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Generic dynamics

Consider:
— M: compact boundaryless manifold,
— Diff(M).

Goal: understand the dynamics of “most” f € Diff(M).
“Most"”: at least a dense part.

Our viewpoint: describe a generic subset of Diff!(M).
Generic (Baire): a countable intersection of open and dense
subsets.



Hyperbolic diffeomorphisms: definition

Definition
f € Diff(M) is hyperbolic if there exists Ko, ..., Kqg C M s.t..

— each Kj is a hyperbolic invariant compact set
TxM = E*® E",
— for any x € M\ (|J; K;), there exists U C M open such that

f(U)c Uand x € U\ f(U).



Hyperbolic diffeomorphisms: properties

Good properties of hyperbolic diffeomorphisms:
Q-stability, coding, physical measures,...

The set hyp(M) C Diff" (M) of hyperbolic dynamics is
— open,

and:
— dense, when dim(M) =1, r > 1 (Peixoto),
— not dense,

when dim(M) = 2, r > 2 (Newhouse)
or when dim(M) > 2 and r > 1 (Abraham-Smale),

— dense??, when dim(M) = 2, r = 1 (Smale’conjecture = vyes).



Obstructions to hyperbolicity

Homoclinic tangency associated to a hyperbolic periodic point p.
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Heterodimensional cycle associated to two hyperbolic periodic
points p, g such that dim(E*(p)) # dim(E*(q)).
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Palis’ conjecture

Describe of the dynamics in Diff(M) by phenomena/mechanisms.

Conjecture (Palis)

Any f € Diff(M) can be approximated by a hyperbolic
diffeomorphism or by a diffeomorphism exhibiting a homoclinic
bifurcation (tangency or cycle).

This holds when dim(M) = 1. In higher dimensions, there are
progresses for Diff1(M).

Theorem (Pujals-Sambarino)
The Palis conjecture holds for C1-diffeomorphisms of surfaces.

Remark (Bonatti-Diaz). For the C!-topology, it could be enough
to consider only the heterodimensional cycles.



Essential hyperbolicity far from homoclinic bifurcations

Theorem (Pujals, C-)

Any generic f € Difft(M) \ Tangency U Cycle is essentially
hyperbolic.

Definition
f € Diff(M) is essentially hyperbolic if there exists Ki, ..., Ks s.t.:
— each Kj is a hyperbolic attractor,

— the union of the basins of the K; is (open and) dense in M.

Remarks.
— The set of these diffeomorphisms is not open apriori.

— There was a previous result by Pujals about attractors in
dimension 3.



Partial hyperbolicity far from homoclinic bifurcations

Theorem 1 (C-)

Any generic diffeomorphism f € Diff'(M) \ Tangency U Cycle is
partially hyperbolic.

More precizely, there exists Ky, ..., Kg C M such that:

— each Kj is a partially hyperbolic invariant compact set
TkM=E*®E"or ES® E @ EYor E°® Ef ® ES ® EY,
and E€, Ef, ES are one-dimensional.

— for any x € M\ (|U; Ki), there exists U C M open such that

F(U) C Uand x € U\ (D).



Extremal bundles

Theorem 2 (Pujals, Sambarino, C-)
For any

— generic f € Diff'(M) \ Tangency U Cycle,
— partially hyperbolic transitive set K,

the extremal bundles E°, EY on K are non-degenerated, or K is a
sink/source.



Program of the lectures

Goal. Any generic f € Diff'(M) \ Tangency U Cycle is essentially
hyperbolic.

Part 1. Topological hyperbolicity
Obtain the existence of a finite number of “attractors” that are
“topologically hyperbolic’ and have dense basin.

— Lecture 1. How Theorems 1 & 2 are used to prove the
essential topological hyperbolicity?

— Lecture 2. Theorem 1 (partial hyperbolicity).

— Lecture 3. Theorem 2 (extremal bundles).

Part 2. From topological to uniform hyperbolicity
— Lectures 4,5,6.



|- Decomposition of the dynamics: the chain-recurrence
classes

The chain-recurrent set R(f): the set of x € M s.t. for any £ > 0,
there exists a e-pseudo-orbit x = xp, x1,...,%x, = x, n > 1.

The chain-recurrence classes: the equivalence classes of the relation
“for any ¢ > 0, there is a periodic e-pseudo-orbit containing x, y".

