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Generic dynamics

Consider:

– M: compact boundaryless manifold,

– Diff(M).

Goal: understand the dynamics of “most” f ∈ Diff(M).
“Most”: at least a dense part.

Our viewpoint: describe a generic subset of Diff1(M).
Generic (Baire): a countable intersection of open and dense
subsets.



Hyperbolic diffeomorphisms: definition

Definition
f ∈ Diff(M) is hyperbolic if there exists K0, . . . ,Kd ⊂ M s.t.:

– each Ki is a hyperbolic invariant compact set

TK M = E s ⊕ E u,

– for any x ∈ M \ (
⋃

i Ki ), there exists U ⊂ M open such that

f (U) ⊂ U and x ∈ U \ f (U).



Hyperbolic diffeomorphisms: properties

Good properties of hyperbolic diffeomorphisms:
Ω-stability, coding, physical measures,...

The set hyp(M) ⊂ Diffr (M) of hyperbolic dynamics is

– open,

and:

– dense, when dim(M) = 1, r ≥ 1 (Peixoto),

– not dense,

when dim(M) = 2, r ≥ 2 (Newhouse)
or when dim(M) > 2 and r ≥ 1 (Abraham-Smale),

– dense??, when dim(M) = 2, r = 1 (Smale’conjecture = yes).



Obstructions to hyperbolicity
Homoclinic tangency associated to a hyperbolic periodic point p.

p

Heterodimensional cycle associated to two hyperbolic periodic
points p, q such that dim(E s(p)) 6= dim(E s(q)).

p q



Palis’ conjecture

Describe of the dynamics in Diff(M) by phenomena/mechanisms.

Conjecture (Palis)

Any f ∈ Diff(M) can be approximated by a hyperbolic
diffeomorphism or by a diffeomorphism exhibiting a homoclinic
bifurcation (tangency or cycle).

This holds when dim(M) = 1. In higher dimensions, there are
progresses for Diff1(M).

Theorem (Pujals-Sambarino)

The Palis conjecture holds for C 1-diffeomorphisms of surfaces.

Remark (Bonatti-D́ıaz). For the C 1-topology, it could be enough
to consider only the heterodimensional cycles.



Essential hyperbolicity far from homoclinic bifurcations

Theorem (Pujals, C-)

Any generic f ∈ Diff1(M) \ Tangency∪Cycle is essentially
hyperbolic.

Definition
f ∈ Diff(M) is essentially hyperbolic if there exists K1, . . . ,Ks s.t.:

– each Ki is a hyperbolic attractor,

– the union of the basins of the Ki is (open and) dense in M.

Remarks.

– The set of these diffeomorphisms is not open apriori.

– There was a previous result by Pujals about attractors in
dimension 3.



Partial hyperbolicity far from homoclinic bifurcations

Theorem 1 (C-)

Any generic diffeomorphism f ∈ Diff1(M) \ Tangency∪Cycle is
partially hyperbolic.

More precizely, there exists K0, . . . ,Kd ⊂ M such that:

– each Ki is a partially hyperbolic invariant compact set
TK M = E s ⊕ E u or E s ⊕ E c ⊕< E u or E s ⊕ E c

1 ⊕ E c
2 ⊕ E u,

and E c ,E c
1 ,E

c
2 are one-dimensional.

– for any x ∈ M \ (
⋃

i Ki ), there exists U ⊂ M open such that

f (U) ⊂ U and x ∈ U \ f (U).



Extremal bundles

Theorem 2 (Pujals, Sambarino, C-)

For any

– generic f ∈ Diff1(M) \ Tangency∪Cycle,

– partially hyperbolic transitive set K ,

the extremal bundles E s ,E u on K are non-degenerated, or K is a
sink/source.



Program of the lectures

Goal. Any generic f ∈ Diff1(M) \ Tangency∪Cycle is essentially
hyperbolic.

Part 1. Topological hyperbolicity
Obtain the existence of a finite number of “attractors” that are
“topologically hyperbolic” and have dense basin.

– Lecture 1. How Theorems 1 & 2 are used to prove the
essential topological hyperbolicity?

