.2 General Procedures

• There are philosophically two approaches: bionics () and engineering (that is
project attempt coordinated), approaches. The bionics approach has not been
so successful, since we do have a through understanding about the biological
vision system.

• In order to simplify the tasks, two levels are generally, usually and universally
recognized and distinguished: low-level image processing and high-level image
understanding or computer vision. The goal is to obtain similar results to those
provided by biological systems.

• Low-level methods usually use very little knowledge about the content or
semantics of images.

• High-level processing is based on knowledge, goals, and plans of how to
achieve those goals. High-level computer vision tries to imitate human cogni-
tion and the ability to make decisions according to the information contained
in the image.

• Low-level image processing and high-level computer vision differ in the data
used, Low-level data are comprised of original images represented by matrices
composed of brightness values, while high-level data originates in images as
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well, but only those data which are relevant to high-level goal are extracted,
reducing the data quantity considerably. High-level data represent knowledge
about the image content — for example, object size, shape and mutual rela-
tions among objects in the images. High-level data are usually represented in
symbolic form.

• This course deals almost exclusively with low-level image processing.
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1.2.1 Low-level image processing

Low-level image processing techniques overlap almost completely with digital image
processing, which has been practiced for decades. Most current low-level image
processing methods were proposed in the 1970s or earlier. Recent research is trying
to find more efficient and more general algorithms and implement them on more
technologically sophisticated equipment — in particular, parallel machines are being
used to ease the enormous computational load of operations conducted on image
date sets.

A complicated and so far unsolved problem is how to order low-level steps to
solve a specific task, and the aim of automating this problem has not yet been
achieved. It is not surprising that in 1980s many projects focused on this problem
using expert systems, but expert systems do not solve the problem by themselves.
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The following sequence of processing steps is commonly recognized:

• Image Acquisition: An image is captured by a sensor (such as a TV camera)
and digitized. Image may come in many formats and ways.

• Preprocessing: Image reconstruction or restoration, denoising and enhance-
ment. E.g., computer tomography.

• Image coding and compression: this is important for transferring images.

• Image segmentation: computer tries to separate objects from the image back-
ground.

• Object description and classification in a totally segmented image is also un-
derstood as part of low-level image processing.
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1.2.2 High-level image processing

High-level Processing is based on knowledge, goals and plans of how to achieve those
goals and artificial intelligence methods are widely applicable. High-level computer
vision tries to imitate human cognition and the ability to make decisions according
to the information contained in the image.

In the ozone example above, high-level knowledge would be the continuity of
the concentration figures and the fact that the area of similar concentration appear
as (distorted) annuli centered at the polar area.

High-level vision begins with some form of formal model of the world, and then
the reality perceived in the form of digitized images is compared to the model. A
match is attempted, and when difference emerge, partial matches (or sub-goals)
are sought that overcome the mismatch; the computer switches to low-level image
processing to find information needed to update the model. This process is the
repeated iteratively, and understanding an image thereby becomes a co-operation
between top-down and bottom-up processes. A feedback loop is introduced in
which high-level partial results and knowledge create task for low-level image pro-
cessing, and the iterative image understanding process should eventually converge
to the global goal.

Unsurprising this process is very complicated and computation intensive.



1.3. DIGITAL IMAGE PROCESSING AND OTHER DISCIPLINES 13

1.3 Digital Image Processing and Other Disciplines

Many techniques of image processing, image understanding and analysis, and com-
puter vision use the results and methods of mathematics, pattern recognition, arti-
ficial intelligence, psychophysiology (), physiopsychology (), cognitive science, com-
puter science, electronics and other scientific disciplines.



14 CHAPTER 1. INTRODUCTION AND COURSE OVERVIEW

1.4 What Are the Difficulties

1.4.1 Poor understanding of the human vision system

Example 1.4.1. How the human perceive process and store the visual information?

Explanation and information from Home of Vision Illusion.

http://www.illusionworks.com/�
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We do not have a clear understanding how the human perceive, process and store
the visual information. We do not even know how the human measures internally
the image visual quality and discrimination.

Do you see an old woman or a young woman in this illustration? They are both
present, but you will not be able to see both of them simultaneously. Once you
perceive both figures, see if you can get them to fluctuate back and forth between
the two interpretations.

This type of reversible figure concerns the meaningful content of what is inter-
preted by your brain from the same static image. Your perception of each figure
tends to remain stable until you attend to different regions or contours. Certain
regions and contours tend to favor one perception, others the alternative.

Your visual system tends to group like or related regions together. It does not
present you with some odd mixture of the two alternatives.

Attending to different regions or contours does tend to initiate a change of
perception.

If this image is looked at with a steady eye, it will still change, though less
often. Researchers have stabilized the image directly onto the retina to eliminate
any effects that may arise from eye movements. Even under these conditions, a
perceptual reversal may occur. This indicates that higher cortical processing occurs
that strives to make meaning out of a stable image presented to the retina. This
illustrates once more that vision is an active process that attempts to make sense of
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incoming information. As the late David Marr said, “Perception is the construction
of a description.”
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History of this illustration
For many years the creator of this famous figure was thought to be British

cartoonist W. E. Hill, who published it in 1915. Hill almost certainly adapted the
figure from an original concept that was popular throughout the world on trading
and puzzle cards.

This anonymous dated German postcard (shown at the top of the page) from
1888 depicts the image in its earliest known form.

The 1890 example on the left shows quite clearly its association as “My Wife
and Mother-in-Law.” Both of these examples predate the Punch cartoon that was
previously thought to serve as the figure’s inspiration.

The figure was later altered and adapted by others, including the two psycholo-
gists, R. W. Leeper and E. G. Boring who described the figure and made it famous
within psychological circles in 1930. It has often been referred to as the “Boring
figure.”

Versions of the figure proved to be popular and the image was frequently
reprinted; however, perceptual biases started to occur in the image, unbeknownst
to the plagiarizing artists and psychologists who were reprinting the images. Vari-
ations have appeared in the literature that unintentionally are biased to favor one
interpretation or another, which defeats its original purpose as a truly ambiguous
figure.
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In the three versions shown above, can you tell which one is biased toward the
young girl, the old woman?
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In 1961, J, Botwinick redesigned this figure once again, and entitled it, ”Husband
and Father-in-Law.”
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1.4.2 Internal representation is not directly understandable

Images are usually represented as a two dimensional function. Digitized images are
usually represented by two dimensional array. However, those representations are
not suitable for machine understanding, while the computer is able to process those
representations. General knowledge, domain-specific knowledge, and information
extracted from the image will be essential in attempting to understanding those
arrays of numbers.
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Example 1.4.2. Internal image representations for computer are not directly un-
derstandable.

Given an matrix, what is the perceived information by human?
Do the following exercise:

• Read and display a image file as a two dimensional function. The example
matlab script file is here matlab display example.

Both presentation contain exactly the same information, but for a human ob-
server it is very difficult to find a correspondence between, and without the second,
it is unlikely that one would recognize the child. The point is that a lot of a priori
knowledge is used by humans to interpret the images; the machine only begins with
an array of numbers and so will be attempting to us are more like the first display
then the second display.

file:../program/show3d_im.m�
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1.5 Course Overview

1.5.1 Course syllabus

Digital image processing, image analysis, image understanding are related branches
of computer vision. This course is about digital image processing.

1.5.2 Textbooks and references

The main textbook is

• Milan Sonka, V. Hlavac, R. Boyle: Image Processing, Analysis and Machine
Vision. Brooks/Cole Publishing Company, 1999.

Two main reference books are:

A. Kenneth R. Castleman: Digital Image Processing. Prentice-Hall International,
Inc. 1996. Or Tsinghua University Press, 1998.

B. Rongchun Zhao: Digital Image Processing (in Chinese). Northwestern Poly-
technical University Press, 1996.
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2.1 Basic concepts

• Fundamental concepts and mathematical tools are introduced in this chapter
which will be used throughout the course.

• Mathematical models are often used to describe images and other signals.

• A signal is a function depending on some variable with physical meaning.
Signals can be

– one-dimensional (e.g., audio signal dependent on time);

– two-dimensional (e.g., images dependent on two co-ordinates in a plane);

– three-dimensional (e.g., describing an object in space or video signal);

– or higher-dimensional.

• A scalar function may be sufficient to describe a monochromatic image, while
vector functions are to represent, for example, color images consisting of three
component colors.

• Functions we shall work with may be categorized as continuous, discrete and
digital. A continuous function has continuous domain and range; if the domain
set is discrete, then we get a discrete function; if the range set is also discrete,
then we have a digital function.
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2.1.1 Image functions

• The image can be modeled by a continuous function of two or three variables;
arguments are co-ordinates x and y in a plane, while if images change in time
a third variable t might be added.

• The image function values correspond to the brightness at image points.

• The function value can express other physical quantities as well (temperature,
pressure distribution, distance from the observer, etc.).

• The brightness integrates different optical quantities — using brightness as
a basic quantity allows us to avoid the description of the very complicated
process of image formation.
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• The image on the human eye retina or on a TV camera sensor is intrinsically
2D. We shall call such a 2D image bearing information about brightness points
an intensity image.

• The real world which surrounds us is intrinsically 3D.

• The 2D intensity image is the result of a perspective projection of the 3D
scene.

• When 3D objects are mapped into the camera plane by perspective projection
a lot of information disappears as such a transformation is not one-to-one.

• Recognizing or reconstructing objects in a 3D scene from one image is an
ill-posed problem.

• Recovering information lost by perspective projection is only one, mainly ge-
ometric, problem of computer vision. The aim is to recover a full 3D repre-
sentation such as may be used in computer graphics.

• The second problem is how to understand image brightness. The only infor-
mation available in an intensity image is brightness of the appropriate pixel,
which is dependent on a number of independent factors such as object sur-
face reflectance properties (given by the surface material, micro-structure and
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marking), illumination properties, and object surface orientation with respect
to a viewer and light source. This is a non-trivial and again ill-posed problem.
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• Some scientific and technical disciplines work with 2D images directly; for
example,

– an image of the flat specimen viewed by a microscope with transparent
illumination;

– a character drawn on a sheet of paper;

– the image of a fingerprint, etc.

• Many basic and useful methods used in digital image analysis do not depend
on whether the object was originally 2D or 3D (e.g, FFT).
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• The image formation process is described in [Horn, 1986, Wang and Wu, 1991].

• Related disciplines are photometry which is concerned with brightness mea-
surement, and colorimetry which studies light reflectance or emission depend-
ing on wavelength.

• A light source energy distribution C (x , y , t,λ) depends in general on image
co-ordinates (x , y), time t, and wavelength λ.

• For the human eye and most technical image sensors (e.g., TV cameras),
the “brightness” f depends on the light source energy distribution C and the
spectral sensitivity of the sensor, S(λ) (dependent on the wavelength)

f (x , y , t) =

∫ ∞
0

C (x , y , t,λ)S(λ) dλ (2.1)

An intensity image f (x , y , t) provides the brightness distribution.

• In a color or multi-spectral image, the image is represented by a real vector
function f

f (x , y , t) = (f1(x , y , t), f2(x , y , t), · · · , fn(x , y , t)) (2.2)

where, for example, there may be red, green and blue, three components.
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• Image processing often deals with static images, in which time t is constant.

• A monochromatic static image is represented by a continuous image function
f(x,y) whose arguments are two co-ordinates in the plane.

• Most methods introduced in this course is primarily for intensity static image.
It is often the case that the extension of the techniques to the multi-spectral
case is obvious.
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• Computerized image processing uses digital image functions which are usually
represented by matrices, so co-ordinates are integer numbers. The domain of
the image function is a region R in the plane

R = {(x , y) : 1 ≤ x ≤ xm, 1 ≤ y ≤ yn} (2.3)

where xm and yn represent maximal image co-ordinates.

• The image function has a limited domain — infinite summation or integration
limits can be used, as it is assumed that the image function is zero outside
the domain.

• The customary orientation of co-ordinates in an image is in the normal Carte-
sian fashion (horizontal x axis, vertical y axis), although the (row, column)
orientation used in matrices is also quite often used in digital image processing.

• The range of image function values is also limited; by convention, in intensity
images the lowest value corresponds to black and the highest to white.

• Brightness values bounded by these limits are gray levels.

• The gray level range is 0, 1, · · · , 255, represented by 8 bits, the data type
used is unsigned char. In some applications, 14 bits or more is used, e.g, for
medical images.
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• The usual computer display supports 8 bit gray level.
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Homework 2.1.1. How to display a 16 bit gray level image? Generate an image
of 16 bit and try to display it with your computer.

Homework 2.1.2. If a discrete image is of continuous range, the image matrix is
of type float or double. How to display it? Generate an image of float or double
type and try to display it with your computer.
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• The quality of a digital image grows in proportion to the spatial, spectral,
radiometric, and time resolution.

• The spatial resolution is given by the proximity of image samples in the image
plane.

• The spectral resolution is given by the bandwidth of the light frequencies
captured by the sensor.

• The radiometric (contrast, or density) resolution corresponds to the number
of distinguishable gray levels.

• The time resolution is given by the interval between time samples at which
images are captured.
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2.2 Image digitization

• An image captured by a sensor is expressed as a continuous function f (x , y)
of two co-ordinates in the plane.

• Image digitization means that the function f (x , y) is sampled into a matrix
with M rows and N columns.

• The image quantization assigns to each continuous sample an integer value.
The continuous range of the image function f (x , y) is split into K intervals.

• The finer the sampling (i.e., the larger M and N) and quantization (the larger
K ) the better the approximation of the continuous image function f (x , y).

• Two questions should be answered in connection with image function sam-
pling:

– First, the sampling period should be determined – the distance between
two neighboring sampling points in the image;

– Second, the geometric arrangement of sampling points (sampling grid)
should be set.
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2.2.1 Sampling

• A continuous image function f (x , y) can be sampled using a discrete grid of
sampling points in the plane.

• The image is sampled at points x = j∆x , y = k∆y

• Two neighboring sampling points are separated by distances ∆x along the x
axis and ∆y along the y axis. Distances ∆x and ∆y are called the sampling
interval and the matrix of samples constitutes the discrete image.

• The ideal sampling s(x , y) in the regular grid can be represented using a
collection of Dirac distributions

s(x , y) =
∞∑

j=−∞

∞∑

k=−∞
δ(x − j∆x , y − k∆y) (2.4)

• The sampled image is the product of the continuous image f (x , y) and the
sampling function s(x , y)

fs(x , y) = s(x , y)f (x , y) (2.5)



2.2. IMAGE DIGITIZATION 37

• The collection of Dirac distributions in equation (2.4) can be regarded as
periodic with period ∆x , ∆y and expanded into a Fourier series (assuming
for a moment that the sampling grid covers the whole plane (infinite limits))

s =
∞∑

m=−∞

∞∑
n=−∞

amne2πi( mx
∆x

+ ny
∆y ) (2.6)

where the coefficients of the Fourier expansion can be calculated as

amn =
1

∆x∆y

∫ ∆x
2

−∆x
2

∫ ∆y
2

−∆y
2

∞∑
j=−∞

∞∑

k=−∞
δ(x − j∆x , y − k∆y)e2πi( mx

∆x
+ ny

∆y ) dxdy

(2.7)

• Noting that only the term for j = 0 and k = 0 in the sum is nonzero in the
range of integration (for other j and k , the center of the Delta function is
outside the integral interval), the coefficients are

amn =
1

∆x∆y

∫ ∆x
2

−∆x
2

∫ ∆y
2

−∆y
2

δ(x , y)e2πi( mx
∆x

+ ny
∆y ) dxdy =

1

∆x∆y
(2.8)

• Then, (2.5) can be rewritten as

fs(x , y) = f (x , y)
1

∆x∆y

∞∑
m=−∞

∞∑
n=−∞

e2πi( mx
∆x

+ ny
∆y ) (2.9)
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• In frequency domain then

Fs(u, v) =
1

∆x∆y

∞∑
m=−∞

∞∑
n=−∞

F (u − m

∆x
, v − n

∆y
) (2.10)

where F and Fs are the Fourier transform of f and fs respectively.

• Recall the Fourier transform is

F (u, v) =

∫ ∞
−∞

∫ ∞
−∞

f (x , y)e−2πi(ux+vy) dxdy (2.11)

• Thus the Fourier transform of the sampled image is the sum of periodically
repeated Fourier transforms F (u, v) of the origin image.
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• Periodic repetition of the Fourier transform result F (u, v) may under certain
conditions cause distortion of the image which is called aliasing; this happens
when individual digitized components F (u, v) overlap.
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• There is no aliasing if the image function f (x , y) has a band limited spectrum,
its Fourier transform F (u, v) = 0 outside a certain interval of frequencies
|u| > U and |v | > V .

T-U
-U U T

Figure 2.1: Where T = 1
∆x

.
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• As you know from general sampling theory [Oppenheim et al., 1997], overlap-
ping of the periodically repeated results of the Fourier transform F (u, v) of an
image with band limited spectrum can be prevented if the sampling interval
is chosen according to

∆x ≤ 1

2U
, ∆x ≤ 1

2V
. (2.12)

• This is the Shannon sampling theorem that has a simple physical interpretation
in image analysis: The sampling interval should be chosen in size such that it
is less than or equal to half of the smallest interesting detail in the image.
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• The sampling function is not the Dirac distribution in real digitizers – narrow
impulses with limited amplitude are used instead.

• Assume a rectangular sampling grid which consists of M ×N such equal and
non-overlapping impulses hs(x , y) with sampling period ∆x and ∆y . Ideally,
hs(x , y) = δ(x , y). The function hs(x , y) simulates realistically the real im-
age sensors. Outside the sensitive area of the sensor, the sampling element
hs(x , y) = 0. The sampled image is then given by the convolution computed
in direct co-ordinates x = j∆x , y = k∆y ,

fs(x , y) = f (x , y)
∞∑

j=−∞

∞∑

k=−∞
hs(x − j∆x , y − k∆y) (2.13)

• The sampled image fs is distorted by the convolution of the original image f
and the limited impulse hs . The distortion of the frequency spectrum of the
function Fs can be expressed using the Fourier transform

Fs(u, v) =
1

∆x∆y

∞∑
m=−∞

∞∑
n=−∞

F (u − m

∆x
, v − n

∆y
)Hs(

m

∆x
,

n

∆y
). (2.14)

Homework 2.2.1. Prove (2.14) from (2.13).



2.2. IMAGE DIGITIZATION 43

• There are other sampling schemes.

• These sampling points are ordered in the plane and their geometric relation
is called the grid. Grids used in practice are mainly square or hexagonal

• One infinitely small sampling point in the grid corresponds to one picture
element (pixel) in the digital image. The set of pixels together covers the
entire image.
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• Pixels captured by a real digitization device have finite sizes.

• The pixel is a unit which is not further divisible, sometimes pixels are also
called points.
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2.2.2 Quantization

• A magnitude of the sampled image is expressed as a digital value in image
processing.

• The transition between continuous values of the image function (brightness)
and its digital equivalent is called quantization.

• The number of quantization levels should be high enough for human percep-
tion of fine shading details in the image.

• The occurrence of false contours is the main problem in image which have
been quantized with insufficient brightness levels. This effect arises when
the number of brightness levels is lower than that which humans can easily
distinguish.

• This number is dependent on many factors — for example, the average local
brightness — but displays which avoids this effect will normally provide a
range of at least 100 intensity levels.

• This problem can be reduced when quantization into intervals of unequal
length is used; the size of intervals corresponding to less probable brightnesses
in the image is enlarged. These gray-scale transformation techniques are
considered in later sections.
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• Most digital image processing devices use quantization into k equal intervals.

• If b bits are used ... the number of brightness levels is k = 2b.

• Eight bits per pixel are commonly used, specialized measuring devices use 12
and more bits per pixel.

Example 2.2.2. Do quantization experiment. The Khoros workspace for this
example is here quantization example.

Do you observe the false contours when the quantization levels is decreasing?

file:../program/quantization.wk�
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2.2.3 Color Images

• Color is a property of enormous importance to human visual perception.

• This is due to the biological structure of the human retina.

• But historically it has not been particularly used in digital image processing.
The reason for this has been the cost of suitable hardware.

• Since 1980’s, this has changed significantly. Color images are now routinely
accessible via TV cameras or scanners. Color display is the default in most
computer systems.

• Color is connected with the ability of objects to reflect electromagnetic waves
of different wavelengths.

• The visible chromatic spectrum spans the electromagnetic spectrum from
400 nm to 700 nm.

• Human detect colors as combination of the primary colors red, green and
blue, whose wavelength for the purpose of standardization have been defined
as 700 nm, 546.1 nm and 435.8 nm, respectively, [Pratt, 1978].

• Hardware will generally deliver or display color via an RGB model.
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• A particular pixel may have associate with it a three dimensional vector
(r , g , b) which provides the respective color intensities.

• (0, 0, 0) is black, (k , k , k) is white, (k , 0, 0) is pure red, where k is the quan-
tization level. Usually k = 256 = 28.

• Most image sensors will provide data according this model. The image can
be captured by several sensors, each of which is sensitive to a rather narrow
band of wavelengths, (2.1).

• Each spectral band is digitized independently and is represented by an indi-
vidual digital image function as if it were a monochromatic image.

• Some images are delivered using a similar approach, but with a different
complements — e.g., the LANDSAT 4 satellite transmits digital images in
five spectral bands from near-ultraviolet to infrared.

• For our purpose this is useful, since a monochromatic image may not con-
tain enough information for many applications, while color or multi-spectral
images can often help.

Example 2.2.3. Multi-spectral image captured by Land-sat TM-5. The example
uses the images from its 3rd, 4th and 5th spectral bands. The Khoros workspace
for this example is here Multi-spectral image example.

file:../program/multi-spectral-image.m�
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• Other color models turn out to be equally important, if less intuitive.

• There are many of them: CMY, CMYK, YIQ, HSI, ....

Remark 2.2.4. Be careful for formulas in various books.
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2.3 Digital image properties

A digital image has several properties, both metric and topological, which are some-
what different from those of continuous two-dimensional functions we are familiar
with.

2.3.1 Metric and topological properties of digital images

• A digital image consists of picture elements of finite size.

• Usually pixels are arranged in a rectangular grid.

• A digital image is represented by a two-dimensional matrix whose elements
are integer numbers corresponding to the quantization levels in the brightness
scale.

• Some intuitively clear properties of continuous images have no straightforward
analogy in the domain of digital images.
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Metric properties of digital images

• Distance is an important example.

• The distance between two pixels in a digital image is a significant quantitative
measure.

• The distance between points with co-ordinates (i , j) and (h, k) may be defined
in several different ways:

• The Euclidean distance DE is defined by

DE [(i , j), h, k] =
√

(i − h)2 + (j − k)2 (2.15)

The advantage of the Euclidean distance is the fact that it is intuitively obvi-
ous. The disadvantages are costly calculation due to the square root, and its
not-integer value.

• The distance between two points can also expressed as the minimum number
of elementary steps in the digital grid which are needed to move from the
starting point to the end point.

• If only horizontal and vertical moves are allowed, the distance D4 or city block
distance is obtained:

D4[(i , j), h, k] = |i − h|+ |j − k | (2.16)
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which is the analogy with the distance between two locations in a city with a
rectangular grid of streets and closed blocks of buildings.

• If moves in diagonal directions are allowed in addition, the distance D8 or the
chess-board distance is obtained:

D8[(i , j), h, k] = max{|i − h|, |j − k |} (2.17)
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Topological properties of digital images

• Pixel adjacency is another important concept in digital images.

• Any two pixels are called 4-neighbors if they have distance D4 = 1 from each
other. Analogously, 8-neighbors are two pixels with D8 = 1.

• 4-neighbors and 8-neighbors are illustrated in Figure 2.3.1.

Figure 2.2: Pixel neighborhoods.

• It will become necessary to consider important sets consisting of several ad-
jacent pixels — regions.

• Region is a contiguous (touching, neighboring, near to) set.
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• A path from pixel P to pixel Q as a sequence of points A1, A2, · · · , An, where
A1 = P and An = Q, and Ai+1 is a neighbor of Ai , i = 1, · · · , n − 1.

• A region is a set of pixels in which there is a path between any pair of its
pixels, all of whose pixels also belong to the set.

• If there is a path between two pixels in the image, these pixels are called
contiguous.

• The relation to be contiguous is reflexive, symmetric and transitive and there-
fore defines a decomposition of the set (in our case image) into equivalence
classes (regions).

• Assume that Ri are disjoint regions in the image and that these regions do
not touch the image boundary (to avoid special cases). Let R be the union
of all regions Ri . Let RC be the complement of R with respect to the image.

• The subset of RC , which is contiguous with the image boundary, is called
background, and the rest of the complement RC is called holes.

• If there are no holes in a region we call it a simply contiguous region.

• A region with holes is called multiply contiguous.
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• Note that the concept of region uses only the property to be contiguous.
Secondary properties can be attached to regions which originate in image
data interpretation. It is common to call some regions in the image objects.

• A process which determines which regions in an image correspond to objects
in the world is part of image segmentation().

• E.g., the brightness of a pixel is a very simple property which can be used to
find objects in some images.

If a pixel is darker than some other predefined values (threshold), then it
belongs to some object. All such points which are also contiguous constitute
one object. A hole consists of points which do not belong to the object and
surrounded by the object, and all other points constitute the background.

• An example is the black printed text on the white paper, in which individual
letters are objects. White areas surrounded by the letter are holes, e.g., the
area inside a letter ’O’. Other which parts of the paper are background.
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Contiguity paradoxes

These neighborhood and contiguity definitions on the square grid create some para-
doxes.
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Example 2.3.1. The following figure shows three digital lines with 45o and −45o

slope.

• If 4-connectivity is used, the lines are not contiguous at each of their points.

• An even worse conflict with intuitive understanding of line properties is: two
perpendicular lines do intersect in one case (upper right intersection) and do
not intersect in another case (lower left), as they do not have any common
point.
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Example 2.3.2. The following figure shows another paradox. It is known from

Euclidean geometry that each closed curve divides the plane into two non-contiguous
regions. If image are digitized in a square grid using 8-connectivity, we can draw a
line from the inner part of a closed curve into the outer part which does not intersect
the curve. This implies that the inner and outer parts of the curve constitute only
one contiguous region.
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Example 2.3.3. (Connectivity paradox).

A D

C B

Figure 2.3: Connectivity paradox on a discrete grid.

• If we assume 4-connectivity, the figure contains four separate contiguous re-
gions A, B , C and D. A∪B are disconnected, as well as C ∪D. A topological
contradiction. Intuitively, C∪D should be connected if A∪B are disconnected.

• If we assume 8-connectivity, there are two regions, A ∪ B and C ∪ D. Both
sets contain paths AB and CD entirely within themselves, but which also
intersect!
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• One possible solution to contiguity paradox is to treat objects using 4-neighborhoods
and background using 8-neighborhoods (or vice versa).

• More exact treatment of digital contiguity paradox and their solution for binary
images and images with more brightness levels can be found in [Pavlidis, 1977].

• These problems are typical on square grids — a hexagonal grid (2.2.1) solves
many of them. However, a grid of this type has also a number of disadvan-
tages, [Pavlidis, 1977], p. 60.

• For reasons of simplicity and ease of processing, most digitizing devices use a
square grid despite the stated drawbacks.

• And for the same reason, we do not pursue further into this topic in this
course, but use the simple approach, although there are some paradoxes.
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• An alternative approach to the connectivity problems is to use discrete topol-
ogy based on CW complex theory in topology, which is called cell complex in
[Kovalevski, 1989].

• This approach develops a complete strand of image encoding and segmenta-
tion.

• The idea, first proposed by Riemann in the nineteenth century, considers
families of sets of different dimensions:

– points, which are 0-dimensional, may then be assigned to sets containing
higher dimensional structures (such as pixel array), which permits the
removal of the paradoxes we have seen.

– line segments, which are 1-dimensional, gives precise definition of edge
and border.
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Other topological and geometrical properties

• Border of a region is another important concept in image analysis.

• The border of a region R is the set of pixels within the region that have one
or more neighbors outside R .

• This definition of border is sometimes referred to as inner border, to distin-
guish it from the outer border, which is the border of the background (i.e.,
the complement of) of the region.

• Edge is a local property of a pixel and its immediate neighborhood — it is a
vector given by a magnitude and direction.

• The edge direction is perpendicular to the gradient direction which points in
the direction of image function growth.

Remark 2.3.4. Note the difference between border and edge.

• The border is a global concept related to a region, while edge expresses local
properties of an image function.

• The border and edge are related as well.
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• One possibility for finding boundaries is chaining the significant edges (points
with high gradient of the image function).
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• The edge property is attached to one pixel and its neighborhood — sometimes
it is of advantage to assess properties between pairs of neighboring pixels.

• The concept of the crack edge comes from this idea.

• Four crack edges are attached to each pixel, which are defined by its relation
to its 4-neighbors.

The direction of the crack edge is that of increasing brightness, and is a
multiple of 90 degrees, while its magnitude is the absolute difference between
the brightness of the relevant pair of pixels.
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• Convex hull is used to describe geometrical properties of objects.

• The convex hull is the smallest region which contains the object, such that
any two points of the region can be connected by a straight line, all points of
which belong to the region.

• An object can be represented by a collection of its topological components.
The sets inside the convex hull which does not belong to an object is called
the deficit of convexity.

• This can be split into two subsets. First, lakes are fully surrounded by the
objects; and second, bays are contiguous with the border of the convex hull
of the object.

• The convex hull, lakes and bays are sometimes used for object description.
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2.3.2 Histogram

• Brightness histogram provides the frequency of the brightness value in the
image.

• The brightness histogram hf (z) is a function showing, for each brightness
value z , the number of pixels in the image f that have that brightness value
z .

• The histogram of an image with L gray levels is represented by a one-dimensional
array with L elements.
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• For a digital image of brightness value ranging in [0, L − 1], the following
algorithm produces the brightness histogram:

Algorithm 2.3.5. Computing brightness histogram

1. Assign zero values to all element of the array hf ;

2. For all pixels (x , y) of the image f , increment hf [f (x , y)] by 1.

• The histogram is often displayed as a bar graph.

• Readers familiar with statistics will recognize that Computing brightness his-
togram is similar to generating the histogram of a random variable from a
given group of samples of the random variable.

• In the above algorithm, we take the starting value as 0, bin-width as 1, and
bin number as L, to generate the histogram.

• This algorithm can be modified to generate brightness histogram of arbitrary
bin-width and bin number.

• For multi-spectral band images, histogram of each individual band can be
generated in a similar way.

Example 2.3.6. Histogram example. The Khoros workspace for this example is
here Histogram Example.

file:../program/histogram.wk�
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2.3.3 Visual perception of the image

• Anyone who creates or uses algorithms or devices for digital image processing
should take into account the principle of human visual perception.

• There are psycho-physical parameters such as contrast, border, shape, texture,
color, etc.

• Human perception of image provokes many illusions, the understanding of
which provides valuable clues about visual mechanisms.

• The topic is covered exhaustively from the point of view of computer vision
in [Frisby, 1979].

• This is a difficult and complicated field. We will only touch briefly on it in
this course.
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Contrast

• Contrast is the local change in brightness and is defined as the ratio between
average brightness of an object and the background brightness.

• The human eye is logarithmically sensitive to brightness. That is why the
gamma correction in most computer monitors is needed.

• Apparent brightness depends very much on the brightness of the local back-
ground; this effect is called conditional contrast.

• The following figure illustrates this effect with two small squares of the same
brightness on a dark and a light background.

• Human perceive the brightness of the small squares as different.
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Acuity

• Acuity is the ability to detect details in image.

• The human eye is less sensitive to slow and fast changes in brightness in the
image plane but is more sensitive to intermediate changes.

• Acuity also decreases with increasing distance from the optical axis.

• Resolution in an image is firmly bounded by the resolution ability of the human
eye; there is no sense in representing visual information with higher resolution
than that of the viewer.