» This gives a partition of R(f) into compact invariant subsets.

Theorem (Bonatti, C-)

For f € Diff'(M) generic, any chain-recurrence class which
contains a periodic point p coincides with the homoclinic class of p:

H(p) = W=(O(p)) M W*(O(p))-

The other chain-recurrence classes are called aperiodic classes.



|- Decomposition of the dynamics: the quasi-attractors

A quasi-attractor is a chain-recurrence class having a basis of

neighborhoods U which satisfy f(U) C U.

» There always exist quasi-attractors.

Theorem (Morales, Pacifico, Bonatti, C-)

For a generic f € Diff'(M), the basins of the quasi-attractors of f
are dense in M.

» In order to prove the main theorem we have to prove that the
quasi-attractors are hyperbolic and finite.



lI- Weak hyperbolicity of the quasi-attractors

One uses:

Theorem 1
Any generic f € Difft(M) \ Tangency U Cycle is partially
hyperbolic.

More precizely:
— Each aperiodic class K has a partially hyperbolic structure
TkM = E° @ E€ @ EY with dim(E€) = 1.
The dynamics in the central is neutral.

— Each homoclinic class H(p) has a partially hyperbolic
structure Ty, yM = E< @ E“ = (E° @ Ef) © (E5 © EY) with
dim(Ef) =0or L.

The stable dimension of p coincides with dim(E<*).



lI- Weak hyperbolicity of the quasi-attractors

Corollary

For a generic f € Diff'(M) \ Tangency U Cycle, each
quasi-attractor is a homoclinic class H(p).

Proof. Consider
— an aperiodic class and x € K point x in an aperiodic class K,
— a periodic point p close to x.

Then, W"!(x) meets the center-stable plaque of p.
X W)
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Since each quasi-attractors contain its strong unstable manifolds,
K is not a quasi-attractor. L]



lI- Weak hyperbolicity of the quasi-attractors

Corollary

For a generic f € Diff*(M) \ Tangency U Cycle, each
non-hyperbolic quasi-attractor H(p) is a partially hyperbolic:

Thp) = E° ® E€ ® E* with dim(E€) = 1.
E€ is “center-stable”: the stable dimension of p is dim(E* @ E€).

Proof. Consider H(p) with a “center-unstable” bundle E€.
» There exists periodic p’ € H(p) with short unstable manifolds.
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» Since H(p) is a quasi-attractor, it contains ¢'.

» p’ and ¢’ have different stable dimension. By perturbation,
one gets a heterodimensional cycle between p’ and ¢'. O



I1l- Finiteness of the quasi-attractors

Corollary

For a generic f € Diff*(M) \ Tangency U Cycle, the union of the
non-trivial quasi-attractors is closed.

Proof. Consider a collection of non-trivial quasi-attractors:

A, — A
Hausdroff

Then, A has a partially hyperbolic structure.

» The A, are saturated by their strong unstable manifolds
= A is saturated by the invariant manifolds tangent to E"
= A is a non-trivial homoclinic class H(p).

» If the unstable dimension of p equals dim(EY), then, H(p)
contains W"(p) = H(p) is a quasi attractor (we are done).
Otherwise A C H(p) has a partially hyperbolic structure
E“ ® E°® EY and E€ is center-unstable.



I1l- Finiteness of the quasi-attractors
Consider a sequence of quasi-attractors A, — N C H(p) and a
splitting TrpyM = E< & E© @ EY with E© center-unstable.
» Consider z € A. By expansivity, each A, contains a periodic
orbit O, which avoids a neighborhood of z.
» For the A,, E€ is center-stable. Otherwise A is saturated by
plaques tangent to £€ @ EY. One concludes as before.
» Consequently, O, has a point whose stable manifold tangent
to E< is uniform. = Robustly W*"(p) intersects W*(O,).
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I1l- Finiteness of the quasi-attractors
Conclusion.

» Since the A, converge towards A, the unstable manifold of O,
meets the neighborhoods of z.

» The stable manifold of p meets the neighborhoods of
z € H(p).

» The connecting lemma allows to create a connection between
WH(0,) and W*(p).

» The connection between W*(0O,) and W"Y(p) is preserved.
= One gets a heterodimensional cycle by perturbation.

perturbation




I1l- Finiteness of the quasi-attractors

Proposition
For a generic f € Diff*(M) \ Tangency U Cycle, the number of
sinks is finite.