– Lecture 2. Theorem 1 (partial hyperbolicity).

– Lecture 3. Theorem 2 (extremal bundles).

Part 2. From topological to uniform hyperbolicity

– Lectures 4,5,6.



I- Decomposition of the dynamics: the chain-recurrence
classes

The chain-recurrent set R(f ): the set of x ∈ M s.t. for any ε > 0,
there exists a ε-pseudo-orbit x = x0, x1, . . . , xn = x , n ≥ 1.

The chain-recurrence classes: the equivalence classes of the relation
“for any ε > 0, there is a periodic ε-pseudo-orbit containing x , y”.

I This gives a partition of R(f ) into compact invariant subsets.

Theorem (Bonatti, C-)

For f ∈ Diff1(M) generic, any chain-recurrence class which
contains a periodic point p coincides with the homoclinic class of p:

H(p) = W s(O(p)) |∩ W u(O(p)).

The other chain-recurrence classes are called aperiodic classes.



I- Decomposition of the dynamics: the quasi-attractors

A quasi-attractor is a chain-recurrence class having a basis of
neighborhoods U which satisfy f (U) ⊂ U.

I There always exist quasi-attractors.

Theorem (Morales, Pacifico, Bonatti, C-)

For a generic f ∈ Diff1(M), the basins of the quasi-attractors of f
are dense in M.

I In order to prove the main theorem we have to prove that the
quasi-attractors are hyperbolic and finite.



II- Weak hyperbolicity of the quasi-attractors

One uses:

Theorem 1
Any generic f ∈ Diff1(M) \ Tangency∪Cycle is partially
hyperbolic.

More precizely:

– Each aperiodic class K has a partially hyperbolic structure
TK M = E s ⊕ E c ⊕ E u with dim(E c ) = 1.
The dynamics in the central is neutral.

– Each homoclinic class H(p) has a partially hyperbolic
structure TH(p)M = E cs ⊕ E cu = (E s ⊕ E c

1 )⊕ (E c
2 ⊕ E u) with

dim(E c
i ) = 0 or 1.

The stable dimension of p coincides with dim(E cs).



II- Weak hyperbolicity of the quasi-attractors

Corollary

For a generic f ∈ Diff1(M) \ Tangency∪Cycle, each
quasi-attractor is a homoclinic class H(p).

Proof. Consider

– an aperiodic class and x ∈ K point x in an aperiodic class K ,

– a periodic point p close to x .

Then, W uu(x) meets the center-stable plaque of p.

x

p W cs(p)

W c (x)

Since each quasi-attractors contain its strong unstable manifolds,
K is not a quasi-attractor.



II- Weak hyperbolicity of the quasi-attractors

Corollary

For a generic f ∈ Diff1(M) \ Tangency∪Cycle, each
non-hyperbolic quasi-attractor H(p) is a partially hyperbolic:

TH(p) = E s ⊕ E c ⊕ E u with dim(E c) = 1.

E c is “center-stable”: the stable dimension of p is dim(E s ⊕ E c ).

Proof. Consider H(p) with a “center-unstable” bundle E c .

I There exists periodic p′ ∈ H(p) with short unstable manifolds.

q′p′
W c (p′)

I Since H(p) is a quasi-attractor, it contains q′.

I p′ and q′ have different stable dimension. By perturbation,
one gets a heterodimensional cycle between p′ and q′.



III- Finiteness of the quasi-attractors

Corollary

For a generic f ∈ Diff1(M) \ Tangency∪Cycle, the union of the
non-trivial quasi-attractors is closed.

Proof. Consider a collection of non-trivial quasi-attractors:

An −→
Hausdroff

Λ.

Then, Λ has a partially hyperbolic structure.

I The An are saturated by their strong unstable manifolds
⇒ Λ is saturated by the invariant manifolds tangent to E u

⇒ Λ is a non-trivial homoclinic class H(p).

I If the unstable dimension of p equals dim(E u), then, H(p)
contains W u(p) ⇒ H(p) is a quasi attractor (we are done).
Otherwise Λ ⊂ H(p) has a partially hyperbolic structure
E cs ⊕ E c ⊕ E u and E c is center-unstable.