• Resolution in optics is defined as the inverse value of a maximum viewing angle
between the viewer and two proximate points which human cannot distinguish,
and so fuse together.
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• Human vision has the best resolution for objects which are at a distance of
about 25cm from an eye under illumination of about 500lux.

• This illumination is provided by a 60W from a distance 40cm. Under this
conditions the distance between two distinguishable points is approximately
0.16mm.

• Another report says that the minimal distinguishable distance is 0.47mm,
[Kutter, 1999].

Quiz 2.3.7. Given the above two minimal distinguishable distance, what is the
resolution in DPI needed for a printer to produce perfect output?

DPI means “Dots Per Inch” (1in = 2.54cm).
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Object border

• Object borders carry a lot of information, [Marr, 1982].

• Boundaries of objects and simple patterns such as blobs or lines enable adap-
tion effects similar to conditional contrast.

• The Ebbinghaus illusion is a well known example — two circles of the same
diameter in the center of images appear to have different size.
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2.3.4 Image quality

• An image might be degraded during capture, transmission, or processing, and
measures of image quality can be used to assess the degree of degradation.

• The quality required naturally depends on the purpose for which an image is
used.

• Methods for assessing image quality can be divided into two categories: sub-
jective and objective.
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• The quality of the image f (x , y) is usually estimated by comparison with a
known reference image g(x , y).

• A synthesized image g(x , y) is often used for this purpose.

• One class of methods uses simple measures such as the mean quadratic dif-
ference (or mean squared error, MSE)

∑
x ,y

(g(x , y)− f (x , y))2 (2.18)

• The problem here is that it is not possible to distinguish a few big differences
from a lot of small differences.

• Instead of the mean quadratic difference, the mean absolute difference or
simply maximal absolute difference may be used.

• Correlation between images f and g is another alternative.
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• Signal to noise ratio SNR is also used as a image degradation measure. Let
f (x , y) be the original image and f ′(x , y) be the degraded image, the degree
of degradation is measured by

SNR(f ′, f ) = 10 log10

∑
x ,y f (x , y)2

∑
x ,y (f (x , y)− f ′(x , y))2

(db) (2.19)

• Peak signal to noise ratio PSNR is another measure in this class. It is defined
as

PSNR(f ′, f ) = 10 log10

N maxx ,y f (x , y)2

∑
x ,y (f (x , y)− f ′(x , y))2

(db) (2.20)

where N is number of pixels.

Experimentally, a PSNR larger than 32db means invisible visual degradation.

• Measures of image similarity are becoming more important since they may be
used in image retrieval from multimedia databases.

• There are many other measures of image similarity based on distance func-
tions, [D. R. Wilson and T. R. Martinez, 1997].

Example 2.3.8. Image quality/similarity example. The Khoros workspace for this
example is here Quality/SimilarityExample.

file:../program/p_snr.wk�
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2.3.5 Noise in images

Image Noise

• Images are often degraded by random noise.

• Noise can occur during image capture, transmission or processing, and may
be dependent on or independent of image content.

• Noise is usually described by its probabilistic characteristics.

• White noise — constant power spectrum (its intensity does not decrease with
increasing frequency); it is frequently applied as a crude approximation of
image noise in most cases. Its auto-correlation is the delta function. So it is
un-correlated at two different instances.

• The advantage is that it simplifies the calculations.

• A special case of noise is Gaussian noise.

– Gaussian noise is a very good approximation of noise that occurs in many
practical cases.

– Probability density of the random variable is given by the Gaussian func-
tion.
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– 1D Gaussian noise — µ is the mean and σ is the standard deviation of
the random variable.

p(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 . (2.21)

Noise Type

Noise may be

• additive noise ν and image signal g are independent

f (x , y) = g(x , y) + ν(x , y). (2.22)

During image transmission, noise is usually independent of the image signal
occurs. The degradation can be modeled as additive noise.

• multiplicative noise is a function of signal magnitude

f (x , y) = g(x , y) + ν(x , y)g(x , y) = g(x , y)(1 + ν(x , y)) = g(x , y)n(x , y).
(2.23)

• impulse noise means that an image is corrupted with individual noisy pixels
whose brightness differs significantly from that of the neighborhood.
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• The term “salt and pepper noise” is used to describe saturated impulsive noise
— an image corrupted with white and/or black pixel is an example.
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The problem of suppressing noise in images is addressed in subsequent lectures
of this course.

Simulation of noise

We first consider the simulation of Gaussian noise.
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Theorem 2.3.9. (Box-Muller Method) Let U1 and U2 be i.i.d (independent identical
distributed) uniformly distributed random variables on (0, 1). Then the random
variables

N1 =
√
−2 log U1 cos(2πU2) (2.24)

N2 =
√
−2 log U1 sin(2πU2) (2.25)

are independent standard Gaussian.
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To prove it we need the following

Theorem 2.3.10. (Transformation Theorem for Densities) Let Z1, Z2 and U1, U2

be random variables. Assume

• (U1, U2) takes values in the open set G ′ of R2 and has density f on G ′;

• (Z1, Z2) takes values in the open set G of R2;

• ϕ : G 7−→ G ′ is a continuously differentiable bijection with continuously
differentiable inverse ϕ−1 : G ′ = ϕ(G ) 7−→ G .

Given (
U1

U2

)
= ϕ

(
Z1

Z2

)
. (2.26)

the random vector (Z1, Z2) on G has the density

g(z) = f ◦ ϕ(z)|Jϕ(z)| (2.27)

where Jϕ(z) = ∂(ϕ1,ϕ2)
∂(z1,z2)

is the Jacobian of ϕ.
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Proof of Theorem 2.3.9: Let us first determine the map ϕ from the last theorem.
We have

N2
1 = −2 log U1 cos2(2πU2) (2.28)

N2
2 = −2 log U1 sin2(2πU2). (2.29)

Hence

N2
1 + N2

2 = −2 log U1 (2.30)

and

U1 = e−
N2

1 +N2
2

2 . (2.31)

Moreover, by (2.24),
N2

N1
= tan(2πU2), (2.32)

i.e.,

U2 =
1

2π
arctan

(
N2

N1

)
. (2.33)

Hence

ϕ(z1, z2) =

(
e−

z2
1 +z2

2
2

1
2π

arctan( z2

z1
)

)
(2.34)
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The transform domains are

G = R2 \ [{z1 = 0} ∪ {z2 = 0 and z1 > 0}] (2.35)

and

G ′ = (0, 1)× (0, 1) \ {u2 =
1

4
or u2 =

3

4
} (2.36)

The partial derivatives of ϕ are

∂ϕ1

∂z1
(z) = −z1e−

z2
1 +z2

2
2 ,

∂ϕ1

∂z2
(z) = −z2e−

z2
1 +z2

2
2 (2.37)
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∂ϕ1

∂z1
(z) =

1

2π

−z2

z2
1 + z2

2

,
∂ϕ1

∂z2
(z) =

1

2π

z1

z2
1 + z2

2

. (2.38)

which implies

Jϕ(z) =
1

2π
e−

z2
1 +z2

2
2 =

1√
2π

e−
z2
1
2 · 1√

2π
e−

z2
2
2 (2.39)

Since (U1, U2) has density χ(0,1)×(0,1), which is identically 1 on χ(0,1)×(0,1), (N1, N2)
has density

1√
2π

e−
z2
1
2 · 1√

2π
e−

z2
2
2 (2.40)

on G . Therefore they are independent Gaussian variables. ¤

The rejection method

• This method uses an auxiliary density for generation of random quantities
from distributions not amenable to analytic treatment.

• Consider the generation of samples from a density π.

• Consider also an auxiliary density q for which we know how to generate sam-
ples.
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• The method is general enough to generate samples from π without knowing
the complete expression for π.

• It is extremely common in statistics to encounter such situations where the
kernel of π is known but the constant ensuring it integrals to 1 cannot be
obtained analytically.

• The idea is to use q to make samples from π.

• The only mathematical restriction over q is that there must exist a constant
A such that

π(x) ≤ Aq(x) (2.41)

for every possible value of x .

• The method consists of independently drawing X from q and U ∼ U[0, 1]
and accepting X as a sample generated from π if

AUq(X ) ≤ π(X ). (2.42)

Otherwise X is not accepted as a sample from π and the process must be
reinitialized until a value X is accepted.

• Hence the name of the method, which is also known as the acceptance/rejection
method.
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• The samples to be generated can have any form: scalar, vector or matrix.

• In each case, the rejection step is based on a comparison of densities with aid
of a scalar uniform random variable.
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Proof of rejection method: To prove the rejection procedure effectively gener-
ates samples from π, we need to show that the density function of X is a constant
multiple of π, when conditioned by the acceptance condition, (2.42).

The joint density of (X , U) is f (x , u) = q(x)χ[0,1](u), by the independence
between X and U and the uniformity of U .

Then the conditional probability, by Bayes’ theorem,

Pr(X ≤ t|AUq(X ) ≤ π(X )) = Pr(X ≤ t|U ≤ π(X )

Aq(X )
) (2.43)

=
Pr(X ≤ t, U ≤ π(X )

Aq(X )
)

Pr(U ≤ π(X )
Aq(X )

)
(2.44)

=

∫∞
−∞
∫∞
−∞ q(x)χ[0,1](u)χ{x≤t,u≤ π(x)

Aq(x)}(x , u) dxdu
∫∞
−∞
∫∞
−∞ q(x)χ[0,1](u)χ{u≤ π(x)

Aq(x)}(x , u) dxdu

(2.45)

=

∫ t

−∞ dx
∫ π(x)

Aq(x)

0 q(x)χ[0,1](u) du

∫∞
−∞ dx

∫ π(x)
Aq(x)

0 q(x)χ[0,1](u) du

(2.46)
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=

∫ t

−∞
π(x)

Aq(x)
q(x) dx

∫∞
−∞

π(x)
Aq(x)

q(x) dx
(2.47)

=

∫ t

−∞ π(x) dx∫∞
−∞ π(x) dx

(2.48)

as required. ¤
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• The required density is given by the normalized version of π.

• When π is already the complete expression of a density, the normalization is
not needed, as

∫∞
−∞ π(x) dx = 1.

• q should be a density that is easy to draw samples from.

• The overall acceptance probability is

Pr(U ≤ π(X )

Aq(X )
) =

1

A

∫ ∞
−∞

π(x) dx (2.49)

Hence, A must be chosen as close as possible to
∫∞
−∞ π(x) dx .

• An extreme case is that π = q. Then
∫ ∞
−∞

π(x) dx =

∫ ∞
−∞

q(x) dx = 1 (2.50)

as q is a normalized density. We can choose A = 1 to satisfy the mathemat-
ical requirement (2.41) and get the maximal acceptance probability — the
acceptance condition (2.42) is satisfied for all x and u. This is obvious, since
each sample from q is also a sample from π.
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• A special case of rejection sampling is given for truncated distributions.

• Let q be any density and π be its truncation to the region C , i.e., π = qχC ≤
q.

• Taking A = 1, the acceptance condition is

Uq(X ) ≤ π(X ) = qχC (2.51)

which is satisfied, almost surely, if and only if X ∈ C .

• Hence, to generate sample from q restricted to C , one simply has to draw
sample from q and accept it if and only if it is in C .

The Polar method

• This a variant of the Box-Muller method to generate standard normal deviates.
It is due to G. Marsaglia.

• It is substantially faster than the Box-Muller method since it avoids the cal-
culation of the trigonometric functions (but still slower than other methods,
[Knuth, 1981]) and it has essential perfect accuracy.
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• The Box-Muller method may be rephrased as follows:

– given (W , Θ) uniformly distributed on [0, 1]× [0, 2π];

– the variables

N1 =
√
−2 log W cos(Θ) (2.52)

N2 =
√
−2 log W sin(Θ) (2.53)

are independent standard Gaussian.
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• The rejection method allows us to sample directly from
√

W cos Θ and
√

W sin Θ,
thus avoiding to calculate the sines and cosines:

– Given (Z1, Z2) uniformly distributed on the unit disk;

– Z1 = R cos Θ and Z2 = R sin Θ in polar coordinates R , Θ;

– Then W = R2 and Θ have joint density

1

π
χ{|r |≤1}(

√
W cos Θ,

√
W sin Θ)|∂Z1, Z2

∂W , Θ
| (2.54)

=
1

π
χ(0,1]×[0,2π)

∣∣∣∣
( cos Θ

2
√

W
sin Θ
2
√

W

−
√

W sin Θ
√

W cos Θ

)∣∣∣∣ (2.55)

=
1

2π
χ[0,1]×[0,2π) (2.56)

on (0, 1]× [0, 2π);

– Hence (W , Θ) constructed above is uniform and independent on (0, 1]×
[0, 2π);

– Clearly W = Z 2
1 + Z 2

2 and cos Θ = Z1√
W

, and sin Θ = Z2√
W

;

– Then the Box-Muller transform can be written as

N1 =

√
−2 log W

W
Z1 (2.57)
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N2 =

√
−2 log W

W
Z2 (2.58)

W = Z 2
1 + Z 2

2 (2.59)

• To sample from the unit disk, we adopt the truncated rejection method:

– sample (V1, V2) uniformly from [−1, 1]× [−1, 1];

– until 0 < V 2
1 + V 2

2 ≤ 1, set (Z1, Z2) = (V1, V2).

Algorithm 2.3.11. C code for generating Gaussian deviates by the polar method:

#include <math.h>

/*

* your_rand (): the function that generate sample

* from uniform distribution on [-1,1]

*/

float your_rand (void);

float gasdev(void)

{



94 CHAPTER 2. THE DIGITIZED IMAGE AND ITS PROPERTIES

static int iset = 0;

static float gset;

float fac, rsq, v1, v2;

if (iset == 0)

{

do

{

v1 = 2.0 * your_rand () - 1.0;

v2 = 2.0 * your_rand () - 1.0;

rsq = v1 * v1 + v2 * v2;

} while (rsq >= 1.0 || rsq == 0.0);

fac = sqrt (-2.0 * log (rsq) / rsq);

gset = v1 * fac;

iset = 1;

return v2 * fac;

}

else

{

iset = 0;

return gset;



2.3. DIGITAL IMAGE PROPERTIES 95

}

}

/* modified from Numerical Recipes */

/* (C) Copr. 1986-92 Numerical Recipes Software )#40. */
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Reference for this section is [Press et al., 1992, Wrinkler, 1995, Gamerman, 1997].

Example 2.3.12. Noise example. The Khoros workspace for this example is here
Noise Example.

file:../program/noise.wk�


Chapter 3

Data structures for image analysis

• Data and an algorithm are the two basic parts of any program.

• Computer program = data + algorithm.

• Data organization can considerably affect the simplicity of the selection and
the implementation of an algorithm. The choice of data structures is funda-
mental when writing a program.

• The difficulties in image processing, image analysis and computer vision come
from the bad representation or organization of the data involved. In fact, the

97
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visual information representation and organization inside human brain is not
well understood at present.

• Although we are to discuss some representations used so far, none of them
are appropriate for a general purpose processing target.

3.1 Levels of representation

• The aim of computer visual perception is to find a relation between an input
image and the models of the real world.

• During the transition from the raw image to the model, semantic knowledge
about the interpretation of image data is used more and more.

• Several levels of visual information representation are defined on the way
between the input image the model.

• Computer vision then comprises a design of the

– Intermediate representations (data structures).

– Algorithms used for the creation of representation and introduction of
relations between them.
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• The representation can be stratified in four levels.

• However, there are no strict borders between them and a more detailed clas-
sification of the representational levels may be used in some applications. For
some specific uses, some representations can be omitted.

• These four representational levels are ordered from signals at low level of
abstraction to the description that a human can understand.

• The information flow between the levels may be bi-directional.

• The four levels are

– Iconic images

– Segmented images

– Geometric representations

– Relational models
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• Iconic images — consists of images containing original data; integer matrices
with data about pixel brightness.

• E.g., outputs of pre-processing operations (e.g., filtration or edge sharpen-
ing) used for highlighting some aspects of the image important for further
treatment.
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• Segmented images — parts of the image are joined into groups that probably
belong to the same objects.

• E.g., the output of the segmentation of a scene with polyhedrons is either line
segments coinciding with borders or two-dimensional regions corresponding
with faces of bodies.

• It is useful to know something about the application domain while doing
image segmentation; it is then easier to deal with noise and other problems
associated with erroneous image data.
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• Geometric representations — hold knowledge about 2D and 3D shapes.

• The quantification of a shape is very difficult but very important.

• It is the inverse problem of computer graphics.
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• Relational models - give the ability to treat data more efficiently and at a
higher level of abstraction.

• A priori knowledge about the case being solved is usually used in processing
of this kind.

• Example - counting planes standing at an airport using satellite images

– position of the airport (e.g., from a map).

– relations to other objects in the image ( e.g., to roads, lakes, urban
areas).

– geometric models of planes for which we are searching.

– etc.

• AI techniques are often explored.

• Information gained from the image may be represented by semantic nets or
frames.
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3.2 Traditional image data structures

• Traditional image data structures, such as

– matrices

– chains

– graphs

– lists of object properties

– relational databases

– etc.

are important not only for the direct representation of image information, but
also a basis of more complex hierarchical methods of image representation.
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3.2.1 Matrices

• Most common data structure for low level image representation

• Elements of the matrix are integer, real or complex numbers, corresponding to
brightness, or to another property of the corresponding pixel of the sampling
grid.

• Image data of this kind are usually the direct output of the image capturing
device, e.g., a scanner.

• Pixels of both rectangular and hexagonal sampling grids((2.2.1)) can be rep-
resented by a matrix.

• The correspondence between data and matrix elements is obvious for a rect-
angular grid; with a hexagonal grid every row in the image is shifted half a
pixel to the right or left.

!

• Image information is the matrix is accessible through the co-ordinates of a
pixel that correspond with row and column indexes.
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• The matrix is a full representation of the image, independent of the contents
of the image data.

• A representation of a segmented image by a matrix usually saves memory than
an explicit list of all spatial relations between all objects, although sometimes
we need to record other relations among objects.

!

• Some special images that are represented by matrices are:

– Binary images (an image with two brightness levels only) is represented
by a matrix containing zeros and ones.

– Several matrices can contain information about one multi-spectral image.
Each of these matrices contains one image corresponding to one spectral
band.

– Matrices of different resolution are used to obtain hierarchical image
data structures. This hierarchical representation of the image can be very
convenient for parallel computers with the “processor array” architecture.
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• Most programming language use a standard array data structure to represent
a matrix.

• In C, an image of 256 gray-levels with dimension M × N can be stored in a
two dimensional array

unsigned char image [M][N]

• The above stored array may be dis-continuous in memory. Then another way
to represent the image is by a one-dimensional array, which is continuous in
the memory

unsigned char image [M * N]

• We need to know the image dimension M and N usually.
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• Another method is to represent an image by a structure type,

typedef struct _image

{

int rows;

int columns;

char *values;

<other useful information>;

} Image;

or use a pointer to the above structure

typedef Image * ImageX;

or declared as

typedef struct _image * ImageX;

When initialized,
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value = (char *) malloc (sizeof(char) * rows * columns);

• To access one element of the matrix at pixel (m, n), use the following macro

#define Pixel(IX, m, n) \

(IX->values[m*(IX->columns)+n])

where 0 ≤ m ≤ M − 1 and 0 ≤ n ≤ N − 1.

• You may use other type such as

float *values;

or

double *values;

to gain much precise computation.
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3.2.2 Chains

• Chains are used for the representation of object borders in computer vision.

• One element of the chain is a basic symbol, which corresponds to some kind
of primitives in the image.

• Chains are appropriate for data that can be arranged as a sequence of symbols.

• The neighboring symbols in a chain usually correspond to the neighboring of
primitives in the image.
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• Chain codes or Freeman codes [Freeman, 1961] are often used for the
description of object borders, or other one-pixel-wide primitives in images.

• The border is defined by the co-ordinates of its reference pixel and the se-
quence of symbols corresponding to the line of the unit length in several
predefined orientations.

• Notice that a chain code is of a relative nature; data are expressed with respect
to some reference point.

• Chain codes describe an object by a sequence of unit-size length line segments
with a given orientation.

• The first element of such a sequence must bear information about its position
to permit the region to be reconstructed.

• The result is a sequence of numbers, indicating the orientation.
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• An example of a chain code is shown in the following figure, where 8-neighborhoods
are used — it is possible to define chain code using 4-neighborhoods as well.
The reference pixel is marked by an arrow. The chain code is

00077665555556600000006444444442221111112234445652211
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• To exploit the position invariance of chain codes, e.g., when used for matching,
the first element, which contains the position information, should be omitted.
One need a method to normalize the chain codes.

• A chain code is very sensitive to noise and arbitrary changes in scale and
rotation may cause problems if used fro recognition.

• The description of an image by chains is appropriate for syntactic pattern
recognition that is based on formal language theory approaches.

• Chains can be represented using static data structures (e.g., 1D arrays); their
size is the longest length of the chain expected.

• Dynamic data structures are more advantageous to save memory.
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3.2.3 Topological data structures

• Topological data structures describe the image as a set of elements and their
relations.

• These relations are often represented using graphs.

• A graph G = (V , E ) is an algebraic structure which consists of a set of nodes

V = {v1, v2, · · · , vn}
and a set of arcs

E = {e1, e2, · · · , em}
• Each arc ek is naturally connected with an unordered pair of nodes {vi , vj}

which are not necessarily distinct.

• The degree of the node is equal to the number of incident arcs of the node.

!

• An evaluated graph is a graph in which values are assigned to arcs, to nodes
or to both — these values may, e.g., represent weights, or costs.
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• The region adjacency graph is typical of this class of data structures.

• Nodes correspond to regions and neighboring regions are connected by an arc.

• The segmented image consists of regions of pixels with similar properties
(brightness, texture, color, ...) that correspond to some entities in the scene,
and the neighborhood relation is fulfilled when the regions have some common
border.
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Example 3.2.1. An example of an image with regions labeled by numbers and
corresponding region adjacency graph is shown in the following figure The label 0

is denotes pixels out of the image. This value is used to indicate regions that touch
borders of the image in the region adjacency graph.
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• The region adjacency graph has several attractive features.

• If a region enclose other regions, then the part of the graph corresponding
with the areas inside can be separated by a cut in the graph.

• Nodes of degree 1 represent simple holes.

• The region adjacency graph can be used for matching with a stored pattern
for recognition purpose.

!

• The region adjacency graph is usually created from the region map, which is
a matrix of the same dimension as the original image matrix whose elements
are identification labels of the regions.

• To created the region adjacency graph, borders of all regions in the image are
traced, and labels of all neighboring regions are stored.

• The region adjacency graph can easily be created from an image represented
by a quadtree (3.3.2) as well.
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3.2.4 Relational structures

• Relational databases can also be used for representation of information from
an image.

• All the information is then concentrated in relations between semantically
important parts of the image — objects — that are the result of segmentation.

• Relations are recorded in the form of tables.

• Individual objects are associated with their names and other features, e.g.,
the top-left pixel of the corresponding region in the image.

• Relations between objects are expressed in the relational table as well.

• Description by means of relational structures is appropriate for higher level
image understanding.

• Search using keys, similar to database searches, can be used to speed up the
whole process.

Example 3.2.2. An example of such a representation is shown in the following
figure and table.
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(a) Image

(b) Database
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3.3 Hierarchical data structures

• Computer vision is by its nature very computationally expensive, if for no other
reason than the large amount of data to be processed.

• Systems which we might call sophisticated must process considerable quanti-
ties of image data — hundreds of kilobytes to tens of megabytes.

• The visual information perceived by the two human eyes is about 3000MB/s
(add reference here!!!).

• One of the solutions is using parallel computers (in other words brute force).

• Unfortunately many computer vision problems are difficult to divide among
processors, or decompose in any way.
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• Hierarchical data structures make it possible to use algorithms which decide
a strategy for processing on the basis of relatively small quantities of data.

• They work at the finest resolution only with those parts of the image for which
it is necessary, using knowledge instead of brute force to ease and speed up
the processing.

• We are going to introduce two typical hierarchical structures, pyramids and
quadtrees.
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3.3.1 Pyramids

• Pyramids are among the simplest hierarchical data structures.

• We distinguish between M-pyramids (matrix pyramids) and T-pyramids
(tree pyramids).

!

• A M-pyramid is a sequence {ML, ML−1, · · · , M0} of images.

• ML has the same dimensions and elements as the original image.

• Mi−1 is derived from the Mi by reducing the resolution by one half.

• When creating pyramids, it is customary to work with square matrices with
dimensions equal to powers of 2.

• For images with arbitrary dimensions, a resampling procedure is needed in
creating the pyramids.

• M0 corresponds to one pixel only.
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• The number of image pixels used by an M-pyramid for storing all matrices is

N2

(
1 +

1

4
+

1

16
+ · · ·

)
= 1.33N2

!

• M-pyramids are used when it is necessary to work with an image at different
resolutions simultaneously.

• An image having one degree smaller resolution in a pyramid contains four
times less data, so that it is processed approximately four times as quickly.

!

Example 3.3.1. M-pyramid created by shrinking the image dimensions. The Khoros
workspace for this example is here M-pyramid example.

file:../program/M-pyramid.wk�
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• Often it is advantageous to use several images of the same resolution simulta-
neously rather than to create just one image at a resolution in the M-pyramid.

• E.g., we use images at a resolution, containing additional information at this
resolution, texture, orientation and segmentation properties, etc.

• Such images can be represented using tree pyramids — T-pyramids.

• The following figure is a example T-pyramid tree. Every node of the T-pyramid
has 4 child nodes.
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3.3.2 Quadtrees

• Quadtrees are modifications of T-pyramids.

• Every node of the tree except the leaves has four children (NW: north-western,
NE: north-eastern, SW: south-western, SE: south-eastern).

• the image is divided into four quadrants at each hierarchical level, however it
is not necessary to keep nodes at all levels.

• If a parent node has four children of the same (e.g., brightness) value, (which
is often characterized by the differences among the pixel brightness and the
average with a given threshold value), it is not necessary to record them.
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• Quadtrees are usually represented by recording the whole tree as a list of its
individual nodes, every node being a record with several items characterizing
it.

• An example is given as following

node = {

node_type,

pointer_to_NW_son,

pointer_to_NE_son,

pointer_to_SW_son,

pointer_to_SE_son,

pointer_to_Father,

other_data

}

– In the item “node type”, there is information about whether the node is
a leaf or inside the tree.

– “other data” can be the level of the node in the tree, position in the
picture, brightness for this node, etc.
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• This kind of representation is redundant and expansive in memory. Its advan-
tage is easy access to any node.

!

Example 3.3.2. Example from matlab. Launch matlab, run the demo “qtdemo”.
matlab uses sparse matrix to store the quadtree decomposition, without the bright-
ness value information for each node or block.

Use the demo data from “help qtdecomp” to see the result numerically.
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• Problems associated with hierarchical image representation:

– Dependence on the position, orientation and relative size of objects.

– Two similar images with just very small differences can have very different
pyramid or quadtree representations.

– Even two images depicting the same, slightly shifted scene, can have
entirely different representations.
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Image Pre-processing

• Pre-processing is a common name for operations with images at the lowest
level of abstraction — both input and output are intensity images.

• These iconic images are of the same kind as the original data captured by
the sensor, with an intensity image usually represented by a matrix of image
function values (brightness).

• The aim of pre-processing is an improvement of the image data that suppresses
unwanted distortions or enhances some image features important for further

130
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processing.

• Four categories of image pre-processing methods according to the size of the
pixel neighborhood that is used for the calculation of a new pixel brightness:

– pixel brightness transformations.

– geometric transformations.

– pre-processing methods that use a local neighborhood of the processed
pixel.

– image restoration that requires knowledge about the entire image.

• Other classifications of image pre-processing methods exist.

!

• Image pre-processing methods use the considerable redundancy in images.

• Neighboring pixels corresponding to one object in real images have essentially
the same or similar brightness value.

• Thus, distorted pixel can often be restored as an average value of neighboring
pixels.
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Quiz 4.0.1. Do you remember the example of filtering impulse noise? (2.3.12)

!

• If pre-processing aims to correct some degradation in the image, the nature
of a priori information is important and is used to different extent:

– no knowledge about the nature of the degradation is used; only very
general properties of the degradation are assumed.

– using knowledge about the properties of the image acquisition device,
and conditions under which the image was obtained. The nature of noise
(usually its spectral characteristics) is sometimes known.

– using knowledge about objects that are searched for in the image, which
may simplify the pre-processing quite considerably.
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• If knowledge about objects is not available in advance it can be estimated
during the processing.

• The following strategy is possible.

– First the image is coarsely processed to reduce data quantity and to find
image objects.

– The image information derived is used to create a hypothesis about
image object properties and this hypothesis is then verified in the image
at finer resolution.

– Such an iterative process cab be repeated until the presence of knowledge
is verified or rejected.

– This feedback may span more than pre-processing, since segmentation
also yields semantic knowledge about objects — thus feedback can be
initiated after the object segmentation.
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4.1 Pixel brightness transformations

• Brightness transformations modify pixel brightness — the transformation de-
pends on the properties of a pixel itself.

• There are two brightness transformations:

• Brightness corrections

– consider the original brightness

– and pixel position in the image.

• Gray scale transformation

– change brightness without regard to position in the image.



4.1. PIXEL BRIGHTNESS TRANSFORMATIONS 135

4.1.1 Position dependent brightness correction

• Ideally, the sensitivity of image acquisition and digitization devices should not
depend on position in the image, but this assumption is not valid in practice.

• Sources of degradation:

– non-homogeneous property of optical system;

The lens attenuates light more if it passes farther from the optical axis.

– non-homogeneous sensitivity of light sensors;

The photo sensitive part of the sensor (vacuum-tube camera, CCD cam-
era elements) is not of identical sensitivity.

– non-homogeneous object illumination.

• Systematic degradation can be suppressed by brightness correction.

• Let a multiplicative error coefficient e(i , j) describe the change from the ideal
identity transfer function

– g(i , j) is the original undegraded image (or desired image);

– f (i , j) is the image containing degradation.

f (i , j) = e(i , j)g(i , j) (4.1)
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• If a reference image gc(i , j) is known (e.g., constant brightness c)

– the degraded result is fc(i , j)

– systematic brightness errors can be suppressed:

g(i , j) =
f (i , j)

e(i , j)
=

gc(i , j)f (i , j)

fc(i , j)
=

c

fc(i , j)
f (i , j) (4.2)

• This method can be used only if the image degradation process is stable.

If we wish to suppress this kind of degradation in the image capture process,
we should calibrate the device from time to time (find error coefficients e(i , j))

• This method implicitly assumes linearity of the transformation, which is not
true in reality as the brightness scale is limited into some interval.

– overflow is possible in (4.2). Then the limits of the brightness scale are
used instead in (4.2).

– the best reference image should have brightness that is far enough from
both limits.

• If the gray scale has 256 brightnesses the ideal image has constant brightness
value 128.
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– Most TV cameras have automatic control of the gain which allows them
to operate under changing illumination conditions. If systematic errors
are suppressed using error coefficients, this automatic gain control should
be switched off first.

!

Example 4.1.1. Brightness correction example. The Khoros workspace for this
example is here Brightness correction Example.

file:../program/window_level.wk�
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4.1.2 Grey scale transformation

• Grey scale transformations do not depend on the position of the pixel in the
image.



4.1. PIXEL BRIGHTNESS TRANSFORMATIONS 139

• Brightness transform is a monotonic function:

q = T (p) (4.3)

– a - Negative transformation

– b - contrast enhancement (between p1 and p2)

– c - Brightness thresholding
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• Some other examples:

!

• Grey scale transformations can be performed using look-up tables.

• Grey scale transformations are mostly used if the result is viewed by a human.
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Windows and level

• An interactive contrast enhancement tool normally available in image process-
ing software is called Window and Level.

• It is an expansion of the contrast of the pixels within a given window range.

• Two parameters define the range: the middle point Level, and the width of
the range Window.