Proof. Consider a sequence of sinks O, — A.
Hausdorff

» A is contained in a chain-recurrence class.
» By Theorem 1, it is partially hyperbolic.

» By Theorem 2, EY is non trivial.



Proof of the essential hyperbolicity

Consider a generic f € Diff*(M) \ Tangency U Cycle.

— The union of the basin of the quasi-attractors is dense
(residual) in M.
— From theorem 1:

> the quasi-attractors are homoclinic classes;

> their central bundle (when it exists) has dimension 1 and is
center-stable;

» there are only finitely many non-trivial quasi-attractors.

— From theorems 1 and 2, there are only finitely many sinks.

= one has obtained the essential topological hyperbolicity.



Essential hyperbolicity versus homoclinic bifurcations (2)

Partial hyperbolicity far from homoclinic
bifurcations



Partial hyperbolicity far from homoclinic bifurcations

Conjecture (Palis)
Any generic f € Diff'(M) \ Tangency U Cycle is hyperbolic.

Theorem 1
Any generic f € Difft(M) \ Tangency U Cycle is partially
hyperbolic.

More precizely, each (chain-)transitive invariant compact set K of
f has a partially hyperbolic structure of one of the following types:

~ TkM = Es&_ Ev,
— TkM = Es @ E€ @ E¥ with dim(E€) =1,
— TkM = Es @, Ef @ ES @ E¥ with dim(ES), dim(ES) = 1.

(@< means that the sum is dominated.)



Program of the lectures

Goal. Any generic f € Diff'(M) \ Tangency U Cycle is essentially
hyperbolic.

Part 1. Topological hyperbolicity
Obtain the existence of a finite number of “attractors” that are
“topologically hyperbolic’ and have dense basin.

— Lecture 1. How Theorems 1 & 2 are used to prove the
essential topological hyperbolicity?

— Lecture 2. Theorem 1 (partial hyperbolicity).

— Lecture 3. Theorem 2 (extremal bundles).

Part 2. From topological to uniform hyperbolicity
— Lectures 4,5,6.



How to use “far from heterodimensional cycles”?

In the last lecture, we have seen:

— The non-trivial dynamics splits into the (disjoint, compact,
invariant) chain-recurrence classes.

— Generically, any chain-recurrence class that contains a
hyperbolic periodic point is a homoclinic class

H(p) = W*(O(p)) M W(O(p)).

(= closure of the hyperbolic periodic orbits O homoclincally
related to p: W*5(O) WH(p) and WS(p)h WH(O) are # 1.)

Proposition

For a generic f € Diff*(M) \ Cycle, all the periodic points in a
same homoclinic class have the same stable dimension.



How to use “far from homoclinic tangencies”?

Theorem (Wen)

Consider f € Diff*(M) \ Tangency and a sequence of hyperbolic
periodic orbits (O,) with the same stable dimension d.
Then N = U, 0, has a splitting TA\M = E &~ F with dim(E) = d.

» This allows to build dominated splittings.

Corollary (Wen)

If the O, have a weak Lyapunov exponent (i.e. ~ 0), there is a
corresponding splitting TA\M = E' & E€ & F' with dim(E€) = 1.

» A periodic orbit has at most one weak exponent.



Decomposition of non-uniform bundles

Consider a generic f € Diff*(M) \ Tangency and an invariant
compact set A with a splitting TA\M = E & F.
Proposition
If E is not uniformly contracted then one of the following holds:
— N C H(p) for some periodic p with dim(E*(p)) < dim(E).
— N C H(p) for some periodic p with dim(E*(p)) = dim(E).
H(p) contains periodic orbits with a weak stable exponent.
N\ contains K partially hyperbolic: TyM = E®* & E€ & EY,
with dim(E€) =1, dim(E®) < dim(E).
Any measure on K has a zero Lyapunov exponent along E€.

v

In the two first cases, the bundle E splits E = E' ®. E°.



Decomposition of non-uniform bundles: proof.

Consider a generic f € Diff*(M) \ Tangency,
an invariant compact set A with a splitting TA\M = E & F.
Assume that E is not uniformly contracted.

>

There exists an ergodic measure p with a non-negative
Lyapunov exponent along E.