III- Finiteness of the quasi-attractors
Consider a sequence of quasi-attractors An −→ Λ ⊂ H(p) and a
splitting TH(p)M = E cs ⊕ E c ⊕ E u with E c center-unstable.

I Consider z ∈ Λ. By expansivity, each An contains a periodic
orbit On which avoids a neighborhood of z .

I For the An, E c is center-stable. Otherwise Λ is saturated by
plaques tangent to E c ⊕ E u. One concludes as before.

I Consequently, On has a point whose stable manifold tangent
to E cs is uniform. ⇒ Robustly W u(p) intersects W s(On).

Λ

z

An+1

An

On



III- Finiteness of the quasi-attractors
Conclusion.

I Since the An converge towards Λ, the unstable manifold of On

meets the neighborhoods of z .

I The stable manifold of p meets the neighborhoods of
z ∈ H(p).

I The connecting lemma allows to create a connection between
W u(On) and W s(p).

I The connection between W s(On) and W u(p) is preserved.
⇒ One gets a heterodimensional cycle by perturbation.

p

On

W u(p)
An

p
z

On

W u(p) Λ

perturbation



III- Finiteness of the quasi-attractors

Proposition

For a generic f ∈ Diff1(M) \ Tangency∪Cycle, the number of
sinks is finite.

Proof. Consider a sequence of sinks On −→
Hausdorff

Λ.

I Λ is contained in a chain-recurrence class.

I By Theorem 1, it is partially hyperbolic.

I By Theorem 2, E u is non trivial.



Proof of the essential hyperbolicity

Consider a generic f ∈ Diff1(M) \ Tangency∪Cycle.

– The union of the basin of the quasi-attractors is dense
(residual) in M.

– From theorem 1:
I the quasi-attractors are homoclinic classes;
I their central bundle (when it exists) has dimension 1 and is

center-stable;
I there are only finitely many non-trivial quasi-attractors.

– From theorems 1 and 2, there are only finitely many sinks.

⇒ one has obtained the essential topological hyperbolicity.



Essential hyperbolicity versus homoclinic bifurcations (2)

Partial hyperbolicity far from homoclinic
bifurcations



Partial hyperbolicity far from homoclinic bifurcations

Conjecture (Palis)
Any generic f ∈ Diff1(M) \ Tangency∪Cycle is hyperbolic.

Theorem 1
Any generic f ∈ Diff1(M) \ Tangency∪Cycle is partially
hyperbolic.

More precizely, each (chain-)transitive invariant compact set K of
f has a partially hyperbolic structure of one of the following types:

– TK M = E s ⊕< E u,

– TK M = E s ⊕< E c ⊕< E u with dim(E c) = 1,

– TK M = E s ⊕< E c
1 ⊕< E c

2 ⊕< E u with dim(E c
1 ), dim(E c

2 ) = 1.

(⊕< means that the sum is dominated.)



Program of the lectures

Goal. Any generic f ∈ Diff1(M) \ Tangency∪Cycle is essentially
hyperbolic.

Part 1. Topological hyperbolicity
Obtain the existence of a finite number of “attractors” that are
“topologically hyperbolic” and have dense basin.

– Lecture 1. How Theorems 1 & 2 are used to prove the
essential topological hyperbolicity?

– Lecture 2. Theorem 1 (partial hyperbolicity).

– Lecture 3. Theorem 2 (extremal bundles).

Part 2. From topological to uniform hyperbolicity

– Lectures 4,5,6.



How to use “far from heterodimensional cycles”?

In the last lecture, we have seen:

– The non-trivial dynamics splits into the (disjoint, compact,
invariant) chain-recurrence classes.

– Generically, any chain-recurrence class that contains a
hyperbolic periodic point is a homoclinic class

H(p) = W s(O(p)) |∩ W u(O(p)).

(= closure of the hyperbolic periodic orbits O homoclincally
related to p: W s(O) |∩ W u(p) and W s(p) |∩ W u(O) are 6= ∅.)