• Another name for this operation is Intensity of Interest (IOI).

• A graphic visualization of this process is shown below.
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Figure 4.1: A graphic visualization of this process.
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Example 4.1.2. Window and Level example. The Khoros workspace for this ex-
ample is here Window Level Example.

First find the minimum and maximum value, decide the start value, bin-width
and number of bins for computing the histogram. From the histogram, chose the
lower and upper cutoff value.

file:../program/window_level.wk�
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Histogram stretching

• Histogram stretching can be seen as a Window and Level contrast enhance-
ment technique where the window ranges from the minimum to the maximum
pixel values of the image.

• This normalization or histogram stretching operation is automatically per-
formed in many display operators.

• To fully illustrate the difference between the two images above (original and
stretched) a gray level scale was superimposed in both images to guarantee
that the display operator will use the same gray-level scale.

!

Example 4.1.3. Another Window and Level example. The Khoros workspace for
this example is here Window Level Example.

file:../program/window_level2.wk�
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Histogram equalization

• Histogram equalization is another typical gray level transform.

• The aim is to produce an image with equally distributed brightness levels over
the whole brightness scale.

• Let H(p) be the input histogram and that the input gray-scale is [p0, pk ].
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• The intention is to find a monotonic pixel brightness q = T (p) such that
the output histogram G (q) is uniform over the whole output brightness scale
[q0, qk ].

• The histogram is a discrete probability density function.

• The monotonic property of the transform T implies

j∑
i=0

G (qi ) =

j∑
i=0

H(pi ) (4.4)

where qi = T (pi ).

• The sum in the above equation can be interpreted as discrete distribution
function.
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• The equalized histogram can be obtained precisely only for the “idealized”
continuous probability density.
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• Assume that the image has M rows and N columns. The total number of
pixels is MN .

• The equalized histogram corresponding to the uniform probability density
function f whose function value satisfies

f (q)(qk − q0) = MN . (4.5)

• The continuous version of (4.4) is

∫ q

q0

f (r) dr =

∫ p

p0

H(s) ds, q = T (p). (4.6)

• Therefore, we obtain,

MN

∫ q

q0

1

qk − q0
dr =

MN(q − q0)

qk − q0
=

∫ p

p0

H(s) ds. (4.7)

• The desired pixel brightness transformation T can then be derived as

q = T (p) =
qk − q0

MN

∫ p

p0

H(s) ds + q0. (4.8)
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• The integral in the above equation is called the cumulative histogram, which
is approximated by a sum for digital images, for example, as follows,

F [p] =

∫ p

p0

H(s) ds =

j∑
i=0

H(pi ), p = round(pj ) (4.9)

• So the resulting histogram is not equalized ideally.

• The discrete approximation of the continuous pixel brightness transformation
form the above equation is

qj = T (pj ) =
qk − q0

MN

j∑
i=0

H(pi ) + q0 (4.10)

• The algorithm to perform equalization is as follows

Algorithm 4.1.4. Histogram equalization

1. For an N ×M image of G gray-levels (often 256), create two arrays H and
T of length G initialized with 0 values.
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2. Form the image histogram: scan every pixel and increment the relevant mem-
ber of H — if pixel X has intensity p, perform

H[p] = H[p] + 1 (4.11)

3. Form the cumulative image histogram Hc . We may use the same array H to
stored the result.

H [0] = H[0]

H[p] = H [p − 1] + H[p]

for p = 1, · · · , G − 1.

4. Set

T [p] = round

[
G − 1

MN
H[p]

]
. (4.12)

Note the new gray-scale is assumed the same as the input image, i.e., qk =
G − 1 and q0 = 0.

5. Rescan the image and write an output image with gray-levels q, setting

q = T [p]. (4.13)



156 CHAPTER 4. IMAGE PRE-PROCESSING

Example 4.1.5. Histogram equalization example. The Khoros workspace for this
example is here Histogram equalization Example.

Example 4.1.6. Histogram equalization example. The matlab script from vision-
book is is here Histogram equalization Example.

!

Remark 4.1.7. ([Klette and Zamperoni, 1996], p. 148)

• The gray value range equalization may be used for improving the image quality
if the original image covers only a part of the full gray scale.

• An insufficient exploitation of the full gray scale is mostly due to image acqui-
sition circumstances, as e.g., low scene illumination or automatic gain control
of the camera.

• In case of good gray value dynamics of the input image, an equalization can
lead even to quality losses in form of unsharp edges.

!

file:../program/histo_eq.wk�
file:../../../visionbook/05Preproc/hist_equal_demo.m�
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Example 4.1.8. Another histogram equalization example. The Khoros workspace
for this example is here Histogram equalization Example.

Some regions/edges disappear after equalization.

file:../program/histo_eq2.wk�
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Histogram matching

• The generalization of histogram equalization is called histogram matching.

• The aim is to produce an image with desired distributed brightness levels over
the whole brightness scale.

• Assume the desired probability density function is G (q).

• Let the desired pixel brightness transform be T .

• Similarly we have

F [p] =

∫ q=T [p]

q0

G [s] ds (4.14)

where F [p] is the cumulative histogram of the input image. Assumed that
the cumulative histogram is normalized in [0, 1].

• From the above equation, it is possible to find the transformation T .

• E.g., if G is the exponential distribution,

G [q] = αe−α(q−q0) (4.15)

for q ≥ q0.
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• We have
F [p] = 1− e−α(T [p]−q0) (4.16)

• Then we find the transformation

T [p] = q0 − 1

α
log(1− F [p]) (4.17)

• In the discrete case, the transformation can be implemented by building look-
up tables.
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Homework 4.1.9. Find in the reference book B, (1.5.2), p. 81, some other prob-
ability density functions and the related transforms. Implementation of those trans-
forms are left as homework. The homework includes:

1. Simulation of the brightness correction;

2. Grey scale transformations with given functions such as exponent, logarithm,
user defined (by some control points for a piece wise linear function), etc.;

3. Histogram stretching to a given range;

4. Histogram equalization;

5. Histogram matching to given density functions;

6. F Histogram matching to the histogram of a given image.

7. Histogram should be plotted when histogram is involved.

8. Your final score will also depend on the interface of your program. Be sure to
give us a friendly interface.

9. Be sure to choose illustrative images.
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4.2 Geometric transformations

• Geometric transformations are common in computer graphics, and are often
used in image analysis.

• Geometric transforms permit the elimination of geometric distortion that oc-
curs when an image is captured.

• If one attempts to match two different images of the same object, a geometric
transformation may be needed.
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• An example is an attempt to match remotely sensed images of the same area
taken after one year, when the more recent image was probably not taken
from precisely the same position.

• To inspect changes over the year, it is necessary first to execute a geometric
transformation, and then subtract one image from the other, to determine if
more geometric calibration is needed.

!

• Another example, commonly encountered in document image processing ap-
plications, is correcting for document skew, which occurs when an image with
an obvious orientation (e.g., a printed page) is scanned, or otherwise captured,
at a different orientation.

• This orientation difference may be very small, but can be critical if the ori-
entation is exploited in subsequent processing — this is usually the case in
optical character recognition (OCR).
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• A geometric transform is a vector function T that maps the pixel (x , y) to a
new position (x ′, y ′),

x ′ = Tx (x , y) y ′ = Ty (x , y) (4.18)
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• The transformation equations are

– either known in advance,

– or can be determined from known original and transformed images,

– or can be estimated from known obvious orientations (e.g., OCR appli-
cations).

– Several pixels in both images with known correspondence are used to
derive the unknown transformation.
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• A geometric transform consists of two basic steps:

1. determining the pixel co-ordinate transformation

– mapping of the co-ordinates of the input image pixel to the point
in the output image.

– the output point co-ordinates should be computed as continuous
values (real numbers) as the position does not necessarily match
the digital grid after the transform.

2. determining the brightness of the points in the digital grid.
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• The brightness values are usually computed as an interpolation of the bright-
nesses of several points in the neighborhood.

• This idea enables the classification of geometric transformation among other
pre-processing techniques, the criterion being that only the neighborhood of
a processed pixel is needed for the calculation.

• Geometric transformations are on the boundary between point and local op-
erations.
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4.2.1 Pixel co-ordinate transformations

Polynomial approximation

• General case of finding the co-ordinates of a point in the output image after
a geometric transform.

– usually approximated by a polynomial equation (of degree m)

x ′ =
m∑

r=0

m−r∑

k=0

arkx r y k (4.19)

y ′ =
m∑

r=0

m−r∑

k=0

brkx r y k . (4.20)

• This transform is linear with respect to the coefficients ark and brk .

• If pairs of corresponding points (x , y), (x ′, y ′) in both images are known, it is
possible to determine ark and brk by solving a set of linear equations.

• More points than coefficients are usually used to get robustness. The mean
square method (least squares fitting) is often used.
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• If the geometric transform does not change rapidly depending on position in
the image, low order approximating polynomials, m = 2 or m = 3, are used,
needing at least 6 or 10 pairs of corresponding points.

• The corresponding points should be distributed in the image in a way that can
express the geometric transformation — usually they are spread uniformly.

• The higher the degree of the approximating polynomial, the more sensitive to
the distribution of the pairs of corresponding points the geometric transform.

!

• A geometric transform applied to the whole image may change the co-ordinate
system, and a Jacobean J provides information about how the co-ordinate
system changes

J(x , y) =
∂(x ′, y ′)
∂(x , y)

(4.21)

• The area of the image is invariant if and only if |J | = 1.
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Bilinear transform

• In practice, the geometric transform is often approximated by the bilinear
transformation:

x ′ = a0 + a1x + a2y + a3xy , (4.22)

y ′ = b0 + b1x + b2y + b3xy . (4.23)

• 4 pairs of corresponding points are sufficient to find transformation coeffi-
cients.

!

• Even simpler is the affine transformation for which three pairs of corresponding
points are sufficient to find the coefficients:

x ′ = a0 + a1x + a2y (4.24)

y ′ = b0 + b1x + b2y (4.25)

• The affine transformation includes typical geometric transformations such as
rotation, translation, scaling and skewing (shear).
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Important transformations

• Rotation by the angle φ

x ′ = x cosφ + y sinφ (4.26)

y ′ = −x sinφ + y cosφ (4.27)

J = 1 (4.28)

• Change of scale a in the x-axis and b in the y -axis

x ′ = ax (4.29)

y ′ = by (4.30)

J = ab (4.31)
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• Skew by the angel φ

x ′ = x + y tanφ (4.32)

y ′ = y (4.33)

J = 1 (4.34)
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• It is possible to approximate complex geometric transformations (distortion)
by partitioning an image into smaller rectangular sub-images.

• For each sub-image, a simple geometric transformation, such as the affine, is
estimated using pairs of corresponding pixels.

• The geometric transformation (distortion) is then performed separately in each
sub-image.
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4.2.2 Brightness interpolation

• Assume that the planar transformation has been accomplished, and new point
co-ordinates (x ′, y ′) were obtained.

• The position of the pixel transformed does not in general fit the discrete grid
of the output image.

• Values on the integer grid are needed.

• Each pixel value in the output image can be obtained by brightness interpo-
lation of some neighboring non-integer samples, transformed from the input
image.

• The brightness interpolation problem is usually expressed in a dual way (by
determining the brightness of the original point in the input image that cor-
responds to the point in the output image lying on the discrete raster).

• Assume that we wish to compute the brightness value of the pixel (x ′, y ′) in
the output image where x ′ and y ′ lie on the discrete grid.

• The co-ordinates of the point (x , y) in the original image can be obtained by
inverting the transformation

(x , y) = T−1(x ′, y ′). (4.35)
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• In general the real co-ordinates (x , y) after inverse transformation do not fit
the input image discrete grid, and so brightness is not known.

• To get the brightness value of the point (x , y) the input image is re-sampled
or interpolated:

fn(x , y) =
∞∑

l=−∞

∞∑

k=−∞
gs(l∆x , k∆y)hn(x − l∆x , y − k∆y) (4.36)

where fn(x , y) is the result of interpolation and hn is the interpolation kernel.
n distinguishes different interpolation methods.

• Usually, a small neighborhood is used, outside which hn is zero.
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Nearest neighbor interpolation

• Assign to the point (x , y) the brightness value of the nearest point g in the
discrete raster. The right side of the above figure shows how the new bright-

ness is assigned. Dashed lines show how the inverse planar transformation
maps the grids of the output image into the input image — solid lines show
the grids of the input image.

• Nearest neighbor interpolation is given by

f1(x , y) = gs(round(x), round(y)). (4.37)
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Remark 4.2.1. The interpolation kernel h1 as in (4.36) is

h1(x , y) = h1
1(x)h1

1(y), (4.38)

where,

h1
1(t) =

{
1, if t ∈ [−0.5, 0.5],

0, otherwise.
(4.39)

!

• The position error of the nearest neighborhood interpolation is at most half
a pixel.

• This error is perceptible on objects with straight line boundaries that may
appear step-like after the transformation.
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Bilinear interpolation

• Bilinear interpolation explores four points neighboring the point (x , y), and
assumes that the brightness function is bilinear in this neighborhood.
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• Bilinear interpolation is given by

f2(x , y) =(1− a)(1− b)gs(l , k) + a(1− b)gs(l + 1, k)

(1− a)bgs(l , k + 1) + abgs(l + 1, k + 1)

=gs(l , k)

+ (gs(l + 1, k)− gs(l , k))a

+ (gs(l , k + 1)− gs(l , k))b

+ (gs(l , k) + gs(l + 1, k + 1)− gs(l + 1, k)− gs(l , k + 1))ab,

where

l = floor(x), a = x − l , (4.40)

k = floor(y), b = y − k . (4.41)
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Proof. Note by construction

x = a · (l + 1) + (1− a) · l (4.42)

y = b · (k + 1) + (1− b) · k (4.43)

Since f2 is bilinear,

f2(x , k) = (1− a)gs(l , k) + ags(l + 1, k) (4.44)

f2(x , k + 1) = (1− a)gs(l , k + 1) + ags(l + 1, k + 1). (4.45)

Then

f2(x , y) =bf2(x , k + 1) + (1− b)f2(x , k)

=b(1− a)gs(l , k + 1) + bags(l + 1, k + 1)

+ (1− b)(1− a)gs(l , k) + (1− b)ags(l + 1, k)

¤
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Remark 4.2.2. The interpolation kernel h2 is

h2(x , y) = h1
2(x)h1

2(y), (4.46)

where

h1
2(t) = h1

1 ∗ h1
1(t) =





1− t, if t ∈ [0, 1],

t + 1, if t ∈ [−1, 0],

0, otherwise.

(4.47)

!

• Linear interpolation can cause a small decrease in resolution and blurring due
to its averaging nature.

• The problem of step like straight boundaries with the nearest neighborhood
interpolation is reduced.
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Bi-cubic interpolation

• Bi-cubic interpolation improves the model of the brightness function by ap-
proximating it locally by a bicubic polynomial surface; 16 neighboring points
are used for interpolation.

• interpolation kernel (‘Mexican hat’) is defined via

h1
3(t) =





1− 2|t|2 + |t|3, if |t| < 1

4− 8|t|+ 5|t|2 − |t|3, if 1 ≤ |t| < 2

0, otherwise

(4.48)

by
h3(x , y) = h1

3(x)h1
3(y). (4.49)

• Bicubic interpolation does not suffer from the step-like boundary problem
of nearest neighborhood interpolation, and copes with linear interpolation
blurring as well.

• Bicubic interpolation is often used in raster displays that enable zooming to
an an arbitrary scale.

• Bicubic interpolation preserves fine details in the image very well.
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Example 4.2.3. Geometric transform example. The Khoros workspace for this
example is here Geometric transform Example

Example 4.2.4. Geometric transform example. The matlab script from visionbook
is is here Geometric transform Example.

file:../program/geom_trans.wk�
file:../../../visionbook/05Preproc/imgeomt_demo.m�
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4.3 Local pre-processing

• Pre-processing methods use a small neighborhood of a pixel in an input image
to get a new brightness value in the output image.

• Such pre-processing operations are called also filtration (or filtering) if signal
processing terminology is used.

• Local pre-processing methods can be divided into the two groups according
to the goal of the processing:

– First, smoothing aims to suppress noise or other small fluctuations in
the image.

– Smoothing is equivalent to the suppression of high frequencies in the
frequency domain.

– Unfortunately, smoothing also blurs all sharp edges that bear important
information about the image.

– If objects are rather large, an image can be enhanced by smoothing of
small degradations.

– Smoothing operators will benefit if some general knowledge about image
degradation is available; this might, e.g., be statistical parameters of the
noise.
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!

– Second, gradient operators are based on local derivatives of the im-
age function.

– Derivatives are bigger at locations of the image where the image function
undergoes rapid changes.

– The aim of gradient operators is to indicate such locations in the image.

– Gradient operators have a similar effect as suppressing low frequencies
in the frequency domain.

– Noise is often high frequency in nature; unfortunately, if a gradient op-
erator is applied to an image, the noise level increases simultaneously.

!

• Clearly, smoothing and gradient operators have conflicting aims.

• Some pre-processing algorithms solve this problem and permit smoothing and
edge enhancement simultaneously.
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• Another classification of local pre-processing methods is according to the
transformation properties.

• Linear and nonlinear transformations can be distinguished.

• Linear operations calculate the resulting value in the output image pixel g(i , j)
as a linear combination of brightnesses in a local neighborhood of the pixel
f (i , j) in the input image.

• The contribution of the pixels in the neighborhood is weighted by coefficients
h

f (i , j) =
∑∑

(m,n)∈O
h(i −m, j − n)g(m, n) (4.50)

• The above equation is equivalent to discrete convolution with the kernel h,
that is called a convolution mask.

• Rectangular neighborhoods O are often used with an odd number of pixels
in rows and columns, enabling the specification of the central pixel of the
neighborhood.

• The choice of the local transformation, size, and shape of the neighborhood
O depends strongly on the size of objects in the processed image.
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• Convolution-based operators (filters) can be used for smoothing, gradient
operators, and line detectors.

• There are methods that enable the speed-up of calculations to ease imple-
mentation in hardware — examples are recursive filters or separable filters.

!

• Local pre-processing methods typically use very little a priori knowledge about
the image contents.

• It is very difficult to infer this knowledge while an image is being processed,
as the known neighborhood O of the processed pixel is small.
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4.3.1 Image smoothing

• Image smoothing is the set of local pre-processing methods whose predomi-
nant use is the suppression image noise — it uses redundancy in the image
data.

• Calculation of the new value is based on averaging of brightness values in
some neighborhood O.

• Smoothing poses the problem of blurring sharp edges in the image, and so we
shall study smoothing methods which are edge preserving.

• They are based on the general idea that the average is computed only from
those points in the neighborhood which have similar properties to the pro-
cessed point.

• Local image smoothing can effectively eliminate impulsive noise or degrada-
tions appearing as thin stripes, but does not work if degradations are large
blobs or thick stripes.

• The solution for complicated degradations may be to use image restoration
techniques, described in section § 4.4.
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Averaging

• Assume that the noise value ν at each pixel is an independent random variable
with zero mean and standard deviation σ.

• We can obtain such an image by capturing the same static scene several times.

• The result of smoothing is an average of the same n points in these images
g1, · · · , gn with noise values 1, · · · , n.

g1 + · · ·+ gn

n
+
ν1 + · · ·+ νn

n
(4.51)

• The second term here describes the effect of the noise, which is again a random
value with zero mean and standard deviation σ√

n
. The standard deviation is

decreased by a factor
√

n.

• Thus if n images of the same scene are available, the smoothing can be
accomplished without blurring the image by

f (i , j) =
1

n

n∑

k=1

gk(i , j) (4.52)

!



4.3. LOCAL PRE-PROCESSING 189

• In many cases only one image with noise is available, and averaging is then
realized in a local neighborhood.

• Results are acceptable if the noise is smaller in size than the smallest objects
of interest in the image, but blurring of edges is a serious disadvantage.

• In the case of smoothing within a single image, one has to assume that there
are no changes in the gray levels of the underlying image data.

• This assumption is clearly violated at locations of image edges, and edge
blurring is a direct consequence of violating the assumption.

• Averaging is a special case of discrete convolution. For a 3× 3 neighborhood
the convolution mask h is

h =
1

9




1 1 1
1 1 1
1 1 1


 (4.53)

• The significance of the central pixel may be increased, as it approximates the
properties of noise with a Gaussian probability distribution.

h =
1

10




1 1 1
1 2 1
1 1 1


 h =

1

16




1 2 1
2 4 2
1 2 1


 (4.54)
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• Larger convolution masks for averaging are created analogously.

!

Example 4.3.1. Noise suppression. An image corrupted with different additive
noise is used to demonstrate the effect of averaging. The Khoros workspace for this
example is here Average Example.

file:../program/average.wk�
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Averaging with data validity

• Methods that average with limited data validity try to avoid blurring by aver-
aging only those pixels which satisfy some criterion, the aim being to prevent
involving pixels that are part of a separate feature.

• A very simple criterion is to use only pixels in the original image with brightness
in a predefined interval [min, max].

• Considering the point (m, n) in the image, the convolution mask is calculated
in the neighborhood O from the nonlinear formula

h(i , j) =

{
1, for g(m + i , n + j) ∈ [min, max]

0, otherwise.
(4.55)

Note that in the equation above, the interval [min, max] represents valid data.

!

• The second method performs the averaging only if the computed brightness
change of a pixel is in some predefined interval.
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• This method permits repair to large-area errors resulting from slowly changing
brightness of the background without affecting the rest of the image.

!

• The third method uses edge strength (i.e., magnitude of a gradient) as a
criterion.

• The magnitude of some gradient operator is first computed for the entire
image, and only pixels in the input image with a gradient magnitude smaller
than a predefined threshold are used in averaging.
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Averaging according to inverse gradient

• The convolution mask is calculated at each pixel according to the inverse
gradient.

• The idea is that brightness change within a region is usually smaller than
between neighboring regions.

• Let (i , j) be the central pixel of a convolution mask with odd size; the inverse
gradient at the point (m, n) with respect to (i , j) is then

δ(i , j , m, n) =

{
1

|g(m,n)−g(i ,j)| , if g(m, n) 6= g(i , j);

2 if g(m, n) = g(i , j).
(4.56)

• The inverse gradient is then in the interval (0, 2], and is smaller on the edge
than in the interior of a homogeneous region.

• Weight coefficients in the convolution mask h are normalized by the inverse
gradient,

h(i , j , m, n) =
δ(i , j , m, n)∑

(m′,n′)∈O
δ(i , j , m′, n′)

, if (m, n) ∈ O. (4.57)
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!

• The above method assumes sharp edges.

• Isolated noise points within homogeneous regions have small values of the
inverse gradient; points from the neighborhood take part in averaging and the
noise is removed.

• When the convolution mask is close to an edge, pixels from the region have
larger coefficients than pixels near the edge, and it is not blurred.
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Averaging using a rotating mask

• This method avoids edge blurring by searching for the homogeneous part of
the current pixel neighborhood.

• The resulting image is in fact sharpened.

• Brightness average is calculated only within the homogeneous region.

• A brightness dispersion σ2 is used as the region homogeneity measure.

• Let n be the number of pixels in a region R and g(i , j) be the input image.
Dispersion σ2 is calculated as

σ2 =
1

n

∑

(i ,j)∈R


g(i , j)− 1

n

∑

(i ′,j ′)∈R

g(i ′, j ′)




2

(4.58)

• The computational complexity (number of multiplications) of the dispersion
calculation can be reduced if expressed as follows

σ2 =
1

n

∑

(i ,j)∈R



g(i , j)2 − 2g(i , j)

∑
(i ′,j ′)∈R g(i ′, j ′)

n
+

[∑
(i ′,j ′)∈R g(i ′, j ′)

n

]2
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=
1

n




∑

(i ,j)∈R

g(i , j)2 − 2

[∑
(i ′,j ′)∈R g(i ′, j ′)

]2

n
+ n

[∑
(i ′,j ′)∈R g(i ′, j ′)

n

]2





=
1

n




∑

(i ,j)∈R

g(i , j)2 −

[∑
(i ,j)∈R g(i , j)

]2

n
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• Having computed region homogeneity, we consider its shape and size.

• The eight possible 3× 3 masks that cover a 5× 5 neighborhood of a current
pixel (marked by small cross in the following figure) are shown in the following
figure The ninth mask is the 3× 3 neighborhood of the current pixel itself.
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• Image smoothing using the rotating mask technique uses the following algo-
rithm.

Algorithm 4.3.2. Smoothing using a rotating mask

1. Consider each image pixel (i , j). Calculate dispersion in the mask for all
possible mask rotations about pixel (i , j).

2. Choose the mask with minimum dispersion.

3. Assign to the pixel (i , j) in the output image the average brightness in the
chosen mask.
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• Other mask shapes can also be used.

• The following figure shows another set of eight masks covering a 5× 5 neigh-
borhood of the current pixel Again the ninth mask is the 3× 3 neighborhood

of the current pixel itself.

• Another possibility is to rotate a small 2× 1 mask to cover the 3× 3 neigh-
borhood of the current pixel.

• This algorithm can be used iteratively. (What about other algorithms?)

• The iterative process converges quite quickly to stable state (that is, the image
does not change any more).
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Example 4.3.3. Rotating mask example. The matlab script from visionbook is is
here Rotating mask Example.

file:../../../visionbook/05Preproc/rotmask_demo.m�
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Median filtering

• In a set of ordered values, the median is the central value.

• Median filtering assigns the output pixel brightness value to be the median
value of the brightness values in a neighborhood of the pixel.

• Median filtering reduces blurring of edges.

• The idea is to replace the current point in the image by the median of the
brightness in its neighborhood.

• The median of the brightness in the neighborhood is not affected by individual
noise spikes and so median smoothing eliminates impulsive noise quite well.

• As median filtering does not blur edges much, it can be applied iteratively.
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• The main disadvantage of median filtering in a rectangular neighborhood is its
damaging of thin lines and sharp corners in the image — this can be avoided
if another shape of neighborhood is used.

• Variants of median filtering is to choose the maximum and minimum values
in the neighborhood. This leads to the dilation and erosion operators in
mathematical morphology.
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Example 4.3.4. The original image Birds.gif that was corrupted with black and
white lines can be found in the data directory. This example is to remove the lines

from the image using median filtering. The Khoros workspace for this example is
here Median Example.

Example 4.3.5. Median Filter example. The matlab script from visionbook is is
here Median Filter Example.

file:../program/median.wk�
file:../../../visionbook/05Preproc/medfilt_demo.dvi�
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Non-linear mean filtering

• The non-linear mean filter is another generalization of averaging techniques.

• It is defined by

f (i , j) = u−1




∑
(m,n)∈O

a(m, n)u[g(m, n)]

∑
(m,n)∈O

a(m, n)


 (4.59)

where f (i , j) is the result of the filtering, g(m, n) is the pixel in the input
image, and O us a local neighborhood of the current pixel (i , j).

• The function u of one variable has an inverse function u−1. The a(m, n) are
weight coefficients.

• If the coefficients a(i , j) are constants, the filter is called homomorphic.

• Some homomorphic filters used in image processing are

– Arithmetic mean, u(g) = g .

– Harmonic mean, u(g) = 1
g

.

– Geometric mean, u(g) = log g .
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Example 4.3.6. Non-linear mean filtering. The matlab script to run this example
is here Non-linear mean filtering Example.

file:../program/non_linear_average.m�
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Variational properties of some local smoothing operators

Theorem 4.3.7. Given x1 ≤ x2 ≤ · · · ≤ xN , then

1. arg mina

∑N
i=1 |xi − a|2 is the arithmetic mean of x1, x2, · · · , xN ;

2. arg mina

∑N
i=1 |xi − a| is the median of x1, x2, · · · , xN ;

3. arg mina max1≤i≤N |xi − a| is x1+xN

2
.
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Proof. (1) Let

g(a) =
N∑

i=1

|xi − a|2. (4.60)

The result follows immediately by calculus.
(2) Let

g(a) =
N∑

i=1

|xi − a|. (4.61)

Let a0 and a1 be arbitrary number such that

a0 < x1 ≤ xN < a1 (4.62)

Then

g(a0) =
N∑

i=1

xi − Na0 (4.63)

and

g(a1) = Na1 −
N∑

i=1

xi . (4.64)

If a ∈ [x1, xN ], assume that

xk ≤ a < xk+1. (4.65)
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Then

g(a) =
k∑

i=1

(a − xi ) +
N∑

i=k+1

(xi − a) =
N∑

i=k+1

xi −
k∑

i=1

xi + (2k − N)a. (4.66)

If 2k ≤ N ,

g(a0)− g(a) = 2
k∑

i=1

xi − Na0 + (N − 2k)a

= 2
k∑

i=1

(xi − a0) + (N − 2k)(a − a0) ≥ 0.

If 2k ≥ N ,

g(a1)− g(a) = Na1 − 2
N∑

i=k+1

xi + (N − 2k)a

= 2
N∑

i=k+1

(a1 − xi ) + (N − 2(N − k))a1 + (N − 2k)a

= 2
N∑

i=k+1

(a1 − xi ) + (2k − N)(a1 − a) ≥ 0.
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Therefore, the minimum of g(a) is attained in [x1, xN ]. Note that g(a) is con-
tinuous, piece wise linear function on [x1, xN ]. g(a) is decreasing if 2k ≤ N and
increasing if 2k ≥ N .

If N = 2m is even, the minimum of g(a) is attained in the central sub-interval
[xm, xm+1]. Since g(a) is constant on this sub-interval, any value of [xm, xm+1] is a
minimizer of g(a). We choose a = xm+xm+1

2
the median as the minimizer.

If N = 2m+1, g(a) is decreasing in one of the central sub-interval [xm, xm+1] and
increasing in another central sub-interval [xm+1, xm+2]. Then xm+1 is the minimizer,
which is the median in this case.

(3) Let
g(a) = max

1≤i≤N
|xi − a|. (4.67)

Then it is easy to verify that

g(a) =





xN − a, if a < x1;

xN − a, if x1 ≤ a < x1+xN

2
;

a − x1, if x1+xN

2
≤ a ≤ xN ;

a − x1, if xN < a.

(4.68)

The conclusion follows immediately. ¤
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4.3.2 Edge detectors

Edge: what is it?

• Edge detectors are a collection of very important local image pre-processing
methods used to locate (sharp) changes in the intensity function.

• Edges are pixels where the brightness function changes abruptly.

!

• Neurological and psychophysical research suggests that locations in the im-
age in which the function value changes abruptly are important for image
perception.

• Edges are to a certain degree invariant to changes of illumination and view-
point.

• If only edge elements with strong magnitude (edgels) are considered, such
information often suffices for image understanding.

• The positive effect of such a process is that it leads to significant reduction
of image data.
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• Nevertheless such a data reduction does not undermine understanding the
content of the image (interpretation) in many cases.

• Edge detection provides appropriate generalization of the image data.
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• For instance, painters of line drawings perform such a generalization.

Figure 4.2: Siesta by Pablo Picasso, 1919
.
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• We shall consider which physical phenomena in the image formation process
lead to abrupt changes in image values.

• Calculus describes changes of continuous functions using derivatives.

• An image function depends on two variables — co-ordinates in the image
plane — so operators describing edges are expressed using partial derivatives.
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• A change of the image function can be described by a gradient that points in
the direction of the largest growth of the image function.



4.3. LOCAL PRE-PROCESSING 215

• An edge is a (local) property attached to an individual pixel and is calculated
from the image function in a neighborhood of the pixel.

• It is a vector variable with two components

– magnitude of the gradient;

– and direction φ is rotated with respect to the gradient direction ψ by
−90o .

• The gradient direction gives the direction of maximal growth of the function,
e.g., from black (g(i , j) = 0) to white (f (i , j) = 255).

• This is illustrated below; closed contour lines are lines of the same brightness;
the orientation 0o points East.



216 CHAPTER 4. IMAGE PRE-PROCESSING

• Edges are often used in image analysis for finding region boundaries.