Mané's ergodic closing lemma = p is the limit of periodic
orbits O, with Lyapunov exponents close to those of p.

» If 1 is hyperbolic, the O, are homoclinically related = case 1.

» Otherwise u has an exponent equal to zero. Let

K = Supp(z). One has TyM = E' & E & F'.

Taking dim(E’) minimal, the central exponent of any measure
supported on K is < 0.

Taking K minimal for the inclusion, if some measure has a
negative central exponent, Liao’s selecting lemma = case 2.

Otherwise, all the central exponents are zero = case 3.



Wen's local result

Any non-hyperbolic diffeomorphism has a non-hyperbolic
chain-transitive set which is minimal for the inclusion.

Corollary (Wen)

For a generic f € Diff*(M) \ Tangency U Cycle, any minimally
non-hyperbolic (chain-)transitive set N\ is partially hyperbolic.

Proof. Consider the finest splitting TaAM = E1 &« E> B« -+ - D Es
and E; is not uniformly contracted nor expanded.

» If A contains K partially hyperbolic, A = K by minimality.

» Otherwise A is contained in a homoclinic class H(p).

» Far from heterodimentional cycles = all the periodic points in
H(p) have the same stable dimension d.

> If dim(E1 @ -+ @ E;) < ds, then dim(E;) =1 and
dim(E1 D---D E,') = ds.

» Otherwise dim(E;) =1 and dim(E; & --- @ Ej_1) = ds. O



From local to global: principle

Consider
— a generic f € Diff'(M) \ Tangency,
— a chain-recurrence class A with a splitting E & F.

1. If E is not uniformly contracted,
> either it splits as E = E' & E€,
» or A contains K with TyM = E* & E & EY, dim(E€) =1
and dim(E*®) < dim(E).
In the second case,

» One looks for periodic orbits that shadows A and spends most
of its time close to K.

» The splitting on K extendson A as TyM = E' & E & F.

2. One repeats step 1 with the bundle E’.

3. One argues similarly with F.



(Topological) dynamics in the central direction

In order to go from local to global: one has to consider,
— a transitive set K,

— with a splitting Tk«M = E° & E€ ®. EY, dim(E€) = 1.
The dynamics in the central direction can be lifted.
Proposition

There exists a local continuous dynamics (K x R, h) and a
projection m: K x R — M such that

— (K x R, h) is a skew product above (K, f),
— m semi-conjugates h to f and sends K x {0} on K,
— m sends the {x} x R on a familly of central plaques.

(K x R, h) is called a central model for the central dynamics on K.
It is in general not unique.



Classification of the dynamics in the central direction

Let (K x R, h) be a central model. One of the following holds.

» Hyperbolic type: the chain-stable set of K x {0} contains
small attracting neighborhoods.

<

» Neutral type: there are small attracting and small repelling
neighborhoods of K x {0}.

» Parabolic type: one side has small attracting neigborhoods,

the other one has small repelling neighborhoods.

» Recurrent type: the intersection of the chain-stable and
chain-unstable sets contains a segment {x} x [0, ¢].

The type does not depend on the choice of a central model.



From local to global: one easy example

Consider a generic f € Diff*(M) \ Tangency and
— K transitive with TyM = E°* & E€ @, EY, dim(E€) =1, s.t.
any measure on K has central exponent equal to zero,

— A the chain-recurrence class containing K.

Proposition
If K has hyperbolic type, then N\ satisfies T\M = E & E€ ®- F.
It is a homoclinic class H(p). The stable dimension of p is dim(E).

Proof. Assume K with hyperbolic repelling type.

» There are periodic orbits O, —— K, with stable dimension
Hausdorff

ds = dim(E®) and homoclinically related.

» A = H(O,) for each n. There is a splitting TAM = E & Fy
with dim(E) = ds.

» The central exponents of O, is weak = H(O,) contains a
dense set of weak periodic orbits. Hence Fo = E€ © F. []



Central dynamics: the different cases

Consider a generic f € Diff'(M) \ Tangency,
a chain-recurrence class A and a minimal set K C A s.t.:
- TkM=E°®. EC® EY, dm(E°) =1,

— all the measure on K have a zero central Lyapunov exponent.

The central type of K is hyperbolic, recurrent, parabolic untwisted
= A is a homoclinic class.
It contains periodic orbits whose central exponent is weak.