Proposition

For a generic f ∈ Diff1(M) \ Cycle, all the periodic points in a
same homoclinic class have the same stable dimension.



How to use “far from homoclinic tangencies”?

Theorem (Wen)

Consider f ∈ Diff1(M) \ Tangency and a sequence of hyperbolic
periodic orbits (On) with the same stable dimension ds .
Then Λ = ∪nOn has a splitting TΛM = E ⊕< F with dim(E ) = ds .

I This allows to build dominated splittings.

Corollary (Wen)

If the On have a weak Lyapunov exponent (i.e. ∼ 0), there is a
corresponding splitting TΛM = E ′ ⊕< E c ⊕< F ′ with dim(E c ) = 1.

I A periodic orbit has at most one weak exponent.



Decomposition of non-uniform bundles

Consider a generic f ∈ Diff1(M) \ Tangency and an invariant
compact set Λ with a splitting TΛM = E ⊕< F .

Proposition

If E is not uniformly contracted then one of the following holds:

– Λ ⊂ H(p) for some periodic p with dim(E s(p)) < dim(E ).

– Λ ⊂ H(p) for some periodic p with dim(E s(p)) = dim(E ).
H(p) contains periodic orbits with a weak stable exponent.

– Λ contains K partially hyperbolic: TK M = E s ⊕< E c ⊕< E u,
with dim(E c ) = 1, dim(E s) < dim(E ).
Any measure on K has a zero Lyapunov exponent along E c .

I In the two first cases, the bundle E splits E = E ′ ⊕< E c .



Decomposition of non-uniform bundles: proof.
Consider a generic f ∈ Diff1(M) \ Tangency,
an invariant compact set Λ with a splitting TΛM = E ⊕< F .
Assume that E is not uniformly contracted.

I There exists an ergodic measure µ with a non-negative
Lyapunov exponent along E .

I Mañé’s ergodic closing lemma ⇒ µ is the limit of periodic
orbits On with Lyapunov exponents close to those of µ.

I If µ is hyperbolic, the On are homoclinically related ⇒ case 1.

I Otherwise µ has an exponent equal to zero. Let
K = Supp(µ). One has TK M = E ′ ⊕< E c ⊕< F ′.

I Taking dim(E ′) minimal, the central exponent of any measure
supported on K is ≤ 0.

I Taking K minimal for the inclusion, if some measure has a
negative central exponent, Liao’s selecting lemma ⇒ case 2.

I Otherwise, all the central exponents are zero ⇒ case 3.



Wen’s local result

Any non-hyperbolic diffeomorphism has a non-hyperbolic
chain-transitive set which is minimal for the inclusion.

Corollary (Wen)

For a generic f ∈ Diff1(M) \ Tangency∪Cycle, any minimally
non-hyperbolic (chain-)transitive set Λ is partially hyperbolic.

Proof. Consider the finest splitting TΛM = E1⊕< E2⊕< · · · ⊕< Es

and Ei is not uniformly contracted nor expanded.

I If Λ contains K partially hyperbolic, Λ = K by minimality.

I Otherwise Λ is contained in a homoclinic class H(p).

I Far from heterodimentional cycles ⇒ all the periodic points in
H(p) have the same stable dimension ds .

I If dim(E1 ⊕ · · · ⊕ Ei ) ≤ ds , then dim(Ei ) = 1 and
dim(E1 ⊕ · · · ⊕ Ei ) = ds .

I Otherwise dim(Ei ) = 1 and dim(E1 ⊕ · · · ⊕ Ei−1) = ds .



From local to global: principle

Consider

– a generic f ∈ Diff1(M) \ Tangency,

– a chain-recurrence class Λ with a splitting E ⊕ F .

1. If E is not uniformly contracted,

I either it splits as E = E ′ ⊕< E c ,

I or Λ contains K with TK M = E s ⊕< E c ⊕< E u, dim(E c ) = 1
and dim(E s) < dim(E ).

In the second case,

I One looks for periodic orbits that shadows Λ and spends most
of its time close to K .