• Boundary is at the pixels where the image function varies and consists of pixels
with high(?) edge magnitude.

• Boundary and its parts (edges) are perpendicular to the direction of the gra-
dient.
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• The following figure shows several typical standard edge profiles.
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• Roof edges are typical for objects corresponding to thin lines in the image.

• Edge detectors are usually tuned for some type of edge profile.

!

• Sometimes we are interested only in changing magnitude without regard to
the changing orientation.

• A linear differential operator called the Laplacian may be used.

• The Laplacian has the same properties in all directions and is therefore invari-
ant to rotation in the image.

∆g(x , y) =
∂2g(x , y)

∂x2
+
∂2g(x , y)

∂y 2
(4.69)
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Finite Gradient

• The gradient magnitude and gradient direction are image functions,

|gradg(x , y)| =

√(
∂g

∂x

)2

+

(
∂g

∂y

)2

(4.70)

ψ = arg(
∂g

∂x
,
∂g

∂y
) (4.71)

where arg(u, v) = arctan( v
u

) is the angle (in radians) from the x-axis to the
point (u, v).

• In practice, for fast computation, the magnitude is approximated by

|gradg(x , y)| = |∂g

∂x
|+ |∂g

∂y
| (4.72)

or

|gradg(x , y)| = max{|∂g

∂x
|, |∂g

∂y
|} (4.73)

• A digital image is discrete in nature. So derivatives must be approximated by
finite differences.
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• The first order differences of the image g in the vertical direction (for fixed i)
and in the horizontal direction (for fixed j) are given by backward difference

∆i g(i , j) =
g(i , j)− g(i − n, j)

n
(4.74)

∆j g(i , j) =
g(i , j)− g(i , j − n)

n
(4.75)

or by forward difference

∆i g(i , j) =
g(i + n, j)− g(i , j)

n
(4.76)

∆j g(i , j) =
g(i , j + n)− g(i , j)

n
(4.77)

• n is a small integer, usually 1.

• The value n should be chosen small enough to provide a good approximation
to the derivative, but large enough to neglect unimportant changes in the
image function.

• Symmetric expressions for the difference, i.e., central differences, are not usu-
ally used because they neglect the impact of the pixel (i , j) itself.

∆i g(i , j) =
g(i + n, j)− g(i − n, j)

2n
(4.78)
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∆j g(i , j) =
g(i , j + n)− g(i , j − n)

2n
(4.79)

• Individual gradient operators that examine small local neighborhoods are in
fact linear space-invariant operators, hence are equivalent to convolutions, cf.
(4.50), and can be expressed by convolution masks.

• Each convolution mask corresponds to a derivative in one certain direction, if
the masks induces edge orientation information.

!

Example 4.3.8. Example: computing the gradient and edge magnitude and di-
rection by finite difference. The Khoros workspace for this example is here Finite
Difference Example.

file:../program/finite_diff.wk�
file:../program/finite_diff.wk�
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More on gradient operators

• Gradient operators as a measure of edge sheerness can be divided into three
categories

1. Operators approximating derivatives of the image function using finite
differences (introduced above):

– Some of them are rotationally invariant (e.g., the Laplacian) and
direction independent and thus need one convolution mask only.

– Others approximate first derivatives using several masks. The direc-
tion of the gradient is given by the mask giving maximal response.
The absolute value of the response on that mask is the magnitude?

2. Operators based on the zero crossings of the second derivatives of the
image function (e.g., Marr-Hildreth or Canny edge detector).

3. Operators which attempt to match an image function to a parametric
model of edges.
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• The remainder of this section will consider some of the many operators which
fall into the first category, and the next section will consider the second cat-
egory.

• The last category is briefly outlined in (4.3.6). Parametric models describe
edges more precisely than simple edge magnitude and direction and are much
more computationally intensive.

• This is an area of active research.

• It may be difficult to select the optimal edge detection strategy.
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Roberts operator

• The Roberts operator is one of the oldest operators.

• It is very easy to compute as it uses only a 2× 2 neighborhood of the current
pixel.

• Its convolution masks are

h1 =

[
h1(0, 0) h1(1, 0)
h1(0, 1) h1(1, 1)

]
=

[
1 0
0 −1

]
h2 =

[
0 1
−1 0

]
(4.80)

• The magnitude of the edge is computed as

|g(i , j)− g(i + 1, j + 1)|+ |g(i , j + 1)− g(i + 1, j)| (4.81)

• The primary disadvantage of the Roberts operator is its high sensitivity to
noise, because very few pixels are used to approximate the gradient.
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Discrete Laplacian

• The Laplace operator is a very popular operator approximating the second
derivative which gives the gradient magnitude only.

• The Laplacian (4.69) is approximated in digital images by a convolution sum.

• A 3× 3 mask h4 is often used, for 4-neighborhoods and it is defined as

h4,1 =




0 1 0
1 −4 1
0 1 0


 or h4,2 =

1

2




1 0 1
0 −4 0
1 0 1


 (4.82)

and for 8-neighborhoods it is defined as

h8,1 =
h4,1 + 2h4,2

3
=

1

3




1 1 1
1 −8 1
1 1 1


 (4.83)

or

h8,2 =
4h4,2 − h4,1

3
=

1

3




2 −1 2
−1 −4 −1
2 −1 2


 (4.84)
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or

h8,3 = 3h4,1 − 2h4,2 =



−1 3 −1
3 −8 3
−1 3 −1


 (4.85)

• A Laplacian operator with stressed significance of the the central pixel or its
neighborhood is sometimes used.
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Prewitt operator

• The Prewitt operator, similarly to the Sobel, Kirsch, Robinson (as discussed
later) and some other operators, approximates the first derivative.

• The gradient is estimated in eight (for a 3 × 3 convolution mask) possible
directions.

• The convolution result of the greatest magnitude indicates the gradient mag-
nitude.

• The convolution mask of greatest magnitude indicates the gradient direction.

• Larger masks are possible.

• Operators approximating first derivative of an image function are sometimes
called compass operators because of the ability to determine gradient di-
rection.

• We present only the first three 3× 3 masks for each operator; the others can
be created by simple repeated clockwise 45o rotation.
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• Prewitt operator

h1 =




1 1 1
0 0 0
−1 −1 −1


 h2 =




0 1 1
−1 0 1
−1 −1 0


 h3 =



−1 0 1
−1 0 1
−1 0 1




(4.86)
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Sobel operator

•

h1 =




1 2 1
0 0 0
−1 −2 −1


 h2 =




0 1 2
−1 0 1
−2 −1 0


 h3 =



−1 0 1
−2 0 2
−1 0 1




(4.87)

• The Sobel operator is often used as a simple detector of horizontality and
verticality of edges. In this case only masks h1 and h3 are used.

• If the h1 response is y and the h3 response x , we might then derive edge
strength (magnitude) as

√
x2 + y 2 or|x |+ |y | (4.88)

and direction as
arctan(

y

x
) (4.89)
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Robinson operator

•

h1 =




1 1 1
1 −2 1
−1 −1 −1


 h2 =




1 1 1
−1 −2 1
−1 −1 1


 h3 =



−1 1 1
−1 −2 1
−1 1 1




(4.90)
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Kirsch operator

•

h1 =




3 3 3
3 0 3
−5 −5 −5


 h2 =




3 3 3
−5 0 3
−5 −5 3


 h3 =



−5 3 3
−5 0 3
−5 3 3




(4.91)
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Examples

Example 4.3.9. Example: Roberts operator. The Khoros workspace for this ex-
ample is here Roberts operator Example.

Example 4.3.10. Example: Laplacian operator. The Khoros workspace for this
example is here Laplacian operator Example.

Example 4.3.11. Example: Prewitt operator. The Khoros workspace for this ex-
ample is here Prewitt operator Example.

Example 4.3.12. Example: Sobel operator. The Khoros workspace for this example
is here Sobel operator Example.

Example 4.3.13. Example: Robinson operator. The Khoros workspace for this
example is here Robinson operator Example.

Example 4.3.14. Example: Kirsch operator. The Khoros workspace for this exam-
ple is here Kirsch operator Example.

file:../program/Roberts.wk�
file:../program/laplace48.wk�
file:../program/Prewitt.wk�
file:../program/Sobel.wk�
file:../program/Robinson.wk�
file:../program/Kirsch.wk�
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Remark 4.3.15. 1. Visually, the edge images produced by the foregoing edge
operators (Roberts, Prewitt, Sobel, Kirsch, Robinson operators) appears rather
similar.

2. The Roberts operator, being two by two, responds best on sharp transitions
in low-noise images.

3. The other operators, being three by three, handle more gradual transition and
noisier images better.
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Image sharpening

• Image sharpening makes edges steeper — the sharpened image is intended to
be observed by a human.

• The sharpened output image f is obtained from the input image g as

f (i , j) = g(i , j)− CS(i , j) (4.92)

• C is a positive coefficient which gives the strength of sharpening and S(i , j) is
a measure of the image function sheerness that is calculated using a gradient
operator.

• The Laplacian is very often used to estimate S(i , j).
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• Image sharpening/edge detection can be interpreted in the frequency domain
as well.

• The result of the Fourier transform is a combination of harmonic functions.

• The derivative of the harmonic function sin(nx) is n cos(nx); thus the higher
the frequency, the higher the magnitude of its derivative. This is another
explanation of why gradient operators enhance edges.

Example 4.3.16. Example: Image sharpen by Laplacian. The Khoros workspace
for this example is here Image sharpen Example.

Example 4.3.17. Image sharpen by Laplacian. The matlab script from visionbook
is is here Image sharpen Example.

file:../program/image_sharpen.wk�
file:../../../visionbook/05Preproc/imsharpen_demo.m�
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Unsharp masking

• Unsharp masking is often used in printing industry applications — another
image sharpening approach. (Note the conflicting name.)

• A signal proportional to an unsharp image (e.g., blurred by some smoothing
operator) is subtracted from the original image, again a parameter C may be
used to control the weight of the subtraction.

Example 4.3.18. Example: Unsharp masking. The Khoros workspace for this
example is here Unsharpen masking.

file:../program/image_unsharpen.wk�
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4.3.3 Zero-crossings of the second derivative

• In the 1970’s, Marr’s theory conclude from neurophysiological experiments
that object boundaries are the most important cues that link an intensity
image with its interpretation.

• Edge detection techniques at that time like the Kirsch, Sobel, Prewitt opera-
tors are based on convolution in very small neighborhoods and work well for
specific images only.

• The main disadvantage of these edge detectors is their dependence on the
size of objects and sensitivity to noise.

!

• An edge detection technique, based on the zero crossings of the second
derivative (in its original form, the Marr-Hildreth edge detector) explores the
fact that a step edge corresponds to an abrupt change in the image function.
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• The first derivative of the image function should have an extreme at the
position corresponding to the edge in the image, and so the second derivative
should be zero at the same position.

• It is much easier and more precise to find a zero crossing position than an
extreme - see the follwoing figure.
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• The crucial question is how to compute the the 2nd derivative robustly.

• One possibility is to smooth an image first (to reduce noise) and then compute
second derivatives.

!

• When choosing a smoothing filter, there are two criteria that should be ful-
filled, [Marr and Hildreth, 1980].

1. The filter should be smooth and roughly band limited in the frequency
domain to reduce the possible number of frequencies at which function
changes can take place.

2. The constraint of spatial localization requires the response of a filter to
be from nearby points in the image.

• These two criteria are conflicting — Heisenberg uncertainty principle.
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• A nonzero function and its Fourier transform cannot both be sharply localized.
[Folland and Sitaram, 1997, p. 207]

• ([Folland and Sitaram, 1997, Theorem 1.1]) For any f ∈ L2(R) and any a ∈ R
and b ∈ R,

∫
(x − a)2|f (x)|2 dx

∫
(ξ − b)2|f̂ (ξ)|2 dξ ≥ ‖f ‖

4
2

16π2
(4.93)

Equality holds if and only if f = Ce2πibx−γ(x−a)2
for some C ∈ C and γ > 0.

• [Folland and Sitaram, 1997, Theorem 7.6] For a, b > 0, let E (a, b) be the
space of all measurable functions f on R such that

|f (x)| ≤ ce−aπx2

, |f̂ (ξ)| ≤ ce−bπξ2

, (4.94)

for some c > 0. Then

(1) If ab < 1, dim E (a, b) =∞;

(2) If ab = 1, dim E (a, b) = Ce−aπx2
;

(3) If ab > 1, dim E (a, b) = {0};
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• There is a well known joke: “Heisenberg is pulled over by a policeman whilst
driving down a motorway, the policeman gets out of his car, walks towards
Heisenberg’s window and motions with his hand for Heisenberg to wind the
window down, which he does. The policeman then says ‘Do you know what
speed you were driving at sir?’, to which Heisenberg responds ‘No, but I knew
exactly where I was.”’1

1 This is copy-edited from http:en.wikipedia.orgwikiUncertainty principle.
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• But they can be optimized simultaneously using a Gaussian distribution.

• The 2D Gaussian smoothing operator G (x , y)

G (x , y) =
1

2πσ2
e−

x2+y2

2σ2 (4.95)

where x and y are the image co-ordinates and σ is the standard deviation of
the associated probability distribution.

• The standard deviation σ is the only parameter of the Gaussian filter — it is
proportional to the size of neighborhood on which the filter operates.

• Pixels more distant from the center of the operator have smaller influence,
and pixels further than 3σ from the center have negligible influence.

!

• Our goal is to get a second derivative of a smoothed 2D function f (x , y).

• We have seen that the Laplacian operator gives the second derivative, and is
non-directional (isotropic).
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• Consider then the Laplacian of an image f (x , y) smoothed by a Gaussian.

• This operator is abbreviated by some authors as LoG, from Laplacian of
Gaussian:

∆[G (x , y) ∗ f (x , y)] (4.96)

• The order of differentiation and convolution can be interchanged due to lin-
earity of the operations:

[∆G (x , y)] ∗ f (x , y) (4.97)

• The derivative of the Gaussian filter is independent of the image under con-
sideration and can be precomputed analytically reducing the complexity of the
composite operation.

∆G (x , y) =
x2 + y 2 − 2σ2

2πσ6
e−

r2

2σ2 (4.98)

• Because its shape, the LoG operator is commonly called a Mexican hat.
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Figure 4.3: LoG filter.
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• Finding second derivatives in this way is very robust(?).

• Gaussian smoothing effectively suppresses the influence of the pixels that are
up to a distance 3σ from the current pixel; then the Laplace operator is an
efficient and stable measure of changes in the image.

!

• The location in the LoG image where the zero level is crossed corresponds to
the position of the edges.

• The advantage of this approach compared to classical edge operators of small
size is that a larger area surrounding the current pixel is taken into account;
the influence of more distant points decreases according to the variance σ of
the Gaussian.

!

• Convolution masks become large for larger.

• Fortunately, there is a separable decomposition of the ∆G operator that can
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speed up computation considerable.

!

• The practical implication of Gaussian smoothing is that edges are found reli-
ably.

• If only globally significant edges are required, the standard deviation of the
Gaussian smoothing filter may be increased, having the effect of suppressing
less significant evidence.

!

• The LoG operator can be very effectively approximated by convolution with a
mask that is the difference of two Gaussian averaging masks with substantially
different — this method is called the Difference of Gaussians — DoG.

• Even coarser approximations to LoG are sometimes used — the image is
filtered twice by an averaging operator with smoothing masks of different size
and the difference image is produced.

!
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• When implementing a zero-crossing edge detector, trying to detect zeros in the
LoG or DoG image will inevitably fail, while naive approaches of thresholding
the LoG/DoG image and defining the zero-crossings in some interval of values
close to zero give piecewise disconnected edges at best.

• Many other approaches improving zero-crossing performance can be found in
the literature.

!

• The traditional second-derivative zero-crossing has disadvantages as well:

– it smooths the shape too much; for example, sharp corners are lost.

– it tends to create closed loops of edges (nicknamed the ‘plate of spaghetti’
effect).

• Neurophysiological experiments provide evidence that the human retina oper-
ation on image can be described analytically as the convolution of the image
with the ∆G operator.

Example 4.3.19. Marr-Hildreth edge detector. The Khoros workspace for this
example is here Marr-Hildreth edge detector.

file:../program/LoG.wk�
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4.3.4 Scale in image processing

• Many image processing techniques work locally, theoretically at the level of
individual pixels — edge detection methods are examples.

• The essential problem in such computation is scale.

• Edges correspond to the gradient of the image function that is computed as
a difference among pixels in some neighborhood.

!

• There is seldom a sound reason for choosing a particular size of neighborhood:

– The ‘right’ size depends on the size of the objects under investigation.

– To know what the objects are assumes that it is clear how to interpret
an image and this is not in general known at the pre-processing stage.
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• The phenomenon under investigation is expressed at different resolutions of
the description, and a formal model is created at each resolution.

• Then the qualitative behavior of the model is studied under changing resolu-
tion of the description.

• Such a methodology enables the deduction of meta-knowledge about the phe-
nomenon that is not seen at the individual description.

!

• Different description levels are easily interpreted as different scales in the
domain of digital images.

• The idea of scale is fundamental to Marr’s edge detection technique, intro-
duced in the last sub-section, where different scales are provided by different
sizes of Gaussian filter masks.

• The aim was not only to eliminate fine scale noise but also to separate events
at different scales arising from distinct physical processes, [Marr, 1982].
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• Assume that a signal has been smoothed with several masks of variable sizes.

• Every setting of the scale parameters implies a different description, but it is
not known which one is correct.

• For many tasks, no one scale is categorically correct.

• If the ambiguity introduced by the scale is inescapable, the goal of scale-
independent description is to reduce this ambiguity as much as possible.

!

• Many publications tackle scale-space problems. Here we shall consider just
three examples of the application of multiple scale description to image anal-
ysis.

• There are other approaches involving non-linear partial differential equations
to generate non-linear scale-space descriptions.

!

• The first approach aimed to process planar noisy curves at a range of scales
— the segment of curve that represents the underlying structure of the scene
needs to be found.
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• The problem is illustrated in by an example of two noisy curves in the following
figure.

• One of these may be interpreted as a closed (perhaps circular) curve, while
the other could be described as two intersecting straight lines.

• Local tangent direction and curvature of the curve are significant only with
some scales after the curve is smoothed by Gaussian filter with varying stan-
dard deviations.
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• After smoothing using the Gaussian filter with varying standard deviations,
the significant segments of the original curve can be found.

!

• The second approach, called scale space filtering, tried to describe signals
qualitatively with respect to scale.

• The problem was formulated for 1D signals f (x), but it could easily be gen-
eralized to 2D functions as images.

• The original 1D signal f(x) is smoothed by convolution with a 1D Gaussian

f (x ,σ) = G (x ,σ) ∗ f (x) (4.99)

• If the standard deviation σ is slowly changed the function f (x , σ) represents
a surface on the (x ,σ) plane that is called the scale-space image.

• Inflection points of the curve f (x ,σ0) for a distinct value σ0

∂2f (x ,σ0)

∂x2
= 0,

∂3f (x ,σ0)

∂x3
6= 0. (4.100)

describe the curve f (x) qualitatively.
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• The positions of inflection points can be drawn as a set of curves

Σ(x ,σ0) (4.101)

in (x ,σ) co-ordinates
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• Coarse to fine analysis of the curves corresponding to inflection points, i.e.,
in the direction of the decreasing value of the σ, localizes events at different
scales.

• The qualitative information contained in the scale-space image can be trans-
formed into a simple interval tree that expresses the structure of the signal
f (x) over all (observed) scales.

• The interval tree is built from the root that corresponds to the largest scale.

• Then the scale-space image is searched in the direction of decreasing σ.

• The interval tree branches at those points where new curves corresponding
inflection points appears.

!

• The third example of the application of scale — Canny edge detector, dis-
cussed in the next sub-section.



4.3. LOCAL PRE-PROCESSING 255

4.3.5 Canny edge detection

• Canny edge detector is optimal for step edges corrupted by white noise.

• The optimality of it is related to three criteria:

– The detection criterion expresses that fact that important edges should
not be missed, and that there should be no spurious responses.

– The localization criterion says that the distance between the actual and
located position of the edge should be minimal.

– The one response criterion minimizes multiple responses to a single
edge (also partly covered by the first criterion, since when there are two
responses to a single edge one of them should be considered as false).
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• Canny’s edge detector is based on several ideas:

1. The edge detector was expressed for a 1D signal and the first two opti-
mality criteria. A closed form solution was found using the calculus of
variations.

2. If the third criterion (multiple responses) is added, the best solution
may be found by numerical optimization. The resulting filter can be
approximated effectively by the first derivative of a Gaussian smoothing
filter with standard deviation σ; the reason for doing this is the existence
of an effective implementation.

– There is a strong similarity here to the Marr-Hildreth edge detector
(Laplacian of a Gaussian)

3. The detector is then generalized to two dimension. A step edge is given
by its position, orientation, and possibly magnitude (strength).

– It can be shown that convolving an image with a symmetric 2D
Gaussian and then differentiating in the direction of the gradient
(perpendicular to the edge direction) forms a simple and effective
directional operator.

– Recall that the Marr-Hildreth zero crossing operator does not give
information about edge direction as it uses Laplacian filter.
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– Suppose G is a 2D Gaussian (4.95) and assume we wish to convolute
the image with an operator Gn which is a first derivative of G in the
direction n.

Gn =
∂G

∂n
= n · ∇G (4.102)

– The direction n should be oriented perpendicular to the edge

∗ this direction is not known in advance

∗ however, a robust estimate of it based on the smoothed gradient
direction is available

∗ if g is the image, the normal to the edge is estimated as

n =
∇(G ∗ g)

|∇(G ∗ g)| (4.103)

– The edge location is then at the local maximum in the direction n
of the operator Gn convoluted with the image g

∂

∂n
Gn ∗ g = 0. (4.104)

– Substituting in equation (4.104) for Gn from equation (4.102), we
get

∂2

∂n2
G ∗ g = 0. (4.105)
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– This equation (4.105) shows how to find local maxima in the direc-
tion perpendicular to the edge; this operation is often referred to as
non-maximal suppression.

– As the convolution and derivative are associative operations in equa-
tion (4.105)

∗ first convolute an image g with a symmetric Gaussian G ;

∗ then compute the directional second derivative using an esti-
mate of the direction n computed according to equation (4.103);

∗ strength of the edge (magnitude of the gradient of the image
intensity function g) is measured as

|Gn ∗ g | = |∇(G ∗ g)|. (4.106)

4. Spurious responses to the single edge caused by noise usually create a
so called ’streaking’ problem that is very common in edge detection in
general.

– Output of an edge detector is usually thresholded to decide which
edges are significant.

– Streaking means breaking up of the edge contour caused by the
operator fluctuating above and below the threshold.
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– Streaking can be eliminated by thresholding with hysteresis.

∗ If any edge response is above a high threshold, those pixels
constitute definite output of the edge detector for a particular
scale.

∗ Individual weak responses usually correspond to noise, but if
these points are connected to any of the pixels with strong
responses they are more likely to be actual edges in the image.

∗ Such connected pixels are treated as edge pixels if their response
is above a low threshold.

∗ The low and high thresholds are set according to an estimated
signal to noise ratio. Please refer to Canny’s original paper for
detailed discussions. Canny discussed the one dimensional case
in §VI in his paper.

5. The correct scale for the operator depends on the objects contained in
the image.

– The solution to this unknown is to use multiple scales and aggregate
information from them.

– Different scale for the Canny detector is represented by different
standard deviations σ of the Gaussians.

– There may be several scales of operators that give significant re-



260 CHAPTER 4. IMAGE PRE-PROCESSING

sponses to edges (i.e., signal to noise ratio above the threshold); in
this case the operator with the smallest scale is chosen as it gives
the best localization of the edge.

– Canny proposed a Feature synthesis approach.

– All significant edges from the operator with the smallest scale are
marked first.

– Edges of a hypothetical operator with larger σ are synthesized from
them (i.e., a prediction is made of how the larger σ should perform
on the evidence gleaned from the smaller σ).

– Then the synthesized edge response is compared with the actual
edge response for larger σ.

– Additional edges are marked only if they have significantly stronger
response than that predicted from synthetic output.

– This procedure may be repeated for a sequence of scales, a cumula-
tive edge map is built by adding those edges that were not identified
at smaller scales.
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Algorithm 4.3.20. Canny edge detector

1. Repeat steps (2) till (6) for ascending values of the standard deviation.

2. Convolve an image g with a Gaussian of scale σ.

3. Estimate local edge normal directions n using equation (4.103) for each pixel
in the image.

4. Find the location of the edges using equation (4.105) (non-maximal suppres-
sion).

5. Compute the magnitude of the edge using equation (4.106).

6. Threshold edges in the image with hysteresis to eliminate spurious responses.

7. Aggregate the final information about edges at multiple scale using the “fea-
ture synthesis” approach.
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• Canny’s detector represents a complicated but major contribution to edge
detection.

• Its full implementation is unusual, it being common to find implementations
that omit feature synthesis — that is, just steps 2 — 6 of algorithm.

• Reference for this section is Canny’s paper [Canny, 1986].
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Example 4.3.21. Canny edge detector. The example matlab script file is here
Canny edge detector example.

(You need to start matlab.)
Compare the result with the edge detector with other filters. Note the improve-

ment at the top part of the hat.
Study the matlab code. Note the “thin” code.

Homework 4.3.22. This is an important homework. The total score is 20. The
homework includes:

1. (4) Implement median filter with variable window size and shape;

2. (4) Implement another local smoothing filter you know with possible variable
parameters;

3. (8) Implement Canny edge detector; what is your extension to step 7? (With-
out step 7, you can only get at most 4 scores).

4. (4) Implement another edge detector you know; compare it with Canny de-
tector.

file:../program/canny.m�
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4.3.6 Parametric edge models

• Parametric models are based on the idea that the discrete image intensity
function can be considered a sampled and noisy approximation of the under-
lying continuous or piecewise continuous image intensity function.

• While the continuous image function is not known, it can be estimated from
the available discrete image intensity function and image properties can be
determined from this estimate, possibly with sub-pixel precision.

• Piecewise continuous function estimate called facets are used to represent
(a neighborhood) image pixel.

• Such image representation is called facet model.
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• The intensity function in a pixel neighborhood can be estimated using models
of different complexity.

• The simplest one is the flat facet model that uses piecewise constants and
each pixel neighborhood is represented by a flat function of constant intensity.

• The sloped model uses piecewise linear functions forming a sloped plane fitted
to the image intensities in the pixel neighborhood.

• Quadratic and bi-cubic facet models employ correspondingly more complex
functions.

• A thorough treatment of facet models and their modifications for peak noise
removal, segmentation into constant-gray-level regions, determination of sta-
tistically significant edges, gradient edge detection, directional second-derivative
zero-crossing detection, and line and corner detection is given in [Haralic and Shapiro, 1992].
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• An edge detection example is given in the following.

• Consider a bi-cubic facet model

g(x , y) = c1 + c2x + c3y + c4x2 + c5xy + c6y 2 + c7x3 + c8x2y + c9xy 2 + c10y 3

(4.107)
The parameter of which are estimated from a pixel neighborhood(the co-
ordinate of the central pixel is (0, 0)).

• To determine the model parameters, a least-squares method with singular-
value decomposition may be used.

• Once the facet model parameters are available for each image pixel, edges can
be detected as extrema of the first directional derivative and/or zero-crossings
of the the second directional derivative of the local continuous facet model
functions.

• Edge detectors based on parametric models describe edges more precisely than
convolution based edge detectors.

• Additionally, they carry the potential for sub-pixel edge localization (?).

• However, their computational requirements are much higher.
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4.3.7 Edges in multi-spectral images

• There are several possibilities for the detection of edges in multi-spectral im-
ages.

• The first is to detect edges separately in individual image spectral components
using the ordinary local gradient operators mentioned in Section (4.3.2).

– Individual images of edges can be combined to get the resulting edge
image, with the value corresponding to edge magnitude and direction
being the maximal edge value from all spectral components.

– A linear combination of edge spectral components can also be used, and
other combination techniques are possible.

• A second possibility is to use the brightness difference of the same pixel in
two different spectral components.

– The ratio instead of the difference can also be used as well, although it
is necessary to assume that pixel values are not zero in this case.

• A third possibility is to create a multi-spectral edge detector which uses bright-
ness information from all n spectral bands.
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– An edge detector of this kind was proposed in [Cervenka and Charvat, 1987].

– The neighborhood used has size 2 × 2 × n pixels, where the 2 × 2
neighborhood is similar to that of the Roberts gradient, (4.80).

– The coefficients weighting the influence of the component pixels are
similar to the correlation correlation coefficients.

– Let f̄ (i , j) denote the arithmetic mean of the brightness corresponding
to the pixel with the same co-ordinates (i , j) in all n spectral component
images and fr be the brightness of the r th spectral component.

– The edge detector result in pixel (i , j) is given as the minimum of the
following expressions:

∑n
r=1

[
fr (i , j)− f̄ (i , j)

] [
fr (i + 1, j + 1)− f̄ (i + 1, j + 1)

]
√∑n

r=1

[
fr (i , j)− f̄ (i , j)

]2∑n
r=1

[
fr (i + 1, j + 1)− f̄ (i + 1, j + 1)

]2

·
∑n

r=1

[
fr (i + 1, j)− f̄ (i + 1, j)

] [
fr (i , j + 1)− f̄ (i , j + 1)

]
√∑n

r=1

[
fr (i + 1, j)− f̄ (i + 1, j)

]2∑n
r=1

[
fr (i , j + 1)− f̄ (i , j + 1)

]2

– This multi-spectral edge detector gives very good (?) results on remotely
sensed images.
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4.3.8 Line detection by local pre-processing operators

• Several other local operations exists which do not belong to the taxonomy in
this Section (4.3), as they are used for different purposes.

• Line finding, line thinning, and line filling operators are among
them.

• The second group of operators finds interest points or locations of

interest in the image.

• There is yet another class of local nonlinear operators, mathematical morphology

techniques.
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• Recall that one of the reasons why edges are being detected is that they bear
a lot of information about underlying objects in the scene.

• Taking just edge elements instead of all pixels reduces the amount of data
which has to be processed.

• The edge detector is a general tool which does not depend on the content of
the particular image.

• The detected edges are to some degree robust as they do not depend much
on small changes in illumination, viewpoint change, etc.

!

• It is interesting to seek yet richer features which can be reliably detected in
the image and which can outperform simple edge detectors in some classes of
applications.

• Line detectors and corner detectors are some such.
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Line detection

• Line finding operators aim to find very thin curves in the image, e.g.,
roads in satellite images.

• It is assumed that curves do not bend sharply. Such curves and straight lines
are called lines for the purpose of describing this technique.

• Lines are modeled by a roof profile among edges, Fig. 4.3.2.

• We assume that the width of the lines is approximately one or two pixels.

• Lines in the image can be detected by a number of local convolution operators
hk , which serve as line patterns [Cervenka and Charvat, 1987].

• The output value of the line finding detector in pixel (i , j) is given by

f (i , j) = max
{

0, max
k

(f ∗ hk)
}

(4.108)

where f ∗hk denotes the convolution of the k-th mask with the neighborhood
of a pixel (i , j) in the input image.
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• The simplest collection of four such patterns of size 3 x 3 is able to detect
lines rotated modulo the angle 45o :
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• A similar principle can be applied to bigger masks.

• The following is a set of convolution masks of size 5×5. There are 14 possible
orientation of the line finding convolution mask of this size; only the first eight
are shown, as the others are obvious by rotation.

• Such line detectors sometimes produce more lines than needed, and other
non-linear constraints may be added to reduce this number.
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Line thinning

• In the edge detection methods introduced so far, edges are usually found by
simple thresholding of the edge magnitude.

• Such edge thresholding does not provide ideal contiguous boundaries that are
one pixel wide.

• Sophisticated segmentation techniques are discussed in the next chapter.

