
1

2. Convex Hulls in 2D

Convex – a set S is convex if x,y�S implies that the (closed) segment xy � S.

A convex combination of points x1,x2,…, xk is a sum of the form �1x1 + … + �kxk,
with �i � 0 for all i and �1 + … + �k = 1.

Points Convex combination
2

3(noncollinear)
4 (noncoplanar)

Line segment
triangle

tetrahedron

Theorem The convex hull of a set of points S is the set of all convex combinations of
 points of S.

The extreme points of a set S of points in the plane are the vertices of the convex hull at
which the interior angle is strictly convex, less than �.

Extreme points – a, d, e, h and i.

 An extreme edge is an edge whose endpoints are both extreme vertices. In the above
example, the extreme edges are ad, dh, hi, ie and ea.

We consider the following algorithms and their complexity:

(i) Graham’s Algorithm,
(ii) Incremental algorithm.

a

b
c

d f

g

e

h

i

2

 2.1 Graham’s Algorithm (1972)

This algorithm is based on the observation that , for the extreme points p1,p2,p3, …, pn,
the point pi+1is always at the left side of the extreme edge pi-1pi.

Assume that a point x is interior to the hull and no three points are collinear.

Step 1: Sort the points by angle, counterclockwise about x. The points are given in order
by a1,a2,a3, …, an-1

Let S be a stack of extreme points in counterclockwise direction. For instance, in the
above example, S may be given by

S=(a1, a2, a4, a5, a8, a9).

We observe that if bi-1, bi & bi+1 are three consecutive points in S, bi+1 is at the left side of
bi-1bi.

We build up S in the following way:

Step 2: Start S with a1 and a2. Points are added to or deleted from S according to the
following rule:
Let bi-1 be the last but one point and bi be the last point in S at certain time. For a point aj

which is after bi in the sorted list, if aj is at the left side of bi-1bi, then add aj to S as the
last point; otherwise delete bi.

Step 3: Go back to step 2 and consider aj+1 until the sorted list is exhausted.

a4

a3

a7

a6

a9
a1

a2

a8

a5

x

3

In the above example , S builds up in this way:

S= (a1,a2), (a1,a2,a3), (a1,a2), (a1,a2,a4), (a1,a2,a4,a5), (a1,a2,a4,a5,a6),
(a1,a2,a4,a5,a6,a7), (a1,a2,a4,a5,a6), (a1,a2,a4,a5), (a1,a2,a4,a5,a8) ,
(a1,a2,a4,a5,a8,a9)

Algorithm: Graham Scan, Version A

Find the interior point x; label it p0.
Sort all other points angularly about x;

Label P1,…, Pn-1

Stack S = (P1, P2) = (Pt-1, Pt);
t indexes top
while i < n do

if Pi is left of (Pt-1, Pt)
then Push (S,i) and increment i
else Pop(S)

* In the above, we may also assume that P0 is an extreme vertex.

Complexity

- Sorting of n points angulary O (nlogn)
- Push (S,i) n
- Pop (S) < n

� “Worst-case optimal” = O(nlogn).

Difficulties to overcome

1. Sorting of points

Instead of looking for an interior point, we choose an extreme point as a new
sorting origin. We will use the lowest point (the rightmost of the lowest if there are
several lowest points), which is clearly on the hull.

1

2

3

4

56

7
0

4

Sorting of points angularly about P0

In the sorting

Pi < Pj � angle (P0Pi) < angle (P0Pj)

Instead of computing the angles, we use the following simple method:

Pi < Pj � ��(P0,Pi,Pj) > 0

2. Collinearities :

In the sorting of collinear points, we use the rule that closer points to P0 are treated as
earlier in the sorting sequence, i.e.

a < b � | a – P0 | < | b – P0 |

If Pt-1 and Pt are the top two points on the stack, we require a strict left turn (Pt-1,
Pt, Pi) to push Pi onto the stack.

If Pt is collinear with Pt-1 and Pi, it will be deleted.

P0

Pi

Pi+1

Pi+2

area

P0

Pj Pi

5

3. Start and Stop of Loop:

To start the loop, the first two points in the stack must be extreme points. In the way that
we sort the points, P0, P1 and Pn-1 must be on the hull. P0 is an extreme point. P1 may not
be as shown below,

Pn-1 is also an extreme point from the way that we label collinear points:

We initialize S = (Pn-1, P0) so that the stack will always contain at least two points.

4. With the above rules, Pn-1 appears twice on the final stack: the first and the last
element. One final stack pop is necessary.

Algorithm: Graham Scan , Version B

Find rightmost lowest point; label it P0.
Sort all other points angularly about P0, break ties in favor of closeness to
P0; label P1,…, Pn-1.

Stack S = (Pn-1, P0) = (Pt-1, Pt); t indexes top.
i =1

while i < n do
if Pi is strictly left of (Pt-1, Pt)

then Push (S,i) and set i � i +1
else Pop (S).

P0

P1

P2

Pn-4

Pn-1

Pn-2

Pn-3
P0

6

Data Representation

Input Points – stored in an integer array P: P[0],…, P[n-i] corresponding to
P0,P1…,Pn-1 .(Code 3.1)

Stack— represented by a singly–linked list of cells, each of which “contains” a
point. The stack top is head of the list. (Code 3.2)

Push links a new element P to the lead (Code 3.3).
Pop removes the top element and returns its storage to the system
(Code 3.4).

2.2 Incremental Algorithm
Graham's algorithm has no obvious extension to 3D as the angular sorting has no
direct counterpart.

Basic plan: Add the points one at a time, at each step constructing the hull of
the first k points, and using that hull to incorporate the next point.

Let Q be a convex hull and p be the next point to be considered.

Case 1. p� Q.

p� Q � p is left of or on every directed edge.

top

a cell

P t

7

Case 2. p � Q.

There exist two extreme points on Q such that the following statement is wrong:

"p is left or on both of pi-1pi and pipi+1".

The new hull is (p0,p1, …, pi-1, pi, p, pj, …, pn-1).

Algorithm: Tangent Points

for i = 0 to n-1 do
if xor (p left or on (pi-1, pi), p left or on (pi, pi+1))
then pi is point of tangency.

Complexity
Number of checking at the k-th hull = k.
Total checking of all the n points
= 3 + 4 + 5 + … + n
= O(n2)

The incremental algorithm can easily be extended to 3D.