I The splitting on K extends on Λ as TK M = E ′ ⊕< E c ⊕< F .

2. One repeats step 1 with the bundle E ′.

3. One argues similarly with F .



(Topological) dynamics in the central direction

In order to go from local to global: one has to consider,

– a transitive set K ,

– with a splitting TK M = E s ⊕< E c ⊕< E u, dim(E c ) = 1.

The dynamics in the central direction can be lifted.

Proposition

There exists a local continuous dynamics (K × R, h) and a
projection π : K × R→ M such that

– (K × R, h) is a skew product above (K , f ),

– π semi-conjugates h to f and sends K × {0} on K ,

– π sends the {x} × R on a familly of central plaques.

(K ×R, h) is called a central model for the central dynamics on K .
It is in general not unique.



Classification of the dynamics in the central direction

Let (K × R, h) be a central model. One of the following holds.

I Hyperbolic type: the chain-stable set of K × {0} contains
small attracting neighborhoods.

I Neutral type: there are small attracting and small repelling
neighborhoods of K × {0}.

I Parabolic type: one side has small attracting neigborhoods,
the other one has small repelling neighborhoods.

I Recurrent type: the intersection of the chain-stable and
chain-unstable sets contains a segment {x} × [0, ε].

The type does not depend on the choice of a central model.



From local to global: one easy example

Consider a generic f ∈ Diff1(M) \ Tangency and

– K transitive with TK M = E s ⊕< E c ⊕< E u, dim(E c) = 1, s.t.
any measure on K has central exponent equal to zero,

– Λ the chain-recurrence class containing K .

Proposition

If K has hyperbolic type, then Λ satisfies TΛM = E ⊕< E c ⊕< F .
It is a homoclinic class H(p). The stable dimension of p is dim(E ).

Proof. Assume K with hyperbolic repelling type.

I There are periodic orbits On −→
Hausdorff

K , with stable dimension

ds = dim(E s) and homoclinically related.

I Λ = H(On) for each n. There is a splitting TΛM = E ⊕< F0

with dim(E ) = ds .

I The central exponents of On is weak ⇒ H(On) contains a
dense set of weak periodic orbits. Hence F0 = E c ⊕< F .



Central dynamics: the different cases

Consider a generic f ∈ Diff1(M) \ Tangency,
a chain-recurrence class Λ and a minimal set K ⊂ Λ s.t.:

– TK M = E s ⊕< E c ⊕< E u, dim(E c ) = 1,

– all the measure on K have a zero central Lyapunov exponent.

The central type of K is hyperbolic, recurrent, parabolic untwisted
⇒ Λ is a homoclinic class.
It contains periodic orbits whose central exponent is weak.

The central type of K is parabolic twisted
⇒ one can create a heterodimensional cycle by perturbation.

The central type of K is neutral and K ( Λ
⇒ one creates a cycle or Λ is a homoclinic class as before.

The central type is neutral and K = Λ
⇒ the class is aperiodic.



Proof of theorem 1

****



Chain-hyperbolic classes

Consider an invariant compact set Λ with a dominated splitting
TΛM = E ⊕ F such that.



Essential hyperbolicity versus homoclinic bifurcations (3)

Hyperbolicity of the extremal bundles



Dynamics far from homoclinic bifurcations

Consider a generic f ∈ Diff1(M) \ Tangency∪Cycle.

Theorem 1
Any non-hyperbolic chain-recurrence class K is partially hyperbolic:

TK M = E s ⊕< E c ⊕< E u or E s ⊕< E c
1 ⊕< E c

2 ⊕< E u,

where E c ,E c
1 ,E

c
2 are one-dimensional bundles.

Theorem 2
The cases E s ⊕< E c and E s ⊕< E c

1 ⊕< E c
2 don’t appear.

Corollary

f has only finitely many sinks.



Setting

Consider

– f ∈ Diff1(M),

– Λ: an invariant compact set,

– TΛM = E ⊕< F : a dominated splitting with dim(F ) = 1.

Under general assumptions we expect that

F is uniformly expanded unless Λ contains a sink.