• Here, much simpler edge thinning and filling methods are described.

• These techniques are based on knowledge of small local neighborhoods and
are very similar to other local pre-processing techniques.
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• One line thinning method uses knowledge about orientation and in this case
edges are thinned before thresholding.

• Edge magnitude and directions provided by some gradient operator are used
as input, and the edge magnitude of two neighboring pixels perpendicular to
the edge direction are examined for each pixel in the image.

• If at least one of these pixels has edge magnitude higher than the edge mag-
nitude of the examined pixel, then the edge magnitude of the examined pixel
is assigned a zero value.

• The technique is called non-maximal suppression and is similar to the idea
mentioned in conjunction with the Canny edge detector.

!

• There are many line thinning methods which we do not present here.

• In most cases the best line thinning is achieved using mathematical morphol-
ogy methods (?).
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Edge filling

• Edge points after thresholding do not create contiguous boundaries and the
edge filling method tries to recover edge pixels on the potential object bound-
ary which are missing.

• We present here a very simple local edge filling technique; more complicated
methods based on edge relaxation are discussed in the next chapter.

• The local edge filling procedure checks the 3× 3 neighborhood of the current
pixel matches one of the following masks If so, the central pixel of the mask

is changed from zero to one.
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!

• These simple methods for edge thinning and filling do not guarantee that the
width of the lines will be equal to one and the contiguity of the edges are is
not certain either.

• Note that local thinning and filling operators can be treated as special cases
of mathematical morphology operators.
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4.3.9 Corners and interesting points

• In many cases it is of advantage to find pairs of corresponding points in
two similar images.

• E.g., when finding geometric transforms, knowing the position of correspond-
ing points enables the estimation of geometric transforms from live data.

• Finding corresponding points is also a core problem in the analysis of moving
images and fir recovering depth information form pairs of stereo images.

• In general, all possible pairs of points should be examined to solve this
correspondence problem, and this is very computation expensive.

• If two images have n pixels each, the complexity is O(n2).

• This process might be simplified if the correspondence is examined among a
much smaller number of points, called interest points.

• An interest point should have some typical local property.

• E.g., if square objects are present in the image, then corners are very good
interest points.
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• Corners serve better than lines when the correspondence problem is to be
solved.

• This is due to the aperture problem.

• Assume a moving line is seen through a small aperture. In such a case, only
the motion vector perpendicular to the line can be observed.

• The component collinear with the line remains invisible.

• The situation is better with corners. They provide ground for unique matching,
cf. the following figure for illustration.
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• Edge detectors themselves are not stable at corners.

• This is natural as the gradient at the tip of the corner is ambiguous.

• Near the corner there is a discontinuity in the gradient direction.

• This observation is used in corner detectors.

!

• Corners in image can be located using local detectors.

• Input to the corner detector is the gray-level image and output is the image
f (i , j) in which values are proportional to the likelihood that the pixel is a
corner.

• Interest points are obtained by thresholding the result of the corner detector.

!

• The corner in the image can be defined as a pixel in whose small neighborhood
there are two dominant and different edge directions.
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• This definition is not precise as an isolated point of local intensity maximum
or minimum, line endings, or an abrupt change in the curvature of a curve
with a response similar to a corner.

• Nevertheless, such detectors are named corner detectors in the literature and
are widely used.

• If corners have to be detected then some additional constraints have to be
applied.

!

• Corner detectors are not usually very robust.

• This deficiency is overcome either by manual expert supervision or large redun-
dancies introduced to prevent the effect of individual errors from dominating
the task.

• The latter means that many more corners are detected in two or more images
than necessary for estimating a transformation sought between these images.

!
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• The simplest corner detector is the Moravec detector which is maximal in
pixels with high contrast.

• These points are on corners and sharp edges.

• The Moravec operator MO is given by

MO(i , j) =
1

8

i+1∑

k=i−1

j+1∑

l=j−1

|g(k , l)− g(i , j)|. (4.109)

!

• Better results are produced by computationally more expensive corner opera-
tors based on the facet model, (4.107).

• The image function g is approximated in the neighborhood of the pixel (i , j)
by a bi-cubic polynomial with coefficients ck as in (4.107).

g(x , y) = c1 + c2x + c3y + c4x2 + c5xy + c6y 2 + c7x3 + c8x2y + c9xy 2 + c10y 3

(4.110)
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• The Zuniga-Haralick operator ZH is given by

ZH(i , j) =
− (c2

2 c6 − 2c2c3c5 + c2
3 c4)

(c2
2 + c2

3 )
3
2

(4.111)

which is the curvature of the plane curve g(x , y) = const.

• The Kitchen-Rosenfeld KR is given by

KR(i , j) =
− (c2

2 c6 − 2c2c3c5 + c2
3 c4)

c2
2 + c2

3

(4.112)

which is the second order derivative along the direction of edge.

• The ZH operator has been shown to outperform the KR detector in test
images.

!

• The Harris corner detector improved upon Moravec’s by considering the dif-
ferential of the corner score (sum of square differences).

• Consider a 2D gray-scale image f .
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• An image patch W in f is taken and is shifted by ∆x and ∆y .

• The sum of square differences S between values of the image f given by the
patch W and its shifted variant by ∆x and ∆y is given by:

SW (∆x , ∆y) =
∑

(xi ,yi )∈W

(f (xi , yi )− f (xi −∆x , yi −∆y))2 . (4.113)

• A corner point not suffering from the aperture problem must have a high
response of SW (∆x , ∆y) for all ∆x and ∆y .

!

• If the shifted image patch is approximated by the first-order Taylor expansion

f (xi −∆x , yi −∆y) = f (xi , yi )− ∂f

∂x
(xi , yi )∆x − ∂f

∂y
(xi , yi )∆y , (4.114)

then the minimum of SW (∆x , ∆y) can be obtained analytically.

• Substituting (4.114) into (4.113),

SW (∆x , ∆y) =
∑

(xi ,yi )∈W

(
∂f

∂x
(xi , yi )∆x +

∂f

∂y
(xi , yi )∆y ,

)2
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=
(
∆x ∆y

)
AW (x , y)

(
∆x
∆y

)

where the Harris matrix

AW (x , y) =
∑

(xi ,yi )∈W




(
∂f
∂x

(xi , yi )
)2 ∂f

∂x
(xi , yi )

∂f
∂y

(xi , yi )

∂f
∂x

(xi , yi )
∂f
∂y

(xi , yi )
(
∂f
∂y

(xi , yi )
)2


 . (4.115)

• Usually an isotropic window W is used, such as a Gaussian.

• The response will be isotropic too.

!

• The local structure matrix AW represents the neighborhood — the Harris
matrix AW is symmetric and positive semi-definite.

• Its main modes of variation correspond to partial derivatives in orthogonal
directions and are reflected in eigenvalues λ1 and λ2 of the matrix AW .

!

• Three distinct cases can appear:



4.3. LOCAL PRE-PROCESSING 287

1. Both eigenvalues are small. This means that image f is flat in the
examined pixel. There are no edges or corners in this location.

2. One eigenvalue is small and the second one large. The local neighbor-
hood is ridge-shaped. Significant change of image f occurs if a small
movement is made perpendicularly to the ridge.

3. Both eigenvalues are rather large. A small shift in any direction causes
significant change of the image f . A corner is found.

!

• Harris suggested that exact eigenvalue computation can be avoided by cal-
culating the response function R(A) = det(A) − κtrace2(A), where κ is a
tunable parameter where values from 0.04 to 0.15 were reported in literature
as appropriate.

Algorithm 4.3.23. Harris corner detector

1. Filter the image with a Gaussian.

2. Estimate intensity gradient in two perpendicular directions for each pixel.
This is performed by twice using a ID convolution with the kernel ap-
proximating the derivative.



288 CHAPTER 4. IMAGE PRE-PROCESSING

3. For each pixel and a given neighborhood window:

– Calculate the local structure matrix A;

– Evaluate the response function R(A).

4. Choose the best candidates for corners by selecting a threshold on the
response function R(A) and perform non-maximal suppression.

!

• The Harris corner detector has been very popular.

• Its advantages are insensitivity to 2D shift and rotation, to small illumination
variations, to small viewpoint change, and its low computational requirements.

• On the other hand, it is not invariant to larger scale change, viewpoint changes
and significant changes in contrast.

• Many more corner-like detectors exist, and the reader is referred to the overview
papers.

Example 4.3.24. Corner detection example with Harris corner detector. The mat-
lab script from visionbook is is here Corner Detection Example.

file:../../../visionbook/05Preproc/harris_demo.m�
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4.3.10 Adaptive neighborhood pre-processing

• The majority of pre-processing operators work in neighborhoods of fixed sizes
in the whole image, of which square windows (3×3, 5×5, or 7×7) are most
common.

• Pre-processing operators of variable sizes and shapes exist and bring improved
pre-processing results.

• They are based on detection of the most homogeneous neighborhood of each
pixel.

• However they are not widely used, mostly because of computational demands
and the non-existence of a unifying approach.
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• A recent approach to image pre-processing introduces the concept of an adap-
tive neighborhood which is determined for each image pixel.

• The neighborhood size and shape are dependent on characteristics of image
data and on parameters which define measures of homogeneity of a pixel
neighborhood.

• A significant property of the neighborhood for each pixel is the ability to self
tune to contextual details in the image.

Neighborhood

• An adaptive neighborhood is constructed for each pixel, this pixel being called
a seed pixel of the neighborhood.

• The adaptive neighborhood consists of all the 8-connected ((2.3.1)) pixels
which satisfy a property of similarity with the seed pixel.

• The pixel property may represent a gray-level, or some more complex image
properties such as texture, local motion parameters, etc.

• Let’s consider gray-level as a basic pixel property — the adaptive neighborhood
for gray-level image pre-processing is based on as additive or multiplicative
tolerance interval.
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• All the pixels which are 8-connected with the seed pixel and which have their
gray-levels in a tolerance interval become members of the adaptive neighbor-
hood.

• Let (i , j) represent the seed pixel, and (k , l) represent pixels 8-connected to
the seed pixel.

• The adaptive neighborhood of the pixel (i , j) is defined as a set of pixels
(k , l) 8-connected to the seed pixel and tither satisfying the additive tolerance
property

|f (k , l)− f (i , j)| ≤ T1 (4.116)

or satisfying a multiplicative property

|f (k , l)− f (i , j)|
f (i , j)

≤ T2 (4.117)

where T1 and T2 are parameters of the adaptive neighborhood and represent
the maximum allowed dissimilarity of a neighborhood pixel from the seed pixel.

• The above procedure defines the first layer of the adaptive neighborhood
(called th foreground layer) which is used in all adaptive neighborhood pre-
processing
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• Sometimes not only the foreground layer but also a background layer must
be used to represent more diverse contextual information. The second (back-
ground) layer is molded to the outline of the first layer and has a thickness of
s pixels, s being a parameter for the adaptive neighborhood.

• Although a neighborhood is constructed for each pixel, all pixels in the given
foreground layer that have the same gray-level as the seed pixel produce the
same adaptive neighborhood. These pixels are called redundant seed pixels.

• Many fixed-neighborhood pre-processing may be implemented by applying the
adaptive neighborhood concept.

Noise suppression

• An adaptive neighborhood is not formed across region boundaries.

• Therefore, noise suppression will not blur image edges as often happens with
other techniques.

• If noise suppression is the goal, only the foreground neighborhood layer is
used.



4.3. LOCAL PRE-PROCESSING 293



294 CHAPTER 4. IMAGE PRE-PROCESSING

• Having constructed the adaptive neighborhood for each pixel, the rest is
straightforward: Each seed pixel is assigned a new value computed as a mean,
median, etc., of all the pixels in the adaptive neighborhood.

• If the noise is additive, the additive criterion for neighborhood construction
should be applied; if the noise is multiplicative, the multiplicative tolerance
criterion is appropriate.

• Adaptive neighborhood noise suppression may be applied several times in a
sequence with good results and the edges will not be blurred.

• Adaptive neighborhood smoothing does not work well for impulse noise be-
cause large gray-level difference between the noise pixel and other pixels in the
neighborhood cause the adaptive neighborhood to consist of only the noise
pixel.

• A solution may be to apply a fixed-size averaging or median filtering pre-
processing step prior to the adaptive neighborhood operations.

• Show Fig. 4.25.
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Histogram modification

• The main disadvantage of full-frame histogram equalization is that the global
image properties may not be appropriate under a local context.

• Local area histogram equalization computes a new gray-level for each pixel
based on the equalization of a histogram acquired in a local fixed-size neigh-
borhood.

• Adaptive neighborhood histogram modification is based on the same principle
— the local histogram is computed from a neighborhood which reflects local
contextual image properties.

• Show Fig. 4.26.

Contrast enhancement

• Contrast is a property based on human abilities.

• An approximate definition of contrast is

c =
F − B

F + B
(4.118)
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where F and B are the mean gray-levels of two regions whose contrast is
evaluated.

• Standard contrast enhancement techniques such as sharpening (4.3.2) do not
enhance the contrast of regions, only local edge perception.

• The larger the contrast between image parts, the larger is the enhancement.

• In other words, the most serious enhancement is achieved where the contrast
is sufficient anyway.

• The adaptive neighborhood is associated with objects and therefore it is fea-
sible to enhance contrast in regions by modifying gray-levels in regions and
not only along their borders.

• Further, the contrast enhancement may be non-linear:

– No enhancement for very small gray-level difference between neighbor-
hoods (caused probably by quantization noise or very small gray-level
variance);

– Moderate to strong enhancement applied if the contrast between regions
is small but outside the range of quantization contrast;
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– No contrast enhancement is applied if the contrast is already sufficient.

• For contrast enhancement, both foreground and background adaptive neigh-
borhood layers are used, the background size being comparable in size to the
foreground size.

• For each seed pixel and corresponding adaptive neighborhood, the original
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contrast c is computed using (4.118).

• The new desired contrast c ′ is obtained from the applied contrast curve
(4.3.10).

• The new gray value f ′(i , j) to be assigned to the seed pixel (i , j) is computed
as

f ′(i , j) = B
1 + c ′

1− c ′
(4.119)

where B is the original mean gray-level of the background adaptive neighbor-
hood layer.

• The contrast between the seed pixel and the background layer is c ′.

• Show Fig. 4.28.
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Remark 4.3.25. • The principle of adaptive neighborhood pre-processing gives
significantly better results, but larger computational load is the price to pay
for this improvement.

• Nevertheless, taking advantage of redundant seed pixels decreases the compu-
tational demands, also, feasibility of implementing these methods in parallel
may soon make these methods as standard as fixed neighborhood methods
are today.
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4.4 Image restoration

• Pre-processing methods that aim to suppressing image degradation using
knowledge about its nature are called image restoration.

• Most image restoration methods are based on convolution applied globally to
the whole image.
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• Degradation of images can have many causes

– defects of optical lenses;

– nonlinearity of the electro-optical sensor;

– graininess of the film material;

– relative motion between an object and camera

– wrong focus,

– atmospheric turbulence in remote sensing or astronomy,

– etc.

• The objective of image restoration is to reconstruct the original image from
its degraded version.
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• Image restoration techniques can be classified into two groups:

– Deterministic methods are applicable to images with little noise and
a known degradation function.

– The original image is obtained from the degraded one by a transformation
inverse to the degradation.

– Stochastic techniques try to find the best restoration according to
particular stochastic criterion, e.g., a least squares method.

– In some cases the degradation transformation must be estimated first.
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• It is advantageous to know the degradation function explicitly.

• The better this knowledge is, the better are the results of the restoration.

• There are three typical degradations with a simple function:

– Relative constant speed movement of the object with respect to the
camera,

– wrong lens focus,

– and atmospheric turbulence.
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• In most practical cases, there is insufficient knowledge about the degradation,
and it must be estimated and modeled.

• The estimation can be classified into two groups according to the information
available a priori and a posteriori.

• If degradation type and/or parameters need to be estimated, this step is the
most crucial one, being responsible for image restoration success or failure.

• It is also the most difficult part of image restoration.
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• A priori knowledge

– A priori knowledge about degradation is either known in advance or can
be obtained before restoration.

– E.g., if it is clear in advance that the image was degraded by relative
motion of an object with respect to the sensor then the modeling only
involves the speed and direction of the motion.

– E.g., parameters of a capturing device such as a TV camera or digitizer,
whose degradation remains unchanged over a period of time and can be
modeled by studying a known sample image and its degraded version.

• A posteriori knowledge is obtained by analyzing the degraded image.

– A posteriori knowledge is obtained by analyzing the degraded image.

– A typical example is to find some interest points in the image (e.g.
corners, straight lines) and guess how they looked before degradation.

– Another possibility is to use spectral characteristics of the regions in the
image that are relatively homogeneous.
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• Only the basics of the restoration and three typical degradations are considered
here.
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• A degraded image g can arise from the original image f by a process which
can be expressed as

g(i , j) = s

(∫

(a,b)∈O
f (a, b)h(a, b, i , j) dadb

)
+ ν(i , j) (4.120)

where s is some nonlinear function and ν describes the noise.

• The degradation is very often simplified by

– neglecting the nonlinearity;

– assuming that the function h is invariant with respect to position in the
image.

• Degradation can be then expressed as convolution

g(i , j) = (f ∗ h)(i , j) + ν(i , j) (4.121)

• If the degradation is given by equation (4.121) and the noise is not significant
then image restoration equates to inverse convolution (also called deconvolu-
tion).

• If noise is not negligible then the inverse convolution is solved as an undeter-
mined system of linear equations.
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• Methods based on minimization of the least square error such as Wiener
filtering or Kalman filtering are examples.

4.4.1 Degradation that are easy to restore

• Some degradations can be easily expressed mathematically (convolution) and
also restored simply in images.

• These degradation can be expressed by convolution, equation (4.121).

• Let F , G and H be the Fourier transform of the undegraded image f , the
degraded image g and the convolution kernel h, respectively.

• In the absence of noise, the relationship is

G = HF (4.122)

• Therefore, not considering image noise ν, knowledge of the degradation func-
tion fully determines image restoration by inverse filtration, (4.4.2), discussed
in the next section.

• We first discuss several degradation functions.
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Relative motion of the camera and the object

• Assume an image is acquired with a camera with a mechanical shutter.

• Relative motion of the camera and the photographed object during the shutter
open time T causes smoothing of the object in the image.

• Suppose V is the constant speed in the direction of the x axis; the Fourier
transform H(u, v) of the degradation caused in time T is given by

H(u, v) =
sin(πVTu)

πVu
(4.123)

Wrong lens focus

• Image smoothing caused by imperfect focus of a thin lens can be described
by the following function

H(u, v) =
J1(ar)

ar
(4.124)

where J1 is the Bessel function of the first order, r 2 = u2 + v 2, and a is the
displacement.
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Atmospheric turbulence

• Atmospheric turbulence is degradation that needs to be restored in remote
sensing and astronomy.

• It is caused by temperature non-homogeneity in the atmosphere that deviates
passing light rays.

• The mathematical model

H(u, v) = e−c(u2+v2)
5
6

(4.125)

where c is a constant that depends on the type of turbulence which is usually
found experimentally.

• The power 5/6 is sometimes replaced by 1.

4.4.2 Inverse filtration

• An obvious approach to image restoration is based on the properties of the
Fourier transform.

• Inverse filtration uses the assumption that degradation was caused by a linear
convolution kernel h(i , j).
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• the additive noise ν is another source of degradation.

• It is further assumed that ν is independent of the signal.

• Applying the Fourier transform to equation (4.121)

G (u, v) = H(u, v)F (u, v) + N(u, v) (4.126)

• The degradation can be eliminated if the restoration filter has a transfer func-
tion that is inverse to the degradation h.

• The Fourier transform of the inverse filter is then expressed as H−1(u, v).

• The undegraded image F is derived from its degraded version G .

F (u, v) = G (u, v)H−1(u, v)− N(u, v)H−1(u, v) (4.127)
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• This equation shows that inverse filtration works well for images that are
not corrupted by noise, not considering possible computational problems if
H(u, v) gets close to zero at some location of the u, v space — fortunately,
such locations can be neglected without perceivable effect on the restoration
result.

• If noise is present, some problems arise:

– its influence is significant for frequencies where H(u, v) has small mag-
nitude.

– These usually correspond to high frequencies u, v and thus fine details
are blurred in the image.

– In reality, H(u, v) usually decreases in magnitude much more rapidly than
N(u, v) and thus the noise effect may dominate the entire restoration
result.

– Limiting the restoration to a small neighborhood of the u, v origin in
which H(u, v) is sufficiently large overcomes this problem and the results
usually quite acceptable.

– The second problem deals with the spectrum of the noise itself — we
usually do not have enough information about the noise to determine
N(u, v) sufficiently well.
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4.4.3 Wiener filtration

Discrete Fourier transform, convolution and correlation

• Let f (m, n) be a M×N two dimensional periodic discrete signals, the discrete
Fourier transform of it is defined as

F (u, v) =
M−1∑
m=0

N−1∑
n=0

f (m, n)e−j2π( um
M

+ vn
N ) (4.128)

for u = 0, · · · , M − 1 and v = 0, · · · , N − 1.

• The Fourier transform is still a periodic signal of the same periodicity.

• The inverse transform is defined as

f (m, n) =
1

MN

M−1∑
u=0

N−1∑
v=0

F (u, v)ej2π( um
M

+ vn
N ) (4.129)

• If f and g are periodic signals of the same periodicity, the circulant convolution
of f and g is defined as

f ¯ g(r , s) =
M−1∑
m=0

N−1∑
n=0

f (m, n)g(r −m, s − n) (4.130)
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which is still a periodic signal of the same periodicity.

• Note that the circulant convolution is different from the ordinary convolution
when f and g are treated as two discrete non-periodic signals.

• Recall the (ordinary) convolution is defined for two discrete signals f and g
of M × N and and A× B samples, respectively, as

f ∗ g(r , s) =
r∑

m=0

s∑
n=0

f (m, n)g(r −m, s − n). (4.131)

The size of f ∗ g is (M + A− 1)× (N + B − 1).

• Let

F (z1, z2) =
M−1∑
m=0

N−1∑
n=0

f (m, n)z−m
1 z−n

2

G (z1, z2) =
A−1∑
m=0

B−1∑
n=0

g(m, n)z−m
1 z−n

2

be the z-transform of f and g respectively. Then f ∗g(r , s) is the coefficients
of the mono term z−r

1 z−s
2 in the product F (z1, z2)G (z1, z2).
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• We use F to denote the Fourier transform.

• With circulant convolution, we have the convolution theorem for Fourier trans-
form

F [f ¯ g ] = F [f ] · F [g ] (4.132)

• This property does not hold for the (ordinary) convolution.
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• To calculate the (ordinary) convolution by Fourier transform, we procedure as
following.

1. Extending f and g by zero-padding to size K ×L, where K ≥ M + A−1
and L ≥ N + B − 1,

fe(m, n) =

{
f (m, n), 0 ≤ m < M and 0 ≤ n < N ;

0, otherwise.

ge(m, n) =

{
g(m, n), 0 ≤ m < A and 0 ≤ n < B ;

0, otherwise.

2. Calculating
F−1[F [f ] · F [g ]] (4.133)

and convolution result result is obtained by taking those part of size
(M + A− 1)× (N + B − 1) from the beginning.

• If f and g are periodic signals of the same periodicity, the correlation of f
and g is defined as

Rfg (r , s) =
M−1∑
m=0

N−1∑
n=0

f (m + r , n + s)g(m, n) (4.134)
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which is still a periodic signal of the same periodicity.

• Similarly to the circulant convolution, we have the discrete correlation property

F [Rfg ] = F [f ] · F [g ]∗ (4.135)

where a∗ denotes the complex conjugate of a.

• Rff is called the auto-correlation of f and its Fourier transform is called the
power spectrum of f , denoted by Sf .

• Recall that white noise is defined with constant power spectrum.

Discrete representation of the image degradation model

• The discrete image degradation (4.121), after zero-padding, could be written
as circulant convolution

g(i , j) = (f ¯ h)(i , j) + ν(i , j) (4.136)

• If the original image f is of size M × N , one may be only interested in those
part of size M×N from the beginning of (4.133) or only those part is available
in a practical image acquiring device, i.e., we assume that the original and the
observed images are of the same resolution.
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• To simplify notations, we denote f , g and ν by a specified one dimensional
index i or j (e.g., by the dictionary order) and write (4.136) in the following
matrix form

g = hf + ν (4.137)

where f and g are vector in RN and h is a N × N matrix.

• Note that the resolutions of f and g may not be the same. Then the matrix
h may not be a square matrix.

• However, one should keep in mind that the matrix multiplication hf is circulant
convolution in the following.

Ill-posed Problem

• Given the basic formulation of image restoration problem above in (4.137).

• One of the most essential problems is the fact that image restoration is an
ill-conditioned problem at best and a singular problem at worst.

• These terms will be left undefined for the moment, their specific meaning is
to be calrified.
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• In the mathematical sense, the problem of image restoration corresponds to
the existence and uniqueness of an inverse transformation.
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• In the best case, the noise is zero.

• If the inverse transform h−1 does not exist, then there is no mathematical
basis for asserting that g can be exactly recovered from f .

• This is called singular.

• Singularity is common in image restoration.
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• In the worst case, the noise is not zero.

• Every possible function in the ensemble of the random process ν is potentially
the function added to g .

• There is an infinite family of object distribution.

• Even if h−1 exists, it may be ill-conditioned.

• I.e., a trivial(small) perturbation in g can produce non-trivial perturbations in
the restored image.

• Examples can be constructed by Riemann-Lebesgue lemma, [Andrews and Hunt, 1977].
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• Another ill-conditioned source is when the smallest eigenvalue approaches
zero.

• In the presence of noise(whether sensor noise or computational noise in the
solution process), neat singularity is associated with very small eigenvalues
and the solution of the resulting linear equations become difficult.

• Thus, solution of the digital restoration problem is thus tied to the solution of
ill-conditioned (near-singular) systems of linear equations and computational
methods become important.
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• There is no unique solution in view of noise and ill-conditioning, and some
meaningful rationale must be employed to pick a better solution.

• The selection of a specific solution from the family must be guided by some
criterion or a set of criteria.

• Virtually, all image restoration schemes can be posed as the solution of some
particular optimization problem.

• The restoration schemes will differ in the choice of criteria functions and/or
the specific side conditions included as problem constraints.

Unconstrained least square restoration

• In the total absence of any knowledge about the noise term ν, the philosophy
might be adopted that a criterion for solution would be based on an estimate
of the restored object distribution, f̂ , that would satisfy (4.137) with the noise
term ν being minimal in some sense.

• Picking the measure of ν as the norm of the vector, then the criterion stated
in the previous sentence is equivalent to finding a solution f̂ such that

< g − hf , g − hf >=< n, n >= ntrn (4.138)
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is minimum.

• This is the so called least squares solution philosophy.

• Let

L(f ) =< g − hf , g − hf >=
∑

i

(
gi −

∑
j

hij fj

)2

. (4.139)

• Differentiating with respect to each fj (using the one-dimensional index intro-
duced above),

∂L(f )

∂fj
= −2

∑
i

hij

(
gi −

∑

j ′
hij ′fj ′

)

i.e.,
∂L(f )

∂f
= −2htr(g − hf ).

• By the minimum criterion,

∂L(f )

∂f
= −2htr(g − hf̂ ) = 0.
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• Therefore
htrhf̂ = htrg .

• Then
f̂ = (htrh)

−1
htrg

• f̂ is equivalent to the inverse filtration if h is square and invertible,

f̂ = h−1g

• If H(u, v) has zeros, h is singular and neither h−1 nor (htrh)−1 exists.

Wiener Filtration

• Rather than seeking a solution consistent with minimum contamination by
noise, we wish to attack the restoration problem directly and propose a cri-
terion that explicitly evaluates how close the restoration is to the original
image.

• Assume an estimate of the original image f . Call this estimate f̂ .

• A number of criteria measuring the estimation error can be posed. We use
the minimum mean-square error (MMSE) here.
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• The error is defined as

ε = f − f̂ . (4.140)

• The MMSE criterion requires the total error of estimation to be a minimum
over entire ensemble of all possible images.

• The error as defined above can fluctuate both positive and negative.

• Hence, we consider the positive quantity

|ε|2 =< ε, ε > (4.141)

• Since the transform h is linear, pragmatism indicates a linear estimate.

• I.e., an estimate of f̂ derived by a linear operation on the observed image,

f̂ = lg (4.142)

We also assume that the above multiplication by l is also a two dimensional
circulant convolution. Let the Fourier transform of l be L.

• L is to be derived such that (4.141) is minimized.
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• Note

|ε|2 = ||F − F̂ ||2 = ||F − LG ||2

=
M−1∑
m=0

N−1∑
n=0

(L(u, v)G (u, v)− F (u, v)) (L(u, v)∗G (u, v)∗ − F (u, v)∗)

• Differentiating with respect to L(u, v)∗ we have

G (u, v)∗ (L(u, v)G (u, v)− F (u, v)) = 0

for u = 0, · · · , M − 1 and v = 0, · · · , N − 1.

• Then

L(u, v) =
G (u, v)∗F (u, v)

|G (u, v)2
(4.143)

=
(H(u, v)∗F (u, v)∗ + N(u, v)∗)F (u, v)

|H(u, v)|2|F (u, v)|2 + 2Re [H(u, v)F (u, v)N(u, v)∗] + |N(u, v)|2
(4.144)

• By the discrete correlation property (4.135),

|F |2 = Sf and |N |2 = Sn

being the power spectra of f and n respectively.
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• We assume the the signal f and the noise n are uncorrelated, i.e.,

Rfn = 0.

• By the discrete correlation property (4.135) again,

F [Rfn] = FN∗ = 0

• Then, by (4.143)

L(u, v) =
H(u, v)∗Sf (u, v)

|H(u, v)|2Sf (u, v) + Sn(u, v)

=
H(u, v)∗

|H(u, v)|2 + Sn(u,v)
Sf (u,v)
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• If the noise is not present, Sn = 0, Wiener filtration reduces to inverse filtra-
tion.
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• Usually the power spectra of the original image and the noise is not known a
priori, a simplification to Wiener filtration is use a constant K to denote the
ration of both of the spectra, assuming both are of constant power spectra.

• Then we have the following simplified Wiener filtration

L(u, v) =
H(u, v)∗

|H(u, v)|2 + K

• Note that
1

K
=

Sf (u, v)

Sn(u, v)

is the signal-to-noise ratio.
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Remark 4.4.1. 1. The estimate by Wiener filtration is equal to the theoretical
optimum only if the stochastic processes describing images f , g and the noise
ν are stationary Gaussian. These conditions are not usually fulfilled for real
life images.

2. The criterion of optimality is based on minimum mean square error and weights
all errors equally, a mathematically fully acceptable criterion that unfortunately
does not perform well if an image is restored for human viewing. The reason
is that humans perceive the restoration errors more seriously in constant-
gray-level area and in brightness regions and are much less sensitive to errors
located in dark regions and in high gradient areas.

3. Spatially variant degradations cannot be restored using the standard Wiener
filtration approach.

4. There are many other restoration techniques. This is an old but active research
field.
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Example 4.4.2. Restoration example by Wiener filtration. The Khoros workspace
for this example is here Wiener filtration.

file:../program/wiener.wk�


Chapter 5

Segmentation

• Image segmentation is one of the most important steps leading to the analysis
of processed image data.

• Its main goal is to divide an image into parts that have a strong correlation
with objects or areas of the real world contained in the image.

333
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• Two kinds of segmentation

• Complete segmentation:

– which results in set of disjoint regions uniquely corresponding with ob-
jects in the input image.

– Cooperation with higher processing levels which use specific knowledge
of the problem domain is necessary.

!

• Partial segmentation:

– in which regions do not correspond directly with image objects.

– Image is divided into separate regions that are homogeneous with respect
to a chosen property such as brightness, color, reflectivity, texture, etc.