The central type of K is parabolic twisted
=> one can create a heterodimensional cycle by perturbation.

The central type of K is neutral and K C A
= one creates a cycle or A is a homoclinic class as before.

The central type is neutral and K = A
= the class is aperiodic.



Proof of theorem 1

kK% k



Chain-hyperbolic classes

Consider an invariant compact set A with a dominated splitting
TAM = E & F such that.



Essential hyperbolicity versus homoclinic bifurcations (3)

Hyperbolicity of the extremal bundles



Dynamics far from homoclinic bifurcations

Consider a generic f € Diff*(M) \ Tangency U Cycle.

Theorem 1
Any non-hyperbolic chain-recurrence class K is partially hyperbolic:

TkM = E* ©< E“ @< E" or E* ©< Ef ©< E5 &< EY,

where E€, Ef, ES are one-dimensional bundles.

Theorem 2
The cases E°* & E and E° ®. Ef ©®< E5 don't appear.

Corollary
f has only finitely many sinks.



Setting

Consider
— f € DiffY(M),
— A: an invariant compact set,
— TAM = E ©. F: a dominated splitting with dim(F) = 1.

Under general assumptions we expect that

F is uniformly expanded unless A contains a sink.



Motivation: the 1D case

Theorem (Mafié)
Consider
— f: a C? endomorphism of the circle,
— A: an invariant compact set.
Assume furthermore that
— fia is not topologically conjugated to an irrational rotation,
— all the periodic points of f in \ are hyperbolic.

Then Df|p is uniformly expanding unless \ contains a sink.



The surface case

Theorem (Pujals-Sambarino)
Consider
— f: a C? surface diffeomorphism,
— A: an invariant compact set with a dominated splitting
TAM =E &< F,dim(F) = 1.
Assume furthermore that
— N does not contain irrational curves,
— all the periodic points of f in \ are hyperbolic.

Then F is uniformly expanding unless A contains a sink.

Irrational curve: a simple closed curve -, invariant by an iterate "
such that fﬂ is topologically conjugated to an irrational rotation.



The surface generic case

Corollary
Consider
— f: a Cl-generic surface diffeomorphism,
— A: an invariant compact set with a dominated splitting
TAM =E @ F,dim(F) = 1.

Then N is a hyperbolic set or contains a sink/source.



The one-codimensional uniform bundle case

Theorem (Pujals-Sambarino)
Consider f € Diff>(M) and H(p) a homoclinic class such that:
— Thp)M = E° ©< F: a dominated splitting with dim(F) =1,
— E?® is uniformly contracted,
— all the periodic orbits in H(p) are hyperbolic saddles,
— H(p) does not contain irrational curves.

Then, F is uniformly expanded.

Corollary
Consider f € Diff*(M) generic and H(p), invariant compact set

s.t.:
— TH(p)M = E° ©< F: a dominated splitting with dim(F) =1,
— E® is uniformly contracted,
— H(p) does not contain sinks.

Then H(p) is a hyperbolic set.



How to replace the uniform contraction on E?

Consider A with a splitting TAM = E & F.

By Hirsch-Pugh-Shub, there exists a locally invariant plaque
familly tangent to E,
i.e. a continuous collection of C!-plaques (Dx)xen such that
— Dy is tangent to E at x,
— f(Dx) contains a uniform neighborhood of f(x) in Dg(,).

The plaques are trapped if for each x, f(Dy) is contained in the
open plaque D).

» In this case, the plaques are essentially unique.

The bundle E is thin trapped if there exists trapped plaque
families with arbitrarily small diameter.



The one-codimensional non-uniform bundle case

Theorem
Consider f € Diff?(M) and A a chain-recurrence class such that:

— TAM = E ®. F: a dominated splitting with dim(F) =1,
— E is thin trapped,

A is totally disconnected in the center-stable plaques,

all the periodic orbits in \ are hyperbolic saddles,
— N does not contain irrational curves.

Then, F is uniformly expanded.



Summary of the different cases

If A has a dominated splitting TAM = E @&~ F with dim(F) = 1,
and if E satisfies one of these properties :
- dim(E) =1,
— E is uniformly contracted,
— E is thin trapped + A is totally disconnected along the
plaques tangent to E.

then, F is uniformly contracted or A contains a sink.