Motivation: the 1D case

Theorem (Mañé)

Consider

– f : a C 2 endomorphism of the circle,

– Λ: an invariant compact set.

Assume furthermore that

– f|Λ is not topologically conjugated to an irrational rotation,

– all the periodic points of f in Λ are hyperbolic.

Then Df|Λ is uniformly expanding unless Λ contains a sink.



The surface case

Theorem (Pujals-Sambarino)

Consider

– f : a C 2 surface diffeomorphism,

– Λ: an invariant compact set with a dominated splitting
TΛM = E ⊕< F , dim(F ) = 1.

Assume furthermore that

– Λ does not contain irrational curves,

– all the periodic points of f in Λ are hyperbolic.

Then F is uniformly expanding unless Λ contains a sink.

Irrational curve: a simple closed curve γ, invariant by an iterate f n

such that f n
|γ is topologically conjugated to an irrational rotation.



The surface generic case

Corollary

Consider

– f : a C 1-generic surface diffeomorphism,

– Λ: an invariant compact set with a dominated splitting
TΛM = E ⊕< F , dim(F ) = 1.

Then Λ is a hyperbolic set or contains a sink/source.



The one-codimensional uniform bundle case

Theorem (Pujals-Sambarino)

Consider f ∈ Diff2(M) and H(p) a homoclinic class such that:

– TH(p)M = E s ⊕< F : a dominated splitting with dim(F ) = 1,

– E s is uniformly contracted,

– all the periodic orbits in H(p) are hyperbolic saddles,

– H(p) does not contain irrational curves.

Then, F is uniformly expanded.

Corollary

Consider f ∈ Diff1(M) generic and H(p), invariant compact set
s.t.:

– TH(p)M = E s ⊕< F : a dominated splitting with dim(F ) = 1,

– E s is uniformly contracted,

– H(p) does not contain sinks.

Then H(p) is a hyperbolic set.



How to replace the uniform contraction on E?

Consider Λ with a splitting TΛM = E ⊕ F .

By Hirsch-Pugh-Shub, there exists a locally invariant plaque
familly tangent to E ,
i.e. a continuous collection of C 1-plaques (Dx )x∈Λ such that

– Dx is tangent to Ex at x ,

– f (Dx ) contains a uniform neighborhood of f (x) in Df (x).

The plaques are trapped if for each x , f (Dx ) is contained in the
open plaque Df (x).

I In this case, the plaques are essentially unique.

The bundle E is thin trapped if there exists trapped plaque
families with arbitrarily small diameter.



The one-codimensional non-uniform bundle case

Theorem
Consider f ∈ Diff2(M) and Λ a chain-recurrence class such that:

– TΛM = E ⊕< F : a dominated splitting with dim(F ) = 1,

– E is thin trapped,

– Λ is totally disconnected in the center-stable plaques,

– all the periodic orbits in Λ are hyperbolic saddles,

– Λ does not contain irrational curves.

Then, F is uniformly expanded.



Summary of the different cases

If Λ has a dominated splitting TΛM = E ⊕< F with dim(F ) = 1,
and if E satisfies one of these properties :

– dim(E ) = 1,

– E is uniformly contracted,

– E is thin trapped + Λ is totally disconnected along the
plaques tangent to E .

then, F is uniformly contracted or Λ contains a sink.



Strategy

f ∈ Diff2(M) and Λ with a splitting E ⊕< F , dim(F ) = 1.
Λ does not contain irrational curves nor non-saddle periodic points.

Assuming that any proper invariant compact set Λ′ ( Λ is
hyperbolic, we have to prove that Λ is hyperbolic.

– Step 1: topological hyperbolicity. (Pujals-Sambarino)
Each point x ∈ Λ has a well defined one-dimensional unstable
manifold W u(x) which is (topologically) contracted by f −1.

– Step 2: existence of a markov box B. (Specific in each case)

– Step 3: uniform expansion along F . (Pujals-Sambarino)
Obtained by inducing in B.



Markov boxes
Step 1 ⇒ ∃ thin trapped plaque families Ds ,Du tangent to E ,F .