– In a complex scene, a set of possibly overlapping homogeneous regions
may result. The partially segmented image must then be subjected to
further processing, and the final image segmentation may be found with
the help of higher level information.
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• However, there is a whole class of segmentation problems that can be solved
successfully using low-level processing only.

• In this case, the image commonly consists of contrasted objects on a uniform
background — simple assembly tasks, blood cells, printed characters, etc.

• Here, a simple global approach can be used and the complete segmentation
of an image into objects and background can be obtained.

• Such processing is context independent — no object-related model is used
and no knowledge about expected segmentation results contributes to the
final segmentation.

• Example: thresholding....
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• Image data ambiguity is one of the main segmentation problems, often ac-
companied by information noise.

!

• Totally correct and complete segmentation of complex scenes usually cannot
be achieved in this (low-level) processing phase.

• A reasonable aim is to use partial segmentation as an input to higher level
processing.
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• Segmentation methods can be divided into three groups according to the
dominant features they employ

– First is the global knowledge segmentation about an image or its
part; the knowledge is usually represented by a histogram of image fea-
tures.

– The Edge-based segmentation form the second group;

– The region-based segmentation is the third.
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• Many different characteristics used in edge detection or region growing

– brightness

– texture

– velocity field

– etc.

!

• Edge-based and region-bases segmentation approaches solve a dual problem
... border × region.

• Each region can be represented by its closed boundary and each closed bound-
ary describes a region.
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• Because of the different natures of the various edge- and region-based algo-
rithms, they may be expected to give somewhat different results and conse-
quently different information.

• The segmentation results of these two approaches can therefore be combined
in a single description structure.

• A common example of this is a region adjacent graph, in which regions are
represented by nodes and graph arcs represent adjacent relations based on
detected region borders, (3.2.3).
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5.1 Thresholding

• Gray-level thresholding is the simplest segmentation process.

• Many objects or image regions are characterized by constant reflectivity or
light absorption of their surface; a brightness constant or threshold can be
determined to segment objects and background.

• Thresholding is computationally inexpensive and fast — it is the oldest seg-
mentation method and is still widely used in simple applications.

• Thresholding can easily be done in real time using specialized hardware.

!

• A complete segmentation of an image R is a finite set of regions R1, · · · , RS ,

R =
S⋃

i=1

Ri , Ri

⋂
Rj = ∅ if i 6= j . (5.1)

• Complete segmentation can result from thresholding in simple scenes.
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• Thresholding is the transformation of an input image f to an output (seg-
mented) binary image g as follows

g(i , j) =

{
1, for f (i , j) ≥ T ;

0, for f (i , j) < T
(5.2)

where T is the threshold, g(i , j) = 1 for image elements of objects and
g(i , j) = 0 for image elements of the background (or vice versa).

!

Algorithm 5.1.1. Basic thresholding

Search all the pixels (i , j) of the image f . A pixel (i , j) is an object pixel if
f (i , j) ≥ T , and is a background pixel otherwise.
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• If objects do not touch each other, and if their gray-levels are clearly distinct
from background gray-levels, thresholding is a suitable segmentation method.

• Correct threshold selection is crucial for successful threshold segmentation.

• Threshold selection can be interactive or it can be the result of some threshold
detection method that will be discussed in the next sub-section.

Example 5.1.2. Basic thresholding example. The Khoros workspace for this
example is here Basic Thresholding.

– Show students the results with different thresholding values.

– Change the input image to airplane.kdf. Can we find a suitable
threshold?

file:../program/Basic_thresh.wk�
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• Only under very unusual circumstances can thresholding be successful using a
single threshold for the whole image (global thresholding), since in very simple
images there are likely gray-level variations in objects and background;

• This variation may be due to non-uniform lighting, non-uniform input device
parameters or a number of other factors.

!

• Segmentation using variable thresholding (also called adaptive threshold-
ing), in which the threshold value varies over the image as a function of local
image characteristics, can produce the solution in these cases.

– A global threshold is determined from the whole image f

T = T (f ). (5.3)

– On the other hand, local thresholds are position dependent

T = T (f , fc) (5.4)

where fc is the image part in which the threshold is determined.
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– One option is

∗ dividing the image f into sub-images fc and determining a threshold
independently in each sub-image;

∗ if a threshold cannot be determined in some sub-image, it can be
interpolated from thresholds determined in neighboring sub-images;

∗ each sub-image is then processed with respect to its local threshold.
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• Basic thresholding as defined by equation (5.2) has many modifications.

– Band-thresholding

∗ Segment an image into regions of pixels with gray levels from a set
D and into background otherwise

g(i , j) =

{
1, for f (i , j) ∈ D;

0, otherwise
(5.5)

∗ Thid thresholding can be useful, e.g., in micrroscopic blood cell
segmentations.

∗ This thresholding definition can serve as a border detector as well.

∗ If the gray-level set D is chosen to contain just these object-border
gray-levels, and if thresholding according to (5.5) is used, object
borders can be found.

∗ Isolines of gray can be found using this appropriate gray-level set D.
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– There are many modification that use multi-thresholding, after which
the resulting image is no longer binary, but rather an image consisting
of a very limited set of gray-levels

g(i , j) =





1, for f (i , j) ∈ D1;

2, for f (i , j) ∈ D2;

· · ·
n, for f (i , j) ∈ Dn;

0, otherwise

(5.6)

where each Di is a specified subset of gray-levels.



5.1. THRESHOLDING 347

– Another special method of thresholding defines semi-thresholding

∗ which is sometimes used to make human-assisted analysis easier

g(i , j) =

{
f (i , j), for f (i , j) ≥ T ;

0, for f (i , j) < T
(5.7)

∗ This process aims to mask out the image background, leaving gray
level information present in the objects
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• Thresholding has been presented relying only on gray-level image properties.
Note that this is just one of many possibilities;

• Thresholding can also be applied if the values f (i , j) do not represent gray-
levels, but instead represent gradient, a local texture property or the value of
any other image decomposition criterion.
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5.1.1 Threshold detection methods

• If some property of an image after segmentation is known a priori, the task of
threshold selection is simplified, since the threshold is chosen to ensure this
property is satisfied.

• A printed text sheet may be an example if we know that characters of the
text cover 1/p of the sheet area.

• Using this prior information about the ratio between the sheet area and char-
acter area, it is very easy to choose a threshold T (based on the image
histogram), such that 1/p of the image area has gray values less than T and
the rest has gray values larger than T.

• This method is called p-tile-thresholding.
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• Most complex methods of threshold detection are based on histogram shape
analysis.

• If an image consists of objects of approximately the same gray level that differs
from the gray level of the background, the resulting histogram is bi-modal.
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• Pixels of objects form one of its peaks, while pixels of the background form
the second peak.

• The histogram shape illustrates the fact that the gray values between the two
peaks are not common in the image, and probably result from border pixels
between objects and background.

• The chosen threshold must meet minimum segmentation error requirements.

• It makes intuitive sense to determine the threshold as the gray-level that has
a minimum histogram value between the two mentioned maxima.

• If the histogram is multi-modal, more thresholds may be determined at minima
between any two peaks.

• Each threshold gives different segmentation results, of course.

• Multi-thresholding is another option.
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• To decide if a histogram is bimodal or multi-modal may not be so simple in
reality.

• It is often impossible to interpret the significance of local histogram maxima.

!

• Bi-modal histogram threshold detection algorithms usually find the highest
local maxima first and detect the threshold as a minimum between them.

• This technique is called the mode method.

!

• To avoid detection of two local maxima belonging to the same global max-
imum, a minimum distance in gray levels between these maxima is usually
required or techniques to smooth histograms are applied.

• Note that histogram bi-modality itself does not guarantee correct threshold
segmentation — even if the histogram is bi-modal, correct segmentation may
not occur with objects located on a background of different gray-levels.

!
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• A two-part image with one half white and the second half black actually has
the same histogram as an image with randomly spread white and black pixels.

• This is one example showing the need to check threshold segmentaion results
whenever the threshold has been determined from a histogram only, using no
other image characteristics.

!

• Thresholding is a very popular tool in image segmentation, and a large variety
of thresholding detection techniques exist in addition to the main techniques
discussed above.

• Real-time threshold detection is a current research effort.
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5.1.2 Optimal thresholding

• This method is based on approximation of the histogram of an image using a
weighted sum of two or more probability densities with normal distributions.

• The threshold is set as the closest gray level corresponding to the probability
between the maxima of two or more normal distributions, which results in
minimum error segmentation, i.e., the number of mis-segmented pixels is
smallest,
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• Let’s consider a simple case in the following to illustrate the idea of this
method.

• Assume the image consists of the objects and background, where the objects
occupies θ percent of the pixels.

• Assume the objects are subject to a normal distribution N (mo ,σo) and that
the background is subject to a normal distribution N (mb,σb), as shown in
the above figure.



5.1. THRESHOLDING 357

• By the total probability rule, the image is with the following density function

d(z) = θN (mo , σo) + (1− θ)N (mb,σb) (5.8)

Proof. Let f be the random variable representing the image. Let o and b
be the random variables representing the object and background, respectively.
By the total probability rule,

Pr(A) =
∑

i

Pr(Hi )Pr(A|Hi ) (5.9)

where Hi are events such that
⋃

i Hi is the total space and Hi

⋂
Hj = ∅ if

i 6= j .

Then

Pr(f ≤ z) = Pr(f = o)Pr(f ≤ z |f = o) + Pr(f = b)Pr(f ≤ z |f = b)

= θPr(o ≤ z) + (1− θ)Pr(b ≤ z)

¤
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• Now let t be the threshold. Then the mis-segmentation takes place in the
following two cases.

• Background pixels are mis-classified into object pixels: the error prob-
ability (or the number of errors) is

∫ ∞
t

N (mb,σb)(z)dz = 1−
∫ t

−∞
N (mb,σb)(z)dz . (5.10)

• Object pixels are mis-classified into background pixels: the error prob-
ability (or the number of errors) is

∫ t

−∞
N (mo , σo)(z)dz . (5.11)

• So the total error of mis-segmentation is, again by the total probability rule

E (t) = θ

∫ t

−∞
N (mo , σo)(z)dz +(1−θ)

[
1−

∫ t

−∞
N (mb,σb)(z)dz

]
(5.12)

• The optimal threshold is

t̂ = arg min
t

E (t) (5.13)
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• Differentiating E (t), we find t̂ should satisfy

∂E (t)

∂t
= θN (mo ,σo)(t)− (1− θ)N (mb,σb)(t) = 0 (5.14)

• I.e.,
θN (mo ,σo)(t) = (1− θ)N (mb, σb)(t) (5.15)

• Substituting the formulas for the Gaussians into the above equation, we obtain

θ√
2πσ2

o

e
− (t−µo )2

2σ2
o =

1− θ√
2πσ2

b

e
− (t−µb)2

2σ2
b (5.16)

• Or
(t − µo)2

2σ2
o

− (t − µb)2

2σ2
b

= log
θσb

(1− θ)σo
(5.17)

• Two specific examples are as following.

• If θ = 1
2

and σo = σb, the optimal threshold is

t =
mo + mb

2
. (5.18)
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• If σo = σb, the optimal threshold is

t =
mo + mb

2
+

σo

mb −mo
log

θ

1− θ . (5.19)

!

• The above approach can be easily extended to the case using the combination
of several Gaussians to approximate the the histogram of the image and to
multi-thresholding.

• The difficulty with this method is in estimating normal distribution parameters
together with the uncertainty that the distribution may be considered normal.

• Alternatively, other minimization approaches may be used.

!

• The following algorithm represents a simpler version that shows a rational for
this approach and works well even if the image histogram is not bi-modal.

• It assumes that regions of two main gray-levels are present in image, thresh-
olding of printed text being an example.
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• The algorithm is iterative, four to ten iterations usually being sufficient.

Algorithm 5.1.3. Iterative optimal threshold selective algorithm

1. Assuming no knowledge about the exact location of objects, consider as
a first approximation that the four corners of the image contain back-
ground pixels only and the remainder contains object pixels;

2. At step n, compute µn
B and µn

O as the mean background and object gray-
level, respectively, where segmentation into background and objects at
step n is defined by the threshold T n determined in the previous step;

3. Set

T (n+1) =
µn

B + µn
O

2
. (5.20)

T (n+1) now provides an updated background-object distinction.

4. If T (n+1) = T n, halt; otherwise return to step 2.
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Example 5.1.4. Threshold a grayscale image using the terative optimal threshold
selective algorithm. The matlab script from visionbook is here Histogram equal-
ization Example.

file:../../../visionbook/06Segm1/imthresh_demo.m�
file:../../../visionbook/06Segm1/imthresh_demo.m�
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5.2 Edge-based segmentation

• Edge-based segmentation represents a large group of methods based on in-
formation about edges in the image; it is one of the earliest segmentation
approaches and still remains very important.

• Edge-based segmentations rely on edges found in an image by edge detecting
operators — these edges mark image locations of discontinuities in gray level,
color, texture, etc.

• But the image resulting from edge detection cannot be used as a segmentation
result.

• Supplementary processing steps must follow to combine edges into edge chains
that correspond better with borders in the image.

• The final aim is to reach at least a partial segmentation — that is, to group
local edges into an image where only edge chains with a correspondence to
existing objects or image parts are present.
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• We will discuss several edge-based segmentation methods which differ in
strategies leading to final border construction, and also differ in the amount
of prior information that can be incorporated into the method.

• The more prior information that is available to the segmentation process, the
better the segmentation results that can be obtained.

!

• The most common problems of edge-based segmentation, caused by image
noise or unsuitable information in an image, are an edge presence in locations
where there is no border, and no edge presence where a real border exists.

• First we will discuss simple edge-based methods requiring minimum prior infor-
mation and the necessity for prior knowledge will increase during the section.
Construction of regions from edge-based partial segmentations is discussed at
the end of the section.
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5.2.1 Edge image thresholding

• Almost no zero-value pixels are present in an edge image, but small edge
values correspond to non-significant gray level changes resulting from, e.g.,
quantization noise, small lighting irregularities, etc.

• Simple thresholding of an edge image can be applied to remove these small
values.

• The approach is based on an image of edge magnitude processed by an ap-
propriate threshold.

• Selection of an appropriate global threshold is often difficult and sometimes
impossible; p-tile thresholding can be applied to define a threshold.

• Alternatively, non-maximal suppression (4.3.8) and hysteresis thresholding
(4.3.5) can be used as was introduced in the Canny edge detector.
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5.2.2 Edge relaxation

• Borders resulting from the previous method are strongly affected by image
noise, often with important parts missing.

• Considering edge properties in the context of their mutual neighbors can in-
crease the quality of the resulting image.

• All the image properties, including those of further edge existence, are itera-
tively evaluated with more precision until the edge context is totally clear —
based on the strength of edges in a specified local neighborhood, the confi-
dence of each edge is either increased or decreased.

• A weak edge positioned between two strong edges provides an example of
context; it is highly probable that this inter-positioned weak edge should be
a part of a resulting boundary.

• If, on the other hand, an edge (even a strong one) is positioned by itself with
no supporting context, it is probably not a part of any border.
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• A method we are going to discuss here is a classical example of edge context
evaluation.

• This method uses crack edges (edges located between pixels), (2.3.1).

• Edge context is considered at both ends of an edge, giving the minimal edge
neighborhood.

• The central edge e has a vertex at each of its ends and three possible border
continuations can be found from both of these vertexes.
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• All three possible edge positions at the end of the edge e must be included
to cover all the possible ways the border can continue from both ends of e.

• Edge relaxation aims for continuous border construction, so we discuss the
edge patterns that can be found in the local neighborhood.

• Let each vertex be evaluated according to the number of edges emanating
from the vertex, not counting the edge e. Call this number the vertex type.

• The type of edge e can then be represented using a number pair i−j describing
edge patterns at each vertex, where i and j are the vertex types of the edge
e.
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• By symmetry, we only list the cases where i ≤ j . The following context
situations are possible:

– 0− 0: isolated edge — negative influence on the edge confidence;

– 0− 2, 0− 3: dead end — negative influence on edge confidence;

– 0− 1: uncertain — weak positive, or no influence on edge confidence;

– 1− 1: continuation — strong positive influence on edge confidence;

– 1 − 2, 1 − 3: continuation to border intersection — medium positive
influence on edge confidence;

– 2 − 2, 2 − 3, 3 − 3: bridge between borders — not necessary for seg-
mentation, no influence on edge confidence.
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• Edge relaxation is an iterative method, with edge confidences converging ei-
ther to zero (edge termination) or one (the edge forms a border).

• The confidence of each edge e in the first iteration can be defined as a
normalized magnitude of the crack edge, with normalization based on

– either the global maximum of crack edges in the whole image;

– or on a local maximum in some large neighborhood of the edge, thereby
decreasing the influence of a few very high values of edge magnitude in
the image.
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Algorithm 5.2.1. Edge Relaxation

1. Evaluate a confidence c (1)(e) for all crack edges e in the image;

2. Find the edge type of each edge based on edge confidences in its neighborhood;

3. Update the confidence c (k+1)(e) according to its type and its previous confi-
dence c (k)(e);

4. Stop if all edge confidence have converged either to 0 or 1. Repeat steps (2)
and (3) otherwise.

• The main steps of the above algorithm are evaluation of vertex types followed
by evaluation of edge types, and the manner in which the edge confidences
are modified.
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• A vertex is considered to be of type i if

type(i) = arg max
k=0,1,2,3

type(k) (5.21)

where

type(0) = (m − a)(m − b)(m − c) (5.22)

type(1) = a(m − b)(m − c) (5.23)

type(2) = ab(m − c) (5.24)

type(3) = abc (5.25)

where a, b, c are the normalized values of the other incident crack edges,
a ≥ b ≥ c ,

m = max{a, b, c , q}. (5.26)

The introduction of the quantity q ensures that type(0), is non-zero for small
values of a and is comprable with respect to type(1), type(2), and type(3).

• For example, consider the case q = 0.5, and a, b, c take the values 0 or 1.
Equation gives the correct vertex type as we discussed above.

• Another non-trivial example, choosing q = 0.1, a vertex (a, b, c) = (0.5, 0.05, 0.05)
is a type 1 vertex, while a vertex (0.3, 0.2, 0.2) is a type 3 vertex.
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• Similar results can be obtained by simply counting the number of edges ema-
nating from the vertex above a threshold value. This coincides with the above
example where a, b, c only take the 0 and 1 values., (5.2.2).
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• Edge confidences are modified as follows, increased or decrease according to
the influence on the edge confidence, (5.21):

confidence increase: c (k+1)(e) = min{1, c (k)(e) + δ} (5.27)

confidence decrease: c (k+1)(e) = max{0, c (k)(e)− δ} (5.28)

(5.29)

!

• Edge relaxation, as described above, rapidly improves the initial edge labeling
in the first few iterations.
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• Unfortunately, it often slowly drifts, giving worse results than expected after
larger numbers of iterations.

• The reason for this strange behavior is in searching for the global maximum of
the edge consistency criterion over all the image, which may not give locally
optimal results.

• A theoretical explanation, convergence proof, and practical solutions are given
in the reference in the text book.

• A solution is found in setting edge confidences to zero under a certain thresh-
old, and to one over another threshold which increases the influence of original
image data.

• Therefore, one additional step must be added to the edge confidence compu-
tation (5.27) and (5.28)

if c (k+1)(e) > T1 then assign c (k+1)(e) = 1 (5.30)

if c (k+1)(e) < T2 then assign c (k+1)(e) = 0 (5.31)

(5.32)

where T1 and T2 are parameters controlling the edge relaxation convergence
speed and resulting border accuracy.
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Example 5.2.2. Edge detection by edge relaxation.
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(a) Original image (b) Edge detection by edge relaxation
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• More recent approaches to edge relaxation use edge and border information
derived from image data.

• A method to determine probabilistic distribution of possible edge neighbor-
hood is given in recent literature.
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5.2.3 Border tracing

Simple border tracing

• If a region border is not known but regions have been defined in the image,
borders can be uniquely detected.

• First, let us assume that the image with regions is either binary or that regions
have been labeled.

• An inner region border is a subset of the region while an outer border is not
a subset of the region, § 2.3.1.

• The first goal is to determine inner region borders.
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• The following algorithm covers inner boundary tracing in both 4-connectivity
and 8-connectivity.

Algorithm 5.2.3. Inner boundary tracing

1. Search the image from top left until a pixel of a new region is found;
This pixel P0 then has the minimum column value of all pixels of that
region having the minimum row value. Pixel P0 is a starting pixel of the
region border.

Define a variable dir which stores the direction of the previous move
along the border from the previous border element to the current border
element. Assign

(a) dir = 3 if the border is detected in 4-connectivity;

(b) dir = 7 if the border is detected in 8-connectivity.

2. Search the 3× 3 neighborhood of the current pixel in an anti-clockwise
direction, beginning the neighborhood search in the pixel positioned in
the direction

(a) (dir + 3) mod 4 if the border is detected in 4-connectivity;

(b) (dir + 7) mod 8 if dir is even;
(dir + 6) mod 8 if dir is odd.
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The first pixel found with the same value as the current pixel is a new
boundary element Pn.

Update the dir value.

3. If the current boundary element Pn is equal to the second border ele-
ment P1, and if the previous border element Pn−1 is equal to P0, stop.
Otherwise repeat step 2.

4. The detected inner border is represented by pixels P0 · · ·Pn−2.
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• The above algorithm works for all regions larger than one pixel.

• This algorithm is able to find region borders but does not find borders of
region holes.

• To search for hole borders as well, the border must be traced starting in each
region or hole border element if this element has never been a member of any
border previously traced.

• The search for border elements always starts after a currently traced border is
closed, and the search for ‘unused’ border elements can continue in the same
way as the search for the first border element was done.

• Note that if objects are of unit width, more conditions must be added.
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• If the goal is to detect an outer region border, the given algorithm may still
be used based on 4-connectivity.

Algorithm 5.2.4. Outer boundary tracing

1. Trace the inner region boundary in 4-connectivity until done;

2. The outer boundary consists of all non-region pixels that were tested during
the search process; if some pixels were tested more than once, they are listed
more than once in the outer boundary list.
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• Note that some border elements may be repeated in the outer border up to
three times. See the following figure.

• The outer region border is useful for deriving properties such as perimeter,
compactness, etc.
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Extended border tracing

• The inner border is always part of a region but the outer border never is.

• Therefore, if two regions are adjacent, they never have a common border,
which causes difficulties in higher processing levels with region description,
region merging, etc.

• The inter-pixel boundary extracted, for instance, from crack edges is common
to adjacent borders; nevertheless, its position cannot be specified in pixel
co-ordinates.

• Boundary properties better than those of outer borders may be found in
extended borders, [Pavlidis, 1977].
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• The advantages of the extended boundary definition are:

– it defines a single common border between adjacent regions;

– it may be specified using standard pixel co-ordinates;

– all the useful properties of the outer border still remain, for deriving
properties such as perimeter, compactness, etc.;

– the boundary shape is exactly equal to the inter-pixel shape but is shifted
one half-pixel down and one half-pixel right



388 CHAPTER 5. SEGMENTATION

• The existence of a common border between regions makes it possible to in-
corporate into the boundary tracing a boundary description process.

• An evaluated graph consisting of border segments and vertexes may result
directly from the boundary tracing process; also the border between adjacent
regions may be traced only once and not twice as in conventional approaches.
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• The extended boundary is defined using 8-neighborhoods and the pixels are
coded according to the following figure:

• E.g., P4(P) denotes the pixel immediately to the left of pixel P .
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• Four kinds of inner boundary pixels of a region R are defined; if Q denotes
the pixels outside the region R , then a pixel P ∈ R is

a LEFT pixel of R if P4(P) ∈ Q

a RIGHT pixel of R if P0(P) ∈ Q

an UPPER pixel of R if P2(P) ∈ Q

a LOWER pixel of R if P6(P) ∈ Q.

• Let LEFT(R), RIGHT(R), UPPER(R), LOWER(R) represent the correspond-
ing subsets of R .
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• The extended boundary EB is defined as the following:

EB ={P : P ∈ LEFT(R)} ∪ {P : P ∈ UPPER(R)}
∪ {P6(P) : P ∈ LOWER(R)} ∪ {P0(P) : P ∈ RIGHT(R)}
∪ {P7(P) : P ∈ RIGHT(R)}.
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• The extended boundary can easily be constructed from the outer boundary.

• Using an intuitive definition of RIGHT, LEFT, UPPER, and LOWER outer
boundary points, the extended boundary may be obtained by shifting all the
UPPER outer boundary points one pixel down and right, shifting all the LEFT
outer boundary points one pixel to the right, and shifting all the RIGHT outer
boundary points one pixel down. The LOWER outer boundary point positions
remain unchanged.

• The following figure illustrates the construction.
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• A more sophisticated approach for extended boundary tracing is based on
detecting common boundary segments between adjacent regions and vertex
points in boundary segment connections.

• The detection process is based on a look-up table, which defines all 12 possible
situations of the local configuration of 2× 2 pixel windows, depending on the
previous detected direction of boundary, and on the status of window pixels
which can be inside or outside a region.
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Figure 5.1:
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Algorithm 5.2.5. Extended boundary tracing via look-up table.

1. Define a starting pixel of an extended boundary in a standard way (the first re-
gion pixel found in a left-to-right and top-to-bottom line-by-line image search).

2. The first move along the traced boundary from the starting pixel is in direction
dir = 6 (down), corresponding to the situation (i) in Fig. 5.1.

3. Trace the extended boundary using the look-up table in the above figure until
a closed extended border results.

• Note that there is no hole-border tracing included in the algorithm.

• The holes are considered separate regions and therefore the borders between
the region and its hole are traced as a border of the hole.
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• The look-up table approach makes the tracing more efficient than conventional
methods and makes parallel implementation possible.

• A pseudo-code description of algorithmic details is given in [Liow, 1991], where
a solution to the problem of tracing all the borders in an image in an efficient
way is given.

• In addition to extended boundary tracing, it provides a description of each
boundary segment in chain code form together with information about ver-
tices’s.

• This method is very suitable for representing borders in higher level segmenta-
tion approaches including methods that integrate edge-based and region-based
segmentation results.

• Moreover, in the conventional approaches, each border between two regions
must be traced twice. The algorithm can trace each boundary segment only
once storing the information about what has already been done in double-
linked lists.
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Border tracing in gray-level images

• A more difficult situation is encountered if the borders are traced in gray level
images where regions have not yet been defined.

• The border is represented by a simple path of high-gradient pixels in the image.

• Border tracing should be started in a pixel with a high probability of being a
border element, and then border construction is based on the idea of adding
the next elements which are in the most probable direction.

• To find the following border elements, edge gradient magnitudes and directions
are usually computed in pixels of probable border continuation.
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5.2.4 Border detection as graph searching

• Whenever additional knowledge is available for boundary detection, it should
be used.

• One example of prior knowledge is a known starting point and a ending point
of the border, even if the precise border location is not known.

• Even some relatively weak additional requirements such as smoothness, low
curvature, etc., may be included as prior knowledge.

• If this kind of supporting information is available in the border detection task,
general problem solving methods used in AI can be applied.
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• A graph is a general structure consisting of a set of nodes ni and arcs between
the nodes (ni , nj ), § 3.2.3. We consider oriented and numerically weighted
arcs, these weights being called costs.

• The border detection process is transformed into a search for the optimal path
in the weighted graph, the aim being to find the best path that connects two
specified nodes, the starting and ending nodes.

• While cost minimization is considered throughout this section, the approach
works equally well if a maximum cost path is sought.

!

• Assume that both edge magnitude s(x) and edge direction φ(x) information
is available in an edge image.

• Each image pixel corresponds to a graph node weighted by a values s(x).

• Two nodes ni and nj corresponding to two 8-connected adjacent pixels xi and
xj are connected by an arc if the edge directions φ(xi ) and φ(xj ) match the
local border direction in a sense to be defined below.
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• We can apply the following rules to construct the graph: To connect a node
ni representing the pixel xi with a node nj representing the pixel xj ,

1. pixel xj must be one of three existing neighbors of xi in the direction
d ∈ [φ(xi )− π/4,φ(xi ) + π/4];

2. s(xi ) and s(xj ) must be greater than T , where T is some preset threshold
of edge significance.

!

• Another common requirement is to connect two nodes only if the difference
of their edge direction is less than π/2.

!

• These conditions can be modified in specific edge detection problems.
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• The following figure shows an image of edge directions, with only significant
edges according their magnitudes listed, and the oriented graph constructed
in accordance with the edge image.

!

• The application of graph search to edge detection was first published in
[Martelli, 1972].

• Let xA be the starting border element, and xB be the end border element.
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• To use graph search for region border detection, a method of oriented weighted-
graph expansion must first be defined (one method is just described.)

• A cost function f (xi ) must also be defined that is a cost estimate of the
path between nodes nA and nB (pixels xA and xB) which goes through an
intermediate node ni (pixel xi ).

• The cost function f (xi ) typically consists of two components: an estimate
g̃(xi ) of the minimum path cost between the starting element xA and xi , and
an estimate h̃(xi ) of the minimum path cost between xi and the end border
element xB .

• The cost g̃(xi ) of the path from the starting element xA to the node xi is
usually a sum of costs associated with the arcs or nodes that are in the path.

• The cost function must be separable and monotonic with respect to the path
length, and therefore the local costs associated with arcs are required to be
non-negative.

• A simple example of g̃(xi ) satisfying the given conditions is to consider the
path length from xA to xi .

• An estimate h̃(xi ) may be the length of the border from xi to xB , it making
sense to prefer shorter borders between xA and xB as the path with lower cost.
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• The following graph search algorithm (Nilsson’s A-algorithm from AI) can be
applied to the border detection.

!

Algorithm 5.2.6. A-algorithm graph search

1. Expand the starting node nA and put all its successors into an OPEN list
with pointers back to the starting node nA. Evaluate the cost function for
expanded node;

2. If the OPEN list is empty, fail; Determine the node ni from the OPEN list
with the lowest associated cost f (ni ) and remove it. If ni = nB , then track
back through the pointers to find the optimum path and stop;

3. If the option to stop was not taken in step 2, expand the specified node ni ,
and put its successors on the OPEN list with pointers back to ni . Compute
their costs f . Go to step 2.
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Example 5.2.7. Example of a graph searching using the A-algorithm, based on
(weighted) path length.



5.2. EDGE-BASED SEGMENTATION 405



406 CHAPTER 5. SEGMENTATION



5.2. EDGE-BASED SEGMENTATION 407



408 CHAPTER 5. SEGMENTATION



5.2. EDGE-BASED SEGMENTATION 409



410 CHAPTER 5. SEGMENTATION



5.2. EDGE-BASED SEGMENTATION 411



412 CHAPTER 5. SEGMENTATION



5.2. EDGE-BASED SEGMENTATION 413

• If no additional requirements are set on the graph construction and search,
this process can easily result in an infinite loop.
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• To prevent this behavior, no node expansion is allowed that puts a node on
the OPEN list if this node has already been visited, and put on the OPEN list
in the past.

• On the other hand, prohibiting the backward search may limit the shapes of
borders that can be successfully identified.

• A simple solution is not to allow searching in a backward direction.

• It may be possible to straighten the processed image (and the graph).
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• The estimate of the cost of the path from the current node ni to the end
node nB has a substantial influence on the search behavior.

• If this estimate h̃(ni ) of the true cost h(ni ) is not considered, so h̃(ni ) = 0,
no heuristic is included in the algorithm and a breadth-first search is done.

• Hence, the detected path will always be optimal according to the criterion
used, the minimum cost path will always be found.

• However, applying heuristics, the detected cost does not always have to be
optimal but the search can often be much faster.

Z

• The closer the estimate h̃(ni ) is to h(ni ), the lower the number of nodes
expanded in the search.

• The problem is that the exact cost of the path from the node ni to the end
node nB is not known beforehand.

• In some applications, it may be more important to get a quick rather than an
optimal solution.