Strategy

f € Diff?(M) and A with a splitting E @~ F, dim(F) = 1.
A\ does not contain irrational curves nor non-saddle periodic points.

Assuming that any proper invariant compact set A" C A'is
hyperbolic, we have to prove that A is hyperbolic.

— Step 1: topological hyperbolicity. (Pujals-Sambarino)
Each point x € A has a well defined one-dimensional unstable
manifold W¥(x) which is (topologically) contracted by 1.

— Step 2: existence of a markov box B. (Specific in each case)

— Step 3: uniform expansion along F. (Pujals-Sambarino)
Obtained by inducing in B.



Markov boxes
Step 1 = d thin trapped plaque families D°, D" tangent to E, F.

A box B is a union of curves (Jy) that are
— contained in the plaques DY,
— bounded by two plaques of D°.

We assume furthermore that
o
— B has interior B in A.
o] [0)
— B is Markovian: for each z € BN f~"(B), one has
- f"(Jz) D an(z).
— z is contained in a sub-box B’ C B that meets all the curves
Jy and f"(B’) is a union of curves of B.



Construction of Markov boxes

E, F are thin trapped + A transitive
= there exists a periodic orbit O that shadows A.

Consider the one-codimensional plaques Dj for y € O.
B is the region bounded by two such “consecutive” plaques.

» B is Markovian along the center-unstable curves.

E thin trapped + A totally disconnected along the center-stable
=> one can choose open trapped plaques D® such that:

— for each x, AN D;, is a compact subset Ay of Dy,
— for each x, y, the sets A, A, coincide or are disjoint.

» B is Markovian along the center-stable plaques.



How to get disconnectedness?

H(p): a homoclinic class for a generic f € Diff! \ Tangency U Cycle.
Goal: rule out the splitting Ty, M = E* ©< Ef < E5.

H(p) contains g periodic with weak (stable) exponent along Ef.

Lemma
If ¢ has a strong homoclinic intersection:

W¥(0(q)) N W*(0(q)) # 0,

then, one can create a heterodimensional cycle by perturbation.

}@%

» For any g € H(p) periodic, one has W**(q) N H(p) = {q}.




A geometrical result on partially hyperbolic sets

Let H(p) be a homoclinic class with a splitting

ThpyM = E® &< E¥ = (E° ®< ET) &< E3,

p)

such that ES, E are thin trapped for f, f ! respectively.

Theorem (Pujals, C-)
If for any q € H(p) periodic, one has W**(q) N H(p) = {q}, then
— either H(p) is contained in an invariant submanifold tangent
to Ef @ Ej5,
— or H(p) is totally disconnected along the center-stable
plaques.



Codimensional dynamics

We use:

Theorem (Bonatti, C-)
Consider N\ with a splitting E° &~ F. Then,
— either N\ is contained in an invariant submanifold tangent to F,

— or there exists x € N\ such that W**(x) N A\ {x} is non-empty.

» In our case, x is not periodic.



Program of the lectures

Goal. Any generic f € Diff'(M) \ Tangency U Cycle is essentially
hyperbolic.

Part 1. Topological hyperbolicity
Obtain the existence of a finite number of “attractors” that are
“topologically hyperbolic’ and have dense basin.

— Lecture 1. How Theorems 1 & 2 are used to prove the
essential topological hyperbolicity?

— Lecture 2. Theorem 1 (partial hyperbolicity).

— Lecture 3. Theorem 2 (extremal bundles).

Part 2. From topological to uniform hyperbolicity
— Lectures 4,5,6.



Uniform hyperbolicity of quasi-attractors

We need another result on the geometry of partially hyp. sets.

Theorem (Pujals,C-)

Consider H(p) with Ty, yM = E°®©< E€©< EY, dim(E®) =1 s.t.
— E< = E° @ EF€ is thin trapped,
— for each x € H(p), one has W"(x) C H(p).

Then, there exists g € Diff'(M) close to f such that
a) either for any x € H(pg) one has W**(x) N H(pg) = {x},

b) or there exists q € H(pg) periodic with a strong connection.

In case a), for f generic, H(p) is contained in an invariant
submanifold tangent to E€ @ EY = H(p) is hyperbolic.

In case b), if E€ is not uniformly contracted, one can create a
heterodimensional cycle.