A box B is a union of curves (Jx ) that are

– contained in the plaques Du,

– bounded by two plaques of Ds .

We assume furthermore that

– B has interior
◦
B in Λ. � allows to induce

– B is Markovian: for each z ∈
◦
B ∩ f −n(

◦
B), one has

– f n(Jz ) ⊃ Jf n(z). � B sees the expansion along F
– z is contained in a sub-box B ′ ⊂ B that meets all the curves

Jx and f n(B ′) is a union of curves of B.
� quotient the dynamics along center-unstable plaques



Construction of Markov boxes

E ,F are thin trapped + Λ transitive
⇒ there exists a periodic orbit O that shadows Λ.

Consider the one-codimensional plaques Ds
y for y ∈ O.

B is the region bounded by two such “consecutive” plaques.

I B is Markovian along the center-unstable curves.

E thin trapped + Λ totally disconnected along the center-stable
⇒ one can choose open trapped plaques Ds such that:

– for each x , Λ ∩ Ds
x is a compact subset ∆x of Ds

x ,

– for each x , y , the sets ∆x ,∆y coincide or are disjoint.

I B is Markovian along the center-stable plaques.



How to get disconnectedness?
H(p): a homoclinic class for a generic f ∈ Diff1 \Tangency∪Cycle.
Goal: rule out the splitting TH(p)M = E s ⊕< E c

1 ⊕< E c
2 .

H(p) contains q periodic with weak (stable) exponent along E c
1 .

Lemma
If q has a strong homoclinic intersection:

W u(O(q)) ∩W ss(O(q)) 6= ∅,

then, one can create a heterodimensional cycle by perturbation.

I For any q ∈ H(p) periodic, one has W ss(q) ∩ H(p) = {q}.



A geometrical result on partially hyperbolic sets

Let H(p) be a homoclinic class with a splitting

TH(p)M = E cs ⊕< E cu = (E s ⊕< E c
1 )⊕< E c

2 ,

such that E cs , E cu are thin trapped for f , f −1 respectively.

Theorem (Pujals, C-)

If for any q ∈ H(p) periodic, one has W ss(q) ∩ H(p) = {q}, then

– either H(p) is contained in an invariant submanifold tangent
to E c

1 ⊕ E c
2 ,

– or H(p) is totally disconnected along the center-stable
plaques.



Codimensional dynamics

We use:

Theorem (Bonatti, C-)

Consider Λ with a splitting E s ⊕< F . Then,

– either Λ is contained in an invariant submanifold tangent to F ,

– or there exists x ∈ Λ such that W ss(x)∩Λ \ {x} is non-empty.

I In our case, x is not periodic.



Program of the lectures

Goal. Any generic f ∈ Diff1(M) \ Tangency∪Cycle is essentially
hyperbolic.

Part 1. Topological hyperbolicity
Obtain the existence of a finite number of “attractors” that are
“topologically hyperbolic” and have dense basin.

– Lecture 1. How Theorems 1 & 2 are used to prove the
essential topological hyperbolicity?

– Lecture 2. Theorem 1 (partial hyperbolicity).

– Lecture 3. Theorem 2 (extremal bundles).

Part 2. From topological to uniform hyperbolicity

– Lectures 4,5,6.



Uniform hyperbolicity of quasi-attractors

We need another result on the geometry of partially hyp. sets.

Theorem (Pujals,C-)

Consider H(p) with TH(p)M = E s ⊕< E c ⊕< E u, dim(E s) = 1 s.t.

– E cs = E s ⊕ E c is thin trapped,

– for each x ∈ H(p), one has W u(x) ⊂ H(p).

Then, there exists g ∈ Diff1(M) close to f such that

a) either for any x ∈ H(pg ) one has W ss(x) ∩ H(pg ) = {x},
b) or there exists q ∈ H(pg ) periodic with a strong connection.

In case a), for f generic, H(p) is contained in an invariant
submanifold tangent to E c ⊕ E u ⇒ H(p) is hyperbolic.

In case b), if E c is not uniformly contracted, one can create a
heterodimensional cycle.