• Optimality is not guaranteed but the number of expanded nodes will typically
be smaller because the search can be stopped before the optimum is found.
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• A crucial question is how to choose the evaluation cost functions for graph-
search border detection.

• A good cost function should have elements common to most edge detection
problems and also specific terms related to the particular application.

• Some generally applicable cost functions are:

1. Strength of edges forming a border:

The heuristic “the stronger the edges that form the border, the higher
the probability of the border” is very natural and almost always gives
good results.

If a border consists of strong edges, the cost of that border is small.

The cost of adding another node to the border will be

(
max

xk∈image
s(xk)

)
− s(xi ). (5.33)
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2. Border curvature:

Sometimes, borders with a small curvature are preferred.

If this is the case, the total border curvature can be evaluated as mono-
tonic function of local curvature increments:

diff [φ(xi )− φ(xj )] , (5.34)

where diff is some suitable function evaluating the difference in edge
directions in two consecutive border elements.

3. Estimates of the distance to the goal (end point):

If a border is reasonably straight, it is natural to support expansion of
those nodes that are located closer to the goal node than other nodes:

h̃(xi ) = dist(xi , xB). (5.35)

• Since the range of border detection applications is quite wide, the cost func-
tions described may need some modification to be relevant to a particular
task.
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Example 5.2.8. Border detection by graph searching.
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• Graph searching techniques offer a convenient way to ensure global optimality
of the detected contour.

• Searching for all the borders in the image without knowledge of the start and
end-points is more complex.

• A good overview of recent detection and edge linking methods can be found
in [van der Heijden, 1995].
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5.2.5 Border detection as dynamic programming

• Dynamic Programming is an optimization method, which searches for optima
of functions in which not all variables are simultaneously interrelated.

• Consider the following simple boundary-tracing problem,

• The aim is to find the best path (minimum cost) between one of the possi-
ble start points A, B , C and one of the possible ending points G , H , I . The
boundary must be contiguous in 8-connectivity. The graph representing the
problem, together with assigned partial cost is shown.
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• The main idea of the principle of optimality is: Whatever the path to the node
E was, there exists an optimal path between E and the end point. In other
words, if the optimal path [start point-endpoint] goes through E , then both
its parts [start point-E ] and [E -end point] are also optimal, respectively.

• Therefore, the optimal path can be found by following only the partial optimal
path, sucessively layer-by-layer.
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• The end point with the minimum path cost represents the optimum path; node
H is therefore the optimal boundary end point, and the optimal boundary is
B − F − H (Fig. (f)).
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• The following is an example in which node costs are used (not arc cost as
in the above example). Note that the graph, the cost function and resulting
path are identical to those used in the previous section.
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• If the graph has more layers, the process is repeated until one of the end
points is reached. Each repetition consists of a simpler optimization as shown
in the following figure:

C (xm+1
k ) = min

i
[C (xm

i ) + g m(i , k)] , (5.36)

where C (xm+1
k ) is the new cost assigned to the node xm+1

k , and g m(i , k) is
the partial path cost between nodes xm

i and xm+1
k .
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• For the complete optimization problem,

min
[
C (x1, x2, · · · , xM)

]
= min

k

[
C (xM

k )
]

, (5.37)

where

– xM
k are the end point nodes,

– M is the number of graph layers between start points and end points,

– C (x1, x2, · · · , xM) denotes the cost of a path between the first and the
last (M th) graph layer.

• The final optimal path results from back-tacking through the searched graph.
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• Requiring an 8-connected border and assuming n nodes in each graph layer
m,

– 3n cost combinations must be computed for each layer,

– 3n(M − 1) + n is the total number of cost combination computations.

• Compared to the brute-force enumerative search, where n3M−1 combinations
must be computed, the improvement is obvious.

!

• Note that the number of neighbors depends on the definition of contiguity
and definition of the searched graph and is not limited to three.
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Algorithm 5.2.9. Boundary tracing as dynamic programming

1. Specify initial costs C (x1
i ) in the first graph layer, i = 1, · · · , n and partial

path costs g m(i , k), m = 1, · · · , M − 1.

2. Repeat step 3 for all m = 1, · · · , M − 1.

3. Repeat step 4 for all nodes k = 1, · · · , n in the graph layer m.

4. Let
C (xm+1

k ) = min
i=−1,0,1

[
C (xm

k+i ) + g m(i , k)
]

. (5.38)

Set pointer from node xm+1
k back to node xm∗

i where ∗ denotes the optimal
predecessor.

5. Find an optimal node xM∗
i in the last graph layer M and obtain and optimal

path by back-tracking through the pointers from xM∗
i to x1∗

i .
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• It has been shown that heuristic search may be more efficient than dynamic
programming for finding a path between two nodes in a graph.

• Further, an A-algorithm-based graph search does not require explicit definition
of the graph (only the rule for node expansion).

• However, dynamic programming presents an efficient way of simultaneously
searching for optimal paths from multiple starting and ending points.

• If these points are not known, dynamic programming is probably a better
choice, especially if computation of the partial costs g m(i , k) is simple.

• Nevertheless, which approach is more efficient for a particular problem depends
on evaluation functions and on the quality of heuristics for an A-algorithm.

• Please refer to the text book for further discussions.
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• Tracing borders of elongated objects such as roads and rivers in aerial pho-
tographs and vessels in medical images, represents typical applications of dy-
namic programming in image segmentation.

Example 5.2.10. “Find a minimum-cost connected path between the first and last
row of an image matrix. A connected path is only allowed to move by at most one
pixel horizontally for each vertical step. The advantage of dynamic programming
is that the algorithm is fast and exact (not heuristic). While the formulation may
seem restrictive, a surprisingly large number of segmentation and boundary finding
problems may be coerced into it.” (from dpboundary.m)

“We demonstrate dpboundary on the task of tracing a blood vessel on part of
an MRI image of a lower limb (leg). Since the vessel is bright, we take a negative
value of the brightness as the cost function.” (from dpboundary demo.m)

The matlab script from visionbook is here Border detection by dynamic pro-
gramming.

file:../../../visionbook/06Segm1/dpboundary_demo.m�
file:../../../visionbook/06Segm1/dpboundary_demo.m�


5.2. EDGE-BASED SEGMENTATION 431

5.2.6 Hough transform

• If an image consists of objects with known shape and size. segmentation can
be viewed as a problem of finding this object within an image.

• Typical tasks are to locate circular pads in printed circuit boards. or to find
objects of specific shapes in aerial or satellite data, etc.

• One of many possible ways to solve these problems is to move a mask with an
appropriate shape and size along the image and look for correlation between
the image and the mask.

• Unfortunately, the specified mask often differs too much from the object’s
representation in the processed data, because of shape distortions, rotation,
zoom, etc.

• One very effective method that can solve this problem is the Hough transform,
which can even be used successfully in segmentation of overlapping or semi-
occluded objects.
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• To introduce the main concepts of the Hough transform, consider an example
of circle detection.
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• Let the task be to detect a dark circle of a known radius r in an image with
a uniform bright background.

• The method starts with a search for dark image pixels; after such a pixel is
found, a locus of potential center points of the circle associated with it can
be determined.

• Such a locus of potential center points forms a circle with the radius r as
demonstrated in the figure (b).

• If the loci of potential circle centers are constructed for all dark pixels identified
in the original image, the frequency can be determined with which each pixel
of the image occurs as an element of the circle-center loci.

• As seen from the figure (c), the true center of the circle being sought is
represented by the pixel with the highest frequency of occurrence in the circle-
center loci.

• Thus, the center of the searched circle is determined.

• With the known circle radius, the image segmentation is completed.
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• The original Hough transform was designed to detect straight lines and curves
and this original method can be used if analytic equations of object borderlines
are known — no prior knowledge of region position is necessary.

• An advantage of this approach is its robustness of segmentation results; that
is, segmentation is not too sensitive to imperfect data or noise.

• It is often impossible to get analytic expressions describing border.

• There is a generalized Hough transform designed to find objects even if an
analytic expression of the border is not known.
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• The basic idea of the method can be seen from the simple problem of detecting
a straight line in an image.

• A straight line is defined by two points A = (x1, y1) and B = (x2, y2), shown
in the following figure.

Figure 5.2: Hough transform principle: (a) image space; (b) k , q parameter space.
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• All straight lines going through the point A are given by the expression y1 =
kx1 + q for some values of k and q.

• This means that the same equation can be interpreted as an equation in the
parameter space k , q.

• All the straight lines going through the point A are then represented by the
equation

q = −kx1 + y1 (5.39)

in the parameter space k , q.

• Straight lines going through the point B can likewise be represented as q =
−kx2 + y2.

• The only common point of both straight lines in the k , q parameter space
is the point which in the original image space represents the only existing
straight line connecting points A and B .
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• This means that any straight line in the image is represented by a single point
in the k , q parameter space and any part of this straight line is transformed
into the same point.

• The main idea of this method is to determine all the possible line pixels
in the image, by transforming all lines that can go through the pixels into
corresponding points in the parameter space and detecting the points k , q in
the parameter space that frequently resulted from the Hough transform of
lines, q = −kx2 + y2, in the image.

• The main steps will be descrined in details in the following.

!

• Detection of all possible line pixels in the image may be achieved by applying
an edge detector to the image; then, all pixels with edge magnitude exceeding
some threshold can be considered possible line pixels (referred to as edge
pixels below).

!

• In the general case, nothing is known about lines in the image and therefore
lines of any direction may go through any of the edge pixels.
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• In reality, the number of these lines is infinite; however, for practical purposes,
only a limited number of line directions may be considered.

• The possible directions of lines define a discretization of the parameter k .

• Similarly, the parameter q is sampled into a limited number of values.

• The parameter space is not continuous any more, but rather is represented by
a rectangular structure of cells.

• This array of cells is called the accumulator array A, whose elements are
accumulator cells A(k , q).

!

• For each edge pixel, parameters k , q are determined which represent lines of
allowed direction going through this pixel.

• For each such line, the values of line parameters k , q are used to increase the
value of the accumulator cell A(k , q).

• If a line represented by an equation y = kx + q is present in the image, the
value of the accumulator cell A(k , q) will be increased many times — as many
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times as the line y = kx + q us detected as a line possibly going through any
of the edge pixels.

!

• For any pixel P , lines going through it may have any direction k (from the
set of allowed directions), but the second parameter q is constrained by the
image co-ordinates of the pixel P and the direction k .

• Therefore, lines existing in the image will cause large values of the appropriate
accumulator cells in the image, while other possibly going through edge pixels,
which do not correspond to lines existing in the image, have different k , q
parameters for each edge pixel, and therefore the corresponding accumulator
cells are increased rarely.

• In other words, lines existing in the image may be detected as high-valued
accumulator cells in the accumulator array, and the parameters of the detected
line are specified by the accumulator array co-ordinates.

• As a result, line detection in the image is transformed to detection of local
maxima in the accumulator space.
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• It has been noted that an important property of the Hough transform is its
insensitivity to mission part of lines, to image noise, and to other non-line
structures co-existing in the image.

• This is caused by the robustness of transformation from the image space to
the accumulator space — a missing part of the line will cause only a lower
local maximum because a smaller number of edge pixels contributes to the
corresponding accumulator cell.
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• Insensitivity to data imprecision and noise can be seen in the following figure.
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• Note that the parametric equation of the line y = kx + q is appropriate
only for explanation of the Hough transform principles — it causes difficulties
in vertical line detection (k → ∞) and in nonlinear discretization of the
parameter k .

• If a line is represented as

x cos θ + y sin θ = s, (5.40)

the Hough transform does not suffer from those limitations. All the properties
of the Hough transform still hold for this parametrization.

Figure 5.3: Hough transform in s, θ space. (a) Straightline in image space. (b) s, θ
parameter space.
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• A practical example showing the segmentation of an MR image of the brain
into the left and right hemispheres is given in the following figure.
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• Discretization of the parameter space is an important part of this approach;
also detecting the local maxima in the accumulator array is a non-trivial prob-
lem.

• In reality, the resulting discrete parameter space usually has more than one
local maximum per line existing in the image, and smoothing the discrete
parameter space may be a solution.

• The above remarks remain valid if more complex curves are sought in the
image using the Hough transform, the only difference being the dimensionality
of the accumulator array.
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• Generalization to more complex curves that can be described by an analytic
equation is straightforward.

• Consider an arbitrary curve represented by an equation

f (x , a) = 0, (5.41)

where a is the vector of curve parameters.
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Algorithm 5.2.11. Curve detection using the Hough transform

1. Quantize parameter space within the limits of parameters a. The dimension-
ality n of the parameter space is given by the number of parameters of the
vector a.

2. Form an n-dimensional accumulator array A(a) with structure matching the
quantization of the parameter space; set all elements to zero.

3. For each image point (x1, x2) with non-zero pixel value in the appropriately
thresholded gradient image, increase all accumulator cells A(a) if f (x , a) = 0,

A(a) = A(a) + ∆A (5.42)

for all a inside the limits used in step 1.

4. Local maxima in the accumulator array A(a) correspond to realizations of
curves f (x , a) that are present in the original image.
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• If we are looking for circles, the analytic expression f (x , a) of the desired curve
is

(x1 − a)2 + (x2 − b)2 = r 2 (5.43)

where the circle has center (a, b) and radius r .

• Therefore, the accumulator data structure must be 3-dimensional.

• For each pixel x whose edge magnitude exceeds a given threshold, all accu-
mulator cells corresponding to potential circle centers (a, b) are incremented
in step 3 of the given algorithm.

• The accumulator cell A(a, b, r) is incremented if the point (a, b) is at distance
r from point x .

• If some potential center (a, b) of a circle of radius r is frequently found in
the parameter space, it is highly probable that a circle with center (a, b) and
radius r really exist in the processed data.
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Figure 5.4: Hough transform — circle detection: (a) original image; (b) edge image
(note that the edge informaiton is far from perfect; (c) parameter space; (d) detected
circles.
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• The processing results in a set of parameters of desired curves f (x , a) = 0
that correspond to local maxima of accumulator cells in the parameter space;
these maxima best match the desired curves and processed data.

• Parameters may represent unbounded analytic curves (e.g., line, parabola,
etc.), but to look for finite parts of these curves, the end points must be ex-
plicitly defined and other conditions must be incorporated into the algorithm.

• Even though the Hough transform is a very powerful technique for curve
detection, exponential growth of the accumulator data structure with the
increase of the number of curve parameters restricts its practical usability to
curves with few parameters.
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• If prior information about edge directions is used, computational demands can
be decreased significantly.

• Please refer to the textbook for discussions.

!

• The randomized Hough transform offers a different approach to achieve in-
creased efficiency.

• It randomly selects n pixels from the edge image and determines n parameters
of the detected curve followed by incrementing a single accumulator cell only.

• Please refer to the textbook for discussions.

Example 5.2.12. Line detection in chessboard.The matlab script from visionbook
is here Line detection example.

file:../../../visionbook/06Segm1/hough_lines_demo.m�
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5.3 Region-based segmentation

• The aim of segmentation methods described in the previous section was to
find borders between regions; the following methods construct regions directly.

• It is easy to construct regions from their borders, and it is easy to detect
borders of existing regions.

• However, segmentations resulting from edge-based methods and region-growing
methods are not usually exactly the same, and a combination of results may
often be a good idea.

• Region growing techniques are generally better in noisy images, where borders
are extremely difficult to detect.

• Homogeneity is an important property of regions and is used as the main
segmentation criterion in region growing, whose basic idea is to divide an
image into zones of maximum homogeneity.
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• The homogeneity criteria affect the region-based methods.

• General and specific heuristics for homogeneity may also be incorporated.

• The criteria for homogeneity can be based on gray-level, color, texture, shape,
model (using semantic information), etc.

• The simplest homogeneity criterion uses an average gray-level of the region,
its color properties, simple texture properties, or an m-dimensional vector of
average gray values for multi-spectral images.

• Properties chosen to describe regions influence the form, complexity, and
amount of prior information in the specific region-growing segmentation method.

• Methods that specifically address region-growing segmentation of color images
are reported in the literature.
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• Regions have already been defined before.

• A complete segmentation of an image R is a finite set of regions R1, · · · , RS ,

R =
S⋃

i=1

Ri , Ri

⋂
Rj = ∅ if i 6= j (5.44)

where S is the total number of regions in the image.

• Further assumptions needed in this section are that regions must satisfy the
following conditions:

H(Ri ) = TRUE, for i = 1, · · · , S (5.45)

and

H(Ri

⋃
Rj ) = FALSE, for i 6= j and Ri is adjacent to Rj . (5.46)

where H(Ri ) is a binary homogeneity evaluation of the region Ri .

• Resulting regions of the segmented image must be both homogeneous and
maximal, where by ’maximal’ we mean that the homogeneity criterion would
not be true after merging a region with any adjacent region.

!
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• While the region growing methods discussed below deal with two-dimensional
images, three-dimensional implementations are often possible.

• Considering three-dimensional connectivity constraints, homogeneous regions
(volumes) of a three-dimensional image can be determined using three-dimensional
region growing.
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5.3.1 Region merging

• The most natural method of region growing is to begin the growth in the raw
image data, each pixel representing a single region.

• These regions almost certainly do not satisfy the condition of equation (5.46),
and so regions will be merged as long as equation (5.45) remains satisfied.

Algorithm 5.3.1. Region merging (outline)

1. Define some starting method to segment the image into many small regions
satisfying condition (5.45).

2. Define a criterion for merging two adjacent regions.

3. Merge all adjacent regions satisfying the merging criterion. If no two regions
can be merged maintaining condition (5.45), stop.
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• This algorithm represents a general approach to region merging segmentation.

• Specific methods differ in the definition of the starting segmentation and in
the criterion for merging.

• In the descriptions that follow, regions are those parts of the image that can be
sequentially merged into larger regions satisfying equation (5.45) and (5.46).

!

• The result of region merging usually depends on the order in which regions are
merged, meaning that segmentation results will probably differ if segmentation
begins, for instance, in the upper left or lower right corner.

• This is because the merging order can cause two similar adjacent regions
R1 and R2 not to be merged, since an earlier merge used R1 and its new
characteristics no longer allow it to merged with region R2. If the merging
process used a different order, this merge may have been realized.
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• The simplest methods begin merging by starting the segmentation using re-
gions of 2 × 2, 4 × 4 or 8 × 8. Region descriptions are then based on their
statistical gray-level properties — a region gray-level histogram is a good
example.

• A region description is compared with the description of an adjacent
region; if they match, they are merged into a larger region and a new region
description is computed.

• Otherwise, regions are marked as non-matching.

• Merging of adjacent regions continues between all neighbors, including newly
formed ones.

• If a region cannot be merged with any of its neighbors, it is marked ‘final’.

• The merging process stops when all image regions are so marked.
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• Another approach uses the supergrid.

• The super-grid carries all the necessary information for easy region merging
in 4-adjacency, see the following figure:

Figure 5.5: Super-grid data structure: × – image data, ◦ – crack edges; • – unused.

• Starting regions are formed by pixels of the same gray-level.

• Region merging is based on the crack edge computation, where local bound-
aries between regions are evaluated by the strength of crack edges along their
common border.
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• This region merging uses the following two heuristics:

1. Two adjacent regions are merged if a significant part of their common
boundary consists of weak edges (significance can be based on the region
with the shorter perimeter; the ratio of the number of weak common
edges to the total length of the region perimeter).

2. Two adjacent region are also merged if a significant part of their common
boundary consists of weak edges, but in this case not considering the
total length of the region borders.

• Of the two heuristics, the first is more general and the second cannot be used
alone because it does not consider the influence of different region sizes.

• Edge significance can be evaluated according to the formula

vij =

{
0, if sij < T1;

1, otherwise
(5.47)

where vij = 1 indicates a significant edge, and vij = 0 a weak edge, T1 is a
preset threshold, and sij is the crack edge value (e.g., sij = |f (xi )− f (xj )|).

• The algorithm is as follows.
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Algorithm 5.3.2. Region merging via boundary melting

1. Define a starting image segmentation into regions of constant gray-level. Con-
struct a super-grid edge data structure in which to store the crack edge infor-
mation.

2. Remove all weak crack edge data structure (using (5.47) and threshold T1).

3. Recursively remove common boundaries of adjacent regions Ri and Rj , if

W

min(Li , Lj )
≥ T2 (5.48)

where W is the number of weak edges on the common boundary, Li and Lj are
the perimeter lengths of regions Ri and Rj , and T2 is another preset threshold.

4. Recursively remove common boundaries of adjacent regions Ri and Rj , if

W

min(L)
≥ T3 (5.49)

or, using a weaker criterion
W ≥ T3 (5.50)

where L is the length of the common boundary and T3 is a third threshold.
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• Note that even if we have described a region growing method, the merging
criterion is based on border properties and so the merging does not necessarily
keep condition (5.45).

• Please refer to the textbook for discussions on using a more advanced data
structure than the supergrid.
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• The following figure gives a comparison of region merging methods.

• The original image is displayed in its pseudo-color representation

• The original image cannot be segmented by thresholding because of the sig-
nificant and continuous gray-level in all regions.
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• Results of a recursive region merging method — pixels are merged in the
row-first fashion as long as they do not differ by more than a pre-specified
parameter from the seed pixel, are shown as follows:

• Note the resulting horizontally elongated regions corresponding to vertical
changes of image gray-levels.
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• If region merging via boundary melting is applied, the result is improved dra-
matically.

Example 5.3.3. Region merging with boundary melting. The matlab script from
visionbook is here Region merging example.

file:../../../visionbook/06Segm1/regmerge_demo.m�
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5.3.2 Region splitting

• Region splitting is the opposite of region merging, and begins with the whole
image represented as a single region which does not usually satisfy the condi-
tion (5.45).

• Therefore, the existing image region are sequentially split to satisfy (5.44),
(5.45) and (5.46).

• It generally uses similar criteria of homogeneity as region merging method and
differs only in the direction of their application.

• Even if this approach seems to be dual to region merging, region splitting does
not result in the same segmentation even if the same homogeneity criteria are
used.

– Some regions may be homogeneous during the splitting process and
therefore are not split any more.

– Considering the homogeneous regions created by region merging pro-
cedures, some may not be constructed because of the impossibility of
merging smaller sub-regions earlier in the process.
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• A fine black-and-white chessboard is an example: let the homogeneity criterion
be based on variance of average gray-levels in the quadrants of the evaluated
region in the next lower pyramid level.

Figure 5.6: Different segmentations may result from region splitting and region
merging approaches. (a) Chessboard imaging, corresponding pyramid. (b) Region
splitting segmentation (upper pyramid level is homogeneous, no splitting possible).
(c) Region merging segmentation (lowest pyramid level consists of regions that
cannot be merged).
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5.3.3 Splitting and merging

• A combination of splitting and merging may result in a method with the
advantage of both approaches.

• Split-and-merge approaches work using pyramid image representations. Re-
gions are square shaped and corresponding to elements of the appropriate
pyramid level.
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• If any region in any pyramid level is not homogeneous (excluding the lowest
level), it is split into four sub-regions — these are elements of higher resolution
at the level below.

• If four regions with the same parent node exists at any pyramid level with
approximately the same value of homogeneity measure, they are merged into
a single region in an upper pyramid level.

• The segmentation process can be understood as the construction of a seg-
mentation quadtree where each leaf node represents a homogeneous region
— that is, an element of some pyramid level.

• Splitting and merging corresponds to removing or building parts of the seg-
mentation quadtree — the number of leaf nodes of the tree corresponds to
the number of segmented regions after the segmentation process is over.

• These approaches are sometimes called split-and-link methods if they use
segmentation tress for storing information about adjacent regions. Split-and-
merge methods usually store the adjacency information in region adjacency
graphs (or similar data structures).



5.3. REGION-BASED SEGMENTATION 469

• An unpleasant drawback of segmentation quadtree is the square-region shape
assumption, see the following figure:
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• The homogeneity criterion plays a major role in split-and-merge algorithms,
as it does in all other region growing methods.

• If the image being processed is reasonably simple, a split-and-merge approach
can be based on local image properties.

• If the image is very complex, even elaborate criteria including semantic infor-
mation may not give acceptable results.
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5.3.4 Watershed segmentation

• The concepts of watersheds and catchment basins are well known in topog-
raphy.

• Watershed lines divide individual catchment basins.

• The North American Continental Divide is a textbook example of a watershed
line with catchment basins formed by the Atlantic and Pacific Oceans.

• Working the 2D function presentations, image data may be interpreted as a
topographic surface where the (gradient) image gray-levels represent altitudes.

• Thus, region edges correspond to high watersheds and low-gradient region
interiors correspond to catchment basins.

• According to equations (5.44), (5.45) and (5.46), the goal of region growing
segmentation is to create homogeneous regions.

• In watershed segmentation, catchment basins of the topographic surface are
homogeneous in the sense that all pixels belonging to the same catchment
basin are connected with the basin’s region of minimum altitude (gray-level)
by a simple path of pixels that have monotonically decreasing altitude (gray-
level) along the path.
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• Such catchment basins then represent the regions of the segmented image.

Figure 5.7: One dimensional example of watershed segmentation. (a) Gray-level
profile of image data. (b) Watershed segementation — local minima of gray-level
(altitude) yield catchment basins, local maxima define the watershed lines.

• While the concept of watersheds and catchment basins is quite straightfor-
ward, development of algorithms for watershed segmentation is a complex
task, with many of the early methods resulting in either slow or inaccurate
execution.
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• There are two basic approaches to watershed image segmentation.

• The first one starts with finding a downstream path from each pixel of the
image to a local minimum of image surface altitude.

• A catchment basin is then defined as the set of pixels for which their respective
downstream paths all end up in the same altitude minimum.

• While the downstream paths are easy to determine for continuous altitude
surfaces by calculating the local gradients, no rules exist to define the down-
stream paths uniquely for digital surfaces.
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• The second watershed segmentation approach represented by a seminal paper
[Vincent and Soille, 1992] makes the idea practical.

• This approach is essentially dual to the first one.

• Instead of identifying the downstream paths, the catchment basins fill from
the bottom.

• As was explained earlier, each minimum represents one catchment basin, and
the strategy is to start at the altitude minima.

• Imagine that there is a hole in each local minimum, and that the topographic
surface is immersed on water.

• As a result, the water starts filling all catchment basins, minima of which are
under the water level.

• If two catchment basins would merge as a result of further immersion, a dam
is built all the way to the highest surface altitude and the dam represents the
watershed line.

• An efficient algorithm for such watershed segmentation was presented in
[Vincent and Soille, 1992].
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• The algorithm is based on sorting the pixels in an increasing order of their gray
values, followed by a flooding step consisting of a fast breadth-first scanning
of all pixels in the order of their gray-levels.

!

• During the sorting step, a brightness histogram is computed.

• Simultaneously, a list of pointers to pixels of gray-level h is created and asso-
ciated with each histogram gray-level to enable direct access to all pixels of
any gray-level.

• Information about the image pixel sorting is used extensively in the flooding
step.

!

• Suppose the flooding has been completed up to a level (gray-level, altitude)
k .

Then every pixel having gray-level less than or equal to k has already been
assigned a unique catchment basin label.
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• Next, pixels having gray-level k + 1 will be processed; all such pixels can be
found in the list prepared in the sorting step — all these pixels can be accessed
directly.

• A pixel having gary-level k + 1 may belong to a catchment basin labeled L if
at least one of its neighbors already carries this label.

• Pixels that represent potential catchment basin members are put in a first-in
first-out queue and await further processing.
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• Geodesic influence zones are computed for all hitherto determined catchment
basins.

A geodesic influence zone of a catchment basin Li is the locus of non-labeled
image pixels of gray-level k + 1 that are contiguous with the catchment basin
Li (contiguous within the region of pixels of gray-level k + 1) for which their
distance to Li is smaller than their distance to any other catchment basin Lj .
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• All pixels with gray-level k +1 that belong to the influence zone of a catchment
basin labeled L are also labeled with the label L, thus causing the catchment
basin to grow.

• The pixels from the queue are processed sequentially, and all pixels from the
queue that cannot be assigned an existing label represent newly discovered
catchment basins and are marked with new and unique labels.
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• The following is an example of watershed segmentation.
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• Note that the raw watershed segmentation produces a severely over-segmented
image with hundreds or thousands of catchment basins (c).

• To overcome this problem, region markers and other approaches have been
suggested to generate good segmentation (d).

!

• Please refer to the textbook for further discussions.
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5.3.5 Region growing post-processing

• Images segmented by region growing methods often contain either too many
regions (under-growing)or too few regions (over-growing) as a result of non-
optimal parameter setting.

• To improve classification results, a variety of post-processors has been devel-
oped. Some of them combine segmentation information obtained from region
growing and edge-based segmentation. See the references in the text book.

!

• Simpler post-processors are based on general heuristics and decrease the num-
ber of small regions in the segmented image that cannot be merged with any
adjacent region according to the originally applied homogeneity criteria.

• These small regions are usually not significant in further processing and can
be considered as segmentation noise. It is possible to remove them from the
image as follows.
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Algorithm 5.3.4. 1. Search for the smallest image region Rmin.

2. Find the adjacent region R most similar to Rmin, according to the homogeneity
criteria used. Merge R and Rmin.

3. Repeat steps 1 and 2 until all regions smaller than a pre-selected size are
removed from the image.

• This algorithm will execute much faster if all regions smaller than a pre-
selected size are merged with their neighbors without having to order them
by size.

Example 5.3.5. Small region removal remsmall algorithm. The matlab script from
visionbook is here Small region removal example.

file:../../../visionbook/06Segm1/remsmall_demo.m�
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5.4 Active contour models — snakes

• The development of active contour models results from the work [Kass et al., 1988].

• It is a energy-minimization approach to a variety of tasks in image analysis
such as image segmentation, and is suitable for analysis of dynamic image
data or 3D image data.

• The active contour model, or snake, is defined as an energy-minimizing spline
— the snake’s energy depends on its shape and location within the image.

• Local minima of this energy then correspond to desired image properties.
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• The following figure illustrates how a snake is defomed from its initial position
to the target.

Figure 5.8: Active contour model — snake. (a) Initial snake position (dotted)
defined interactively near the true contour. (b), (c) Iteration steps of snake energy
minimization: the snake is pulled toward the true contour.
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• Snakes may be understood as a special case of a more general technique of
matching a deformable model to an image by means of energy minimization.

• Snakes do not solve the entire problem of finding contours in images; rather,
they depend on other mechanisms such as interaction with a user, interac-
tion with some higher-level image understanding process, or information from
image data adjacent in time or space.

• This interaction must specify an approximate shape and starting position for
the snake somewhere near the desired contour.

• A priori as well as image-based information are then used to push the snake
toward an appropriate solution.

• Unlike most other image models, the snake is active, always minimizing its
energy functional, therefore exhibiting dynamic behavior.
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5.4.1 Traditional snakes and balloons

• The energy functional which is minimized is a weighted combination of internal
and external forces.

• The internal forces emanate from the shape of the snake, while the external
forces come from the image andor from higher-level image understanding
processes.

• The snake is defined parametrically as v(s) = [x(s), y(s)], where x(s) and
y(s) are (x , y) co-ordinates along the contour and s ∈ [0, 1].

Figure 5.9: Active contour model — a parametric representation of the boundary.
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• The energy functional to be minimized may be written as

E ∗snake =

∫ 1

0

Esnake(v(s)) ds (5.51)

=

∫ 1

0

{
Eint(v(s)) + Eimage(v(s)) + Econ(v(s))

}
ds. (5.52)

where

– Eint represents the internal energy of the spline due to bending,

– Eimage denotes image forces,

– Econ external constraint forces.

• Usually, v(s) is approximated as a spline to ensure desirable properties of
continuity.
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• The internal spline energy can be written as

Eint(v(s)) = α(s)

∣∣∣∣
dv

ds

∣∣∣∣
2

+ β(s)

∣∣∣∣
d2v

ds2

∣∣∣∣
2

(5.53)

where α(s) and β(s) specify the elasticity and stiffness of the snake.

• α(s) and β(s) control how the snake shrinks.

• Note that setting β(sk) = 0 at a point sk allows the snake to become second-
order discontinuous at that point, and develop a corner.
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• The image force term Eimage is derived from the image data over which the

snake lies.

• As an example, a weighted combination of three different functionals is pre-
sented which attracts the snake to lines, edges, and terminations

Eimage = wlineEline + wedgeEedge + wtermEterm. (5.54)

• The line-based functional may be very simple

Eline = f (x , y), (5.55)

or

Eline = Gσ ∗ f (x , y), (5.56)

where f (x , y) denotes image gray-levels at image location (x , y).

Then depending on the sign of wline, the snake will be attracted to light or
dark lines.
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• The edge-based functional

Eedge = − |∇f (x , y)|2 , (5.57)

or

Eedge = − |∇ [Gσ ∗ f (x , y)]|2 , (5.58)

attracts the snake to contours with large image gradients — that is, to loca-
tions of strong edges, and is minimal at edges if defined as

• In order to find teminations and corners, we use the curvature of level lines in
a slightly smoothed image.

• Let C (x , y) = Gσ(x , y) ∗ f (x , y) be a slightly smoothed version of the image.

• Then the curvature of the level contours in C (x , y) can be written as

Eterm =
Cyy C 2

x − 2Cxy Cx Cy + Cxx C 2
y√

C 2
x + C 2

y
3 . (5.59)
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• The snake behavior may be controlled by adjusting the weights wline, wedge
and wterm.

• A snake attracted to edges and terminations is shown in the follwing figure.

Figure 5.10: A snake attracted to edges arid terminations, (a) Contour illusion, (b)
A snake attracted to the subjective contour. Adapted from [Kass et al., 1987].
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• The third term of the integral (5.52) comes from external constraints imposed
either by a user or some other higher-level process which may force the snake
toward or away from particular features.

• If the snake is near to some desirable feature, the energy minimization will
pull the snake the rest of the way.

• However, if the snake settles in a local energy minimum that a higher-level
process determines as incorrect, an area of energy peak may be made at this
location to force the snake away to a different local minimum.
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• A contour is defined to lie in the position in which the snake reaches a local
energy minimum.

• From (5.52) and the calculus of variations, the Euler-Lagrange condition states
that the spline v(s) which minimizes E ∗snake must satisfy

δE ∗snake
δv

= − d

ds

(
α(s)

dv

ds

)
+

d2

ds2

(
β(s)

d2v

ds2

)
+∇Eext(v(s)) = 0,

(5.60)

where Eext = Eimage + Econ.

• To solve the Euler-Lagrange equation, suppose an initial estimate of the so-
lution is available. An evolution equation is formed:

∂v(s, t)

∂t
= −

δE ∗snake
δv

=
d

ds

(
α(s)

dv

ds

)
− d2

ds2

(
β(s)

d2v

ds2

)
−∇Eext(v(s)).

(5.61)

• The solution is found if ∂v(s,t)
∂t

= 0.
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• Numerous parameters must be designed (weighting factors, iteration steps,
etc.), a reasonable initialization must be available, and, moreover, the solution
of the Euler-Lagrange equation suffers from numerical instability.

• Please refer to the textbook and recent literature for the development of the
snake model and its numerical methods.
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5.4.2 Gradient vector flow snakes

• Two main limitations common to these approaches are

– the requirement of snake initialization being close to the desired solution,

– difficulties in segmenting concave portions of the boundary.

• To overcome these problems, gradient vector flow (GVF) fields and their use
in snake image segmentation were reported in [Xu and Prince, 1998].

• GVF field is an external force field that points toward the boundaries when in
their proximity and varies smoothly over homogeneous image regions all the
way to image borders.

• Consequently, it can drive a snake toward a border from a large distance and
can segment object concavities.

• The GVF field is derived from an image by minimization of an energy func-
tional by solving decoupled linear partial differential equations via diffusing
the gradient vectors of the edge image.

• The GVF is then used as an external force in the snake equations (5.60) and
(5.61) forming a GVF snake.
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(a) Snake force

(b) GVF force

Figure 5.11: When adding distance-based forces, the snake segmentation fails in a
similar fashion. Adapted from [Xu and Prince, 1998].
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• The GVF field g(x , y) = (u(x , y), v(x , y)) minimizes the energy functional

E =

∫∫
µ
[
u2

x + u2
y + v 2

x + v 2
y

]
+ |∇f |2 |g −∇f |2 dxdy . (5.62)

where µ is a regularization parameter balancing the weight of the first and
second terms (increasing µ with increased noise).

• The GVF can be obtained by solving the Euler equations

µ∆u − (u − fx )(f 2
x + f 2

y ) = 0, (5.63)

µ∆v − (v − fy )(f 2
x + f 2

y ) = 0. (5.64)

• The second term in (5.63) and (5.63) is zero in homogeneous regions since
the derivatives fx , fy are zero.

• Consequently, the GVF behavior in the homogeneous regions is fully defined by
the Laplace equation effectively diffusing the information from the boundaries
to the homogeneous parts of the image.
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• Solutions to (5.63) and (5.63) can be found by solving the following two
decoupled equations for t →∞,

∂u

∂t
= µ∆u − (u − fx )(f 2

x + f 2
y ) = 0, (5.65)

∂v

∂t
= µ∆v − (v − fy )(f 2

x + f 2
y ) = 0. (5.66)

• These generalized diffusion equations can be solved as separate scalar partial
differential equations in u and v .

• Once g(x , y) is computed, (5.61) is modified using the GVF external force
g(x , y) yielding the GVF snake equation

∂v(s, t)

∂t
=

d

ds

(
α(s)

dv

ds

)
− d2

ds2

(
β(s)

d2v

ds2

)
+ g(v(s)). (5.67)

• GVF can be generalized to higher dimensions defining the d-dimensional GVF
field.
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• Active contour models represent a recent approach to contour detection and
image interpretation.

• They differ substantially from classical approaches, where features are ex-
tracted from an image and higher-level processes try to interpolate sparse
data to find a representation that matches the original data.

• Active contour models start from an initial estimate based on higher-level
knowledge, and an optimization method is used to refine the initial estimate.

• During the optimization, image data, an initial estimate, desired contour prop-
erties, and knowledge-based constraints are considered.

• Feature extraction and knowledge-based constrained grouping of these fea-
tures are integrated into a single process, which seems to be the biggest
advantage.

• Active contour models, however, search for local energy minima not attempt-
ing to achieve globally optimal solutions.

• Applications can be found in many areas of machine vision and medical image
analysis.

• Please refer to the GVF page.

http://iacl.ece.jhu.edu/projects/gvf/�


500 CHAPTER 5. SEGMENTATION

5.5 Geometric deformable models — level sets and
geodesic active contours

• There are two main groups of deformable contour/surface models: the snakes
belong to the parametric model family as borders are represented in a para-
metric form.

• While appropriate for many segmentation tasks, they may yield cusps or in-
tersecting boundaries in some situations.

• They are not capable of handling topology changes of the evolving contours,
with direct implementation [Sapiro, 2001, p. 143–144].

• The topology of the final curve will be as the initial one, unless special pro-
ceedures are implemented for possible splitting and merging [Sapiro, 2001,
p. 143–144].

• This is a problem when an unknown number of objects must be simultaneously
detected [Sapiro, 2001, p. 143–144].

• This approach is also non-intrinsic, as the energy depends on the parametriza-
tion of the curve and is not directly related to the object geometry [Sapiro, 2001,
p. 143–144].
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• The second family of deformable surfaces — geometric deformable models

— overcome this problem by representing developing surfaces by partial dif-
ferential equations.

• The geometric deformable model literature has grown extensively in the past
years, in many cases reporting a variety of applications in which deformable
model based segmentation can be used.

• Geometric deformable models were named level set front propagation

and geodesic active contour segmentation approaches, respectively, in
the literature.

• The main feature separating geometric deformable models from parametric
ones is that curves are evolved using only geometric computations, indepen-
dent of any parameterization: the process is implicit.

• Consequently, the curves and/or surfaces can be represented as level sets
of higher dimensional functions yielding seamless treatment of topological
changes.

• Hence, without resorting to dedicated contour tracking, unknown numbers of
multiple objects can be detected simultaneously.
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• Let a curve moving in time t be denoted by X(s.t) = [X (s, t), Y (s, t)] where
s is the curve parameterization.

• Let N be the moving curve’s inward normal, and c its curvature, and let the
curve develop along its normal direction according to the partial differential
equation

∂X

∂t
= V (c)N, (5.68)

where V (c) is the speed function.
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• The following figure demonstrates the concept of front evolution.

Figure 5.12: Concept of front evolution, (a) Initial curve at t = 0. (b) Curve at
t = 1. Note that each curve point moved in direction of N by distance given by
velocity V . (c) Curve at t = 1 assuming the velocity V (c) is a function of curvature.

• As the curve is moving, it may need to be reparameterized to satisfy equation
(5.68).
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• If the curve evolution is driven by a curvature deformation equation, the par-
tial differential equation describes a curve smoothing process which removes
potential singularities and eventually shrinks the curve to a point

∂X

∂t
= αcN, (5.69)

where α is a constant — similar to elastic internal forces used in snakes (5.53).

• The following figure shows deformation behavior using positive (α > 0) and
negative (α < 0) curvature.
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Figure 5.13: Evolution of a closed 2D curve using curvature deformation, (a-d)
Using positive curvature, iterations 100, 2,000, 4,000, 17,000. (e-h) Using negative
curvature, iterations 100, 2,000, 4,000, 17,000.
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• Curve deformation driven by the constant deformation equation

∂X

∂t
= V0N, (5.70)

is complementary, and is similar to the inflation balloon force discussed
earlier and may introduce singularities like sharp corners.
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• Geometric deformable models perform image segmentation by starting with
an initial curve and evolving its shape using the speed equation (5.68).

• During the evolution process, curvature deformation and/or constant defor-
mation are used and the speed of curve evolution is locally dependent on the
image data — this represents the motivation for the approach.

• The ultimate goal of curve evolution is to yield desirable image segmentation
for t →∞: in other words, curve evolution should stop at object boundaries.

• This evolution can be implemented using level sets and — similar to many
general techniques — the exact behavior of the segmentation technique de-
pends on the segmentation parameters.

• In this case, the segmentation behavior depends on the design of the speed
function V (c).
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• An important question however remains — how to efficiently execute the curve
evolution process.

• The idea that made geometric deformable models feasible is to represent the
segmentation boundary/surface implicitly as a level set of a higher-dimensional
function — the level set function φ — defined on the same image domain.

Figure 5.14: An example of embedding a curve as a level set. (a) A single curve, (b)
The level set function where the curve is embedded as the zero level set φ(X(s, t)) =
0 (in black), (c) The height map of the level set function with its zero level set
depicted in black.
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• Using the level set representation of the curve allows its evolution by updating
the level set function φ(t).

• Instances of curve evolution are obtained by determination of the zero-level
set for individual time points φ(t) = 0.

• The final solution is given by the zero-level set φ(t →∞) = 0.
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• Importantly, the level set approach allows topology changes, singularity devel-
opment, etc.

Figure 5.15: Topology change using level sets. As the level set function is updated
for t = 1, 2, 3, the zero-level set changes topology, eventually providing a 2-object
boundary.
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• A more formal treatment to define a level set embedding of the curve evolution
equation (5.68) is now appropriate.

• Having a level set function φ(x , y .t) with the contour X(s, t) as its zero-level
set, it follows that

φ(X(s, t)) = 0. (5.71)

• If this equation is differentiated with respect to t and the chain rule is used,

∂φ

∂t
+

〈
∇φ,

∂X

∂t

〉
= 0. (5.72)

• Now assuming that φ is negative inside the zero-level set and positive outside,
the inward unit normal to the level set curve is

N = − ∇φ|∇φ| , (5.73)

and from the speed equation (5.68)

∂X

∂t
= −V (c)

∇φ
|∇φ| . (5.74)
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• Hence,

∂φ

∂t
− V (c)

〈
∇φ,

∇φ
|∇φ|

〉
= 0. (5.75)

• Therefore,

∂φ

∂t
= V (c)|∇φ|. (5.76)

• The curvature c at the zero-level set is

c = ∇ ∇φ|∇φ| =
φyyφ

2
x − 2φxyφxφy + φxxφ

2
y√

φ2
x + φ2

y
3 . (5.77)

• Equation (5.76) shows how to perform curve evolution specified by equation
(5.68) using the level set method.
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• To implement geometric deformable contours, an initial level set function
φ(x , y , t = 0) must be defined, the speed function must be derived for the
entire image domain, and evolution must be defined for locations in which
normals do not exist due to the development of singularities.

• The initial level set function is frequently based on the signed distance D(x .y)
from each grid point to the zero-level set, φ(x , y , 0) = D(x , y).

• An efficient algorithm for construction of the signed distance function is called
a fast marching method [Sethian, 1999].

!

• Note that the evolution equation (5.76) is only derived for the zero-level set.

• Consequently, the speed function V (c) is undefined on other level sets and
needs to be extended to all level sets.

• A number of extension approaches, including the frequently used narrow

band extension, can be found in [Sethian, 1999].

• The level set equation can be solved iteratively using time step At. However,
inherent time step requirements exist to ensure stability of the numerical
scheme via the Courant- Friedrichs-Lewy (CFL) condition.
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• Further numerical issues are discussed in [Sethian, 1999].

!

• A large variety of applications exist in which geometric deformable models
were used for image segmentation.

!

• The frequently highlighted feature of geometric deformable model segmen-
tations allowing topology changes is an important contribution to the image
segmentation tool set.

• However, this behavior may be as detrimental as it may be useful.

• When applied to noisy data with boundary gaps, shapes may be generated
which have topology inconsistent with that of the underlying objects.

• In such situations, segmentation topology constraints may be required and a
choice of parametric deformable models or graph-based approaches may be
more suitable.



Chapter 6

Scale-space Theory with PDE

• The main references for this lecture is [Perona and Malik, 1990, Alvarez et al., 1993,
ter Haar Romeny, 1994, Ames, 1992]

• This lecture deals with a fundamental aspect of early image representation —
the notion of scale.

515
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• The problem of scale must be faced in any imaging situation.

• An inherent property of objects in the world and details in image is that they
only exists as meaningful entities over certain range of scale.

– A simple example of this is the concept of a branch of a tree, which
makes sense only at a scale from, say, a few centimeters to at most a
few meters.

– It is meaningless to discuss the tree concept at the nanometer or the
kilometer level. At those scales it is more relevant to talk about the
molecules that form the leaves, or the forest in which the tree grows.

• Consequently, a multi-scale representation is of crucial importance if
one aims at describing the structure of the world, or more specially the struc-
ture of projections of the three dimensional world onto two dimensional im-
ages.
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• A vision system for handling objects of different sizes and at different distances
needs a way to control the scale(s) at which the world is observed.

• Why should one represent a signal at multiple scales when all information is
present in the original data anyway?

• The major reason for this is to explicitly represent the multi-scale aspect of
real world images.

• Another aim is to simplify further processing by removing unnecessary and
disturbing details.



518 CHAPTER 6. SCALE-SPACE THEORY WITH PDE

6.1 Introduction

• We define a multi-scale analysis to be a family of transforms (Tt)t≥0

which, when applied to the original picture I0(x), yield a sequence of pictures
I (t, x) = (Tt I0)(x).

• We do not now define the scale t, its meaning will be clear from the mathe-
matical formulation below.

• The image I (t, x) is called the analysis of the image I0 at scale t.

• The goal of this lecture is to review some fundamental results concerning a
framework known as scale-space that has been developed by the computer
vision community for controlling the scale of observation and representing the
multi-scale nature of image data.

• We shall see that a few formal principles (or axioms) are enough to characterize
and unify the theories and algorithms.
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6.1.1 Transformation invariance

• The Euclidean nature of the world around us and the perspective mapping
onto images impose natural constraints on the possible operations.

• Objects move rigidly, the illumination varies, the size of objects at the retina
changes with the depth from the eye, and view directions may change etc.

• Hence, it is natural to require early visual operations to be unaffected by
certain primitive transformations (e.g., translations, rotations, and gray-scale
transformations).

• In other words, the visual system should extract properties that are invariant
with respect to these transformations.
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6.1.2 Causality

• A crucial requirement is that structures at coarse scales in the multi-scale
representation should constitute simplifications of corresponding structures at
finer scales — there should not be any accidental phenomena created by the
smoothing method.

• Structures at coarse scales should be related to structures at finer scales in a
well-behaved manner.

• Hummel [Hummel, 1986] made the important observation that the maximum
principle from the theory of parabolic differential equations is equivalent to
causality.

• Therefore, one would expect that a number of (possible nonlinear) differential
equations would satisfy causality and possibly have useful applications in vision
and image processing.
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6.1.3 Morphological invariance

• Another requirement essential to the understanding of images is to take into
account how arbitrary the gray scale of perceptual or digital image is.

• In the case of digital pictures, many electronic devices are applied successively
to an image before its arrival at the human eye or at some automatic image
analysis device.

• Since the gray scale of the resulting image has been changed by each device,
the only sound assumption about the information preserving properties of the
whole chain of captors or transmitters is that they might preserve the order
of gray levels.

• In other terms, if some point or some region was brighter than an another in
the original picture, this order should be preserved in the final picture.

• This means a “multi-scale” image analysis should not depend upon the im-
age contrast, as the human vision system does not depend upon the image
contrast, eps. the local image contrast.
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6.2 Some classical approaches

• There exists a large number of possible ways to construct a one-parameter
family of derived signals from a given signal.

• The terminology that will be adopted here is to refer a multi-scale representation

as any one-parameter family for which the parameter has a clear interpretation
in terms of spatial scale.
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6.2.1 Linear scale-space

• An earlier formalism for this problem is the idea of scale-space filtering.

• The essential idea of this approach is quite simple: embed the original image
in a family of derived images I (t, x , y) obtained by convolving the original
image I0(x , y) with a Gaussian kernel G (x , y , t) of variance t:

I (t, x , y) = I0(x , y) ∗ G (x , y , t). (6.1)

• Larger values of t, the scale-space parameter, correspond to images at coarser
resolutions.

• This one parameter family of derived images may equivalently be viewed as
the solution of the heat conduct or diffusion equation (with heat conduct
coefficient or diffusion coefficient c = 1)




∂I

∂t
(t, x , y) = ∆I

I (0, x , y) = I0(x , y).
(6.2)
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• Koenderink [Koederink, 1984] motivates the diffusion equation formation by
stating two criteria:

1. Causality: Any feature at a coarse level is required to possess a (not
necessarily unique) “cause” at a finer level of resolution although the
reverse need not be true.

In other words, no spurious details should be generated when the reso-
lution is diminished;

2. Homogeneity and Isotropy: the blurring is required to be space invariant.
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6.2.2 Quadtrees

• One of the earliest types of multi-scale representations of image data is the
quadtrees in § 3.3.2 introduced by Klinger [Klinger, 1971].

6.2.3 Pyramids

• Pyramids are another multi-scale representations, § 3.3.1.

• The main advantage of the pyramid representation are that they lead to a
rapidly decreasing image size, which reduces the computational work both in
the actual computation of the representation and in the subsequent processing.

• The main disadvantage concerning pyramid is that they correspond to quite a
coarse quantization along the scale direction, which makes it algorithmically
complicated to relate (match) structures across scales,

• Further, pyramids are not translationally invariant.
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6.3 Axioms and basic principles

What basic principles must the scale space of image obey?
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6.3.1 Causality

• Since the scale space is assumed to yield more and more global information
about the image and its features, it is clear that when the scale increases, no
new feature should be created by the multi-scale analysis.

• The image and edges at scale t ′ > t must be simpler than the edges at scale
t.

• The formalization has been discussed by many authors.

• The result of the discussion in the case of image processing is that causality
must be formalized as pyramidality plus a local comparison principle.
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• First we present the pyramidality assumption.

• We assume that the output at scale t + h can be computed from the output
at a scale t for very small h.

• This relationship is obtained by composition of transition filters which
we call Tt+h,t .

• We have the following formal formulation

Pyramidal Structure (Causality 1) Tt+h = Tt+h,t ◦ Tt , Tt,t = T0 = Id .

• A special case of the above axiom is when the transition filters Tt+h,t = Th.

• We have the following semi-group property requirement for Tt ,

Semi-group Tt+h = Th ◦ Tt , T0 = Id .
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• Furthermore, the operator Tt+h,t will always be assumed to act “locally”, i.e.,
to look at a small part of the processed image.

• In other terms, Tt+h,t(I )(x) must essentially depend upon the values of I (y)
where y lies in a small neighborhood of x .

• Its physical interpretation is as follows: if the basic elements of the pyramid
are assumed to be “neurons”, this only means that a neuron is primarily
influenced by its neighbors.

• A clear argument for that is based on time: only neurons which are close can
influence without transmission delay.

• The local comparison principle is: if an image I is locally brighter than another
J , then this order must be conserved sometime by the analysis:

Local Comparison Principle (Causality 2) If I (y) > J(y) for y in a neigh-
borhood of x , then for h small enough,

Tt+h,t(I )(x) ≥ Tt+h,t(J)(x). (6.3)
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• We finally need some assumption stating that a very smooth image must
evolve in a smooth way with the multi scale analysis.

• Somehow, this belongs to the “causality” galaxy — structures at coarse scales
should be related to structures at finer scales in a well-behaved manner.

• But we prefer to call it regularity and it clearly corresponds to the assumption
of the existence of an infinitesimal generator for the multi-scale analysis.

• Readers familiar with the semi-group theory of functional analysis will recog-
nize that the following axiom is similar to the definition of the infinitesimal
generator of a linear semi-group.

• However, we only need the axiom holds for quadratic forms.

Regularity Let I (y) = 1
2
< A · (x − y), x − y > + < p, x − y > +c be

a quadratic form of RN . There exists a function F (A, p, x , c , t), continuous
with respect to A, such that

(Tt+h,t(I )− I )(x)

h
→ F (A, p, x , c , t), when h→ 0+. (6.4)
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• In [Alvarez et al., 1993], the regularity formalization is more general than the
formalization (6.4).

• The regularity assumptions in [Alvarez et al., 1993] are: the regularity of the
operator Tt+h,t on some specific function space when t and h are fixed; tem-
poral regularity of the operator Tt+h,t with respect to t and s; and some other
invariance assumptions.

• However, with those invariance assumptions ([Translation invariance], [Grey-
scale-shift invariance]), the regularity assumptions in [Alvarez et al., 1993] is
equivalent to (6.4), under causality and conditions.
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6.3.2 Morphological invariance

• The morphological invariance that image analysis should not depend upon the
contrast change implies that if g is a nondecreasing continuous function:

Morphological Invariance g ◦Tt+h,t = Tt+h,t ◦g , which means that change
of contrast and multi-scale analysis can be applied in any order.
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6.3.3 Transformation invariance

• For z ∈ R2, define
τz(I )(x) = I (x + z) (6.5)

to be the translation operator. The translation invariance is

Translation Invariance τz Tt+h,t = Tt+h,tτz .

• If A is an isometry, denote by Au the function Au(x) = u(Ax). The Euclidean
invariance is

Euclidean Invariance ATt+h,t = Tt+h,tA.
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6.4 PDEs for the scale-space theory

• There are therefore six main axioms and we shall see that they allow to com-
pletely classify and characterize the theories of multi-scale image analysis, to
unify and to improve several of them.

• First we present the fundamental theorem in this framework.

Theorem 6.4.1. If an image multi-scale analysis Tt is causal1 and regular
then I (t, x) = Tt(I )(x) is a viscosity solution of

∂I

∂t
= F (∇2I ,∇I , I , x , t) (6.6)

where the function F , defined in the regularity axiom (6.4), is nondecreasing
with respect to its first argument ∇2I .

Conversely, if I0 is a bounded uniformly continuous image, then the equation
(6.6) has a unique viscosity solution.

1It means that Tt satisfies both causalities 1 and 2.
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• One particular case of this equation is that F (A, p, c , x , t) = tr(A). We get
the classical heat equation

∂I

∂t
= ∆I (6.7)

• As a consequence of this theorem, all multi-scale models can be classified and
new, more invariant models can be proposed.
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Proof We give a simplified proof by assuming that I (t, x) is C 2. A completed
and rigorous proof could be found in [Alvarez et al., 1993]. In a neighborhood
of (t, x), we have

I (t, y) = I (t, x)+ < ∇I (x), y−x > +
1

2
< ∇2I (x)(y−x), y−x > +o(|y−x |2).

Let ε > 0 and Qε the quadratic form given by

Qε(y) = I (t, x)+ < ∇I (x), y−x > +
1

2
< ∇2I (x)·(y−x), y−x > +ε|y−x |2.

Then, in a neighborhood of (t, x)

Q−ε < I (t, y) < Qε(y) for y 6= x .

By using the causality principle “Local Comparison Principle”, we obtain

Tt+h,t(Q−ε)(x) ≤ Tt+h,t(I (t))(x) ≤ Tt+h,t(Qε)(x).

On the other hand, we also have

Q−ε(x) = I (t, x) = Qε(x)
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Therefore we deduce from the above relations, when h→ 0+,

F (∇2I − 2εId ,∇I , I , x , t) = lim
Tt+h,t(Q−ε)(x) − Q−ε(x)

h

≤ lim inf
Tt+h,t(I (t))(x) − I (t, x)

h
= lim inf

I (t + h, x)− I (t, x)

h

≤ lim sup
I (t + h, x)− I (t, x)

h
= lim sup

Tt+h,t(I (t))(x) − I (t, x)

h

≤ lim
Tt+h,t(Qε)(x) − Qε(x)

h
= F (∇2I + 2εId ,∇I , I , x , t)

By using the regularity principle and the continuity of the function F with
respect to A, and taking ε → 0+, we obtain that I (t, x) satisfies equation
(6.6).

Finally, in order to obtain that F (A, p, c , x , t) is nondecreasing with respect
to A, we notice that if A ≤ B then the quadratic forms

QA(y) =
1

2
< A · (x − y), x − y > + < p, x − y > +c

QB(y) =
1

2
< B · (x − y), x − y > + < p, x − y > +c
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satisfy QA(y) ≤ QB(y) and QA(x) ≤ QB(x). By using an obvious adaptation
of the above proof, we obtain

F (A, p, c , x , t) ≤ F (B , p, c , x , t)

¤

• To simplify the exposition, we have showed that equation (6.6) is true in the
case where I is a C 2 function.

• By using the viscosity solutions (see [Bardi et al., 1997]), it can be showns
that equation (6.6) is true in the sense of viscosity solution for any I (t, x)
uniformly continuous satisfying the causality and regularity principles.

• For a proof that if I0(x) is a bounded uniformly continuous function, the equa-
tion (6.6) has a unique solution, see the introduction in [Bardi et al., 1997])
and the references therein.
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6.4.1 The Marr-Hildreth-Koenderink-Witkin theory

• We now deduce from Theorem 6.4.1 a characterization of the heat equation
∂I
∂t

= ∆I as the unique linear and isometrically invariant multiscale model.

• Thus we get a formal justification of a theory based on many formal and
heuristic arguments which has always pointed to the heat equation as the
only possible multiscale analysis.

• We give here a proof of this intuition: the heat equation is the only linear
isometrically invariant multiscale analysis.

• Thus for image models, linearity and morphological invariance are incompati-
ble.

• We also obtain an explanation for the coexistence of (at least) two differ-
ent schools in image processing: mathematical morphology on one side and
classical multiscale analysis on the other.



540 CHAPTER 6. SCALE-SPACE THEORY WITH PDE

• The classical model comes from Marr and Hildreth [Marr and Hildreth, 1980]
and has been formalized by Witkin [Witkin, 1983] and Koenderink [Koederink, 1984].
Canny [Canny, 1986] proposed an efficient variant. The basic step of the mul-
tiscale analysis is the convolution of the original image with Gaussian of in-
creasing variance. Koenderink [Koederink, 1984] noticed that the convolution
of the signal with Gaussian at each scale is equivalent to the solution of the
heat equation with the signal as initial datum.
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• To state the result in our axiomatic approach, we need the following invariance
axiom, instead of the morphological invariance,

Grey-scale-shift Invariance Tt(0) = 0, Tt(I + C ) = Tt(I ) + C .

Theorem 6.4.2. If a multiscale analysis is causal, regular, translation invari-
ant, Euclidean invariant, gray-scale-shift invariant, and linear, then up to a
rescaling t ′ = h(t), I (t, x) = Tt(I0)(x) is the solution of the heat equation

{
∂I
∂t

= ∆I ,

I |t=0 = I0.
(6.8)

Proof For z ∈ R2, by translation invariant,

Iz(t, x) = I (t, x + z) = τz(I (t))(x) = τz(Tt(I0))(x) = Tt(τz(I0))(x)

is the solution of ∂Iz
∂t

= F (∇2Iz ,∇Iz , Iz , x , t). We have

∂I

∂t
(t, x + z) = F (∇2I (t, x + z),∇I (t, x + z), I (t, x + z), x , t).

On the other hand Iz(t, x) satisfies, by the equation of I ,

∂I

∂t
(t, x + z) = F (∇2I (t, x + z),∇I (t, x + z), I (t, x + z), x + z , t).



542 CHAPTER 6. SCALE-SPACE THEORY WITH PDE

Therefore, by comparing the above two equation, we have

F (A, p, c , x , t) = F (A, p, c , x + z , t).

Then we conclude that F (A, p, c , x , t) does not depend on x . We get

F (A, p, c , x , t) = F (A, p, c , t).

Similarly, by Grey-scale-shift invariance, we get

F (A, p, c , x , t) = F (A, p, t).

By linearity, F (A, p, t) is a linear function of A and p for each fixed t. We
may write

F (A, p, t) = F2(A, t) + F1(p, t).

Now consider the Euclidean invariance. Given an isometry R ,

IR(t, x) = I (t, R · x) = R(I (t))(x) = R(Tt(I0))(x) = Tt(R(I0))(x)

is the solution of ∂IR
∂t

= F (∇2IR ,∇IR , t). We have

∂I

∂t
(t, R · x) = F (∇2I (t, R · x),∇I (t, R · x), t).
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On the other hand IR(t, x) satisfies, by the equation of I ,

∂I

∂t
(t, R · x) = F (R tr · ∇2I (R · x) · R , R tr∇I (R · x), t).

Therefore, by comparing the above two equation, we have

F2(R trAR , t) = F2(A, t)

F1(R trp, t) = F1(p, t)

where A is any symmetric matrix.

Consider first F1. For any p 6= 0, we can find an R such that

R trp = (1, 0).

Therefore F1 takes at most two possible values F1(0) and F1(1, 0). Since F1

is linear, F1 = 0.

Now consider F2. Since for any symmetric matrix A, there exists orthogonal
matrix R such that R trAR is a diagonal matrix, the elements on the diagonal
line being the eigenvalues of A, λ1, λ2. We may write

F2(A, t) = F2(λ1,λ2, t)
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Since F2 does not depend on the order of the eigenvalues, it is a symmetric
function of the eigenvalues. Now the only linear symmetric function is the
sum. We conclude

F2(A, t) = c(t)trace(A).

In summary, the equation (6.6) becomes

∂I

∂t
= c(t)∆I

Thus with the rescaling ∂t′
∂t

= c(t), we obtain the heat equation. ¤
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6.4.2 The general morphological multiscale analysis

Theorem 6.4.3. Let N = 2. If a multiscale analysis is causal, regular,
translation invariant, Euclidean invariant, morphological invariant, I (t, x) =
Tt(I0)(x) is the solution of the heat equation

{
∂I
∂t

= |∇I |G (div( ∇I
|∇I |)),

I |t=0 = I0.
(6.9)

where G is a continuous function on R× (R2 \ {0}).

• This is equivalent to a curve evolution by

∂X

∂t
= −G (κ)−→n , (6.10)

by the level-set method (5.76).
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