
1

Computational Geometry

Aim:
(i) the study of algorithms for solving geometric problems on a computer.
(ii) to construct basic programs for computer graphics applications.

Topics

1. Polygon Triangulation
2. Convex Hulls in 2D
3. Voronoi Diagrams

Text Book

Computational Geometry in C
by J. O’ Rourke
Cambridge University Press, 1994

Triangulation

Find the velocity of water current at (2.5, 2).

Convex Hulls

If a polyhedron is not convex, then the smallest convex set which contains it is called the
convex hull of the polyhedron.

Question: Find the convex hull of the following points:
(3, -2), (5, 1), (7, 4), (6, 5), (4, 2),
(3, 3), (3, 5), (2, 5), (0, 5), (0, 1).

2

 Question on facility location (Voronoi Diagram)

Suppose you would like to locate a new grocery store in an area with several existing,
competing grocery stores, how would you locate it so that it is as far away from the old
ones as possible?

 o Existing Grocery Store

Theorem 1 (Triangulation)

Every polygon P of n vertices may be partitioned into triangles by the addition of
diagonals.

Proof by induction:
If n = 3, the polygon is a triangle.
Let n � 4. Add a diagonal to P and it partitions P into two polygons with vertices < n.
Applying the induction hypothesis to the two subpolygons completes the proof.

Properties of Triangulation
Let P be a polygon of n vertices.
1. No. of diagonals = n – 3.
2. No. of triangles = n – 2.
3. Sum of internal angles = (n – 2) �.

3

Dual of a triangulation:
A graph with a vertex associated with each triangle, and an edge between two vertices iff
their triangles share a diagonal.

Lemma 2

The dual T of a triangulation is a tree, with each vertex of degree at most three.

Proof:
A triangle has at most 3 sides to share � degree of a vertex � 3.

Suppose T is not a tree; then it must have a cycle C. C must enclose some polygon
vertices and thus some points exterior to the polygon. This contradicts the simplicity of
the polygon.

Ear of a polygon:

Three consecutive vertices of a polygon a, b, c form an ear of the polygon if ac is a
diagonal; b is the ear tip.

4

Simple Triangulation Algorithm
Input consecutive points in counter- clockwise direction.
n = number of vertices.
If n > 3 then

for each potential ear diagonal (i, i+2) do
if Diagonal (i , i+2) then

Print diagonal .
` Remove ear at vi+1.

Recurse on remainder of polygon.

Example Triangulate the following polygon P using the simple algorithm.

Solution: Consider vertices 0, 1, 2.
Since 02 intersects with 45, 02 is not a diagonal.
We then consider vertices 1, 2, 3.
13 is a diagonal. �123 is removed & the following new
polygon is considered.

We now consider vertices 0, 1, 3.
 03 is not a diagonal since it intersects with 45.

Next, vertices 1, 3, 4 are considered.
14 is an external diagonal which we do not want.
Then, vertices 3, 4, 5 are considered.
35 is a diagonal & �345 is removed. The reduced polygon is shown
below:

5

Finally, 15 is another diagonal and the triangulation is as follows:

In the above example, for a potential diagonal, we have to determine whether
(i) it intersects with other edges of the (reduced) polygon; and
(ii) it is internal or external.

Program Implementation
(I) Segment intersection

Given two line segments. A common inclination is to calculate the point of
intersection between the lines containing these segments and check whether the
point falls inside the segments. However, this code is messy and may lead to
serious error.

We will use a simple idea based on the sign of area of a triangle.

Proposition 3 Given 3 vertices v1 = (x1 , y1), v2 = (x2 , y2) and

v3 = (x3 , y3) labeled counter-clockwise. Twice the area of the

triangle T = (v1 , v2 , v3) is given by

1

1

1

)(2

33

22

11

yx

yx

yx

TA �

 = x1y2 – x2y1 + x2y3 – x3y2 + x3y1 – x1y3

(See Code 1.3 Area 2)

6

Corollary 4 For a directed line determined by two points given in a particular

order (a, b) and another given point c,

 (i) c is to the left of (a, b) iff the area of the
counterclockwise triangle, A(a, b, c), is positive;
(See Code 1.4 Left)

(ii) c is collinear with (a, b) iff A(a, b, c) = 0.
(See Code 1.5)

We now examine whether a potential diagonal intersects with any edge.
(Part (i) in P.21)
(i) Proper intersection – two segments intersect at a point interior to both.

Check : c and d on opposite sides of (a, b)
� a and b on opposite sides of (c, d).

This checking can be implemented by using the codes Left and Collinear.
(See Code 1.6 IntersectProp)

(ii) Improper intersection – an end-point of one segment lies somewhere on the other
segment.

Check that c is between (a, b):
- a, b, c are collinear , and
- Coordinate of c is in between those of a and b.

(See Code 1.8 Between)
We have to check all possible combination of betweenness
- a, b, c; a, b, d; c, d, a; c, d, b.

(See Code 1.9 Intersect)

If an edge is a diagonal, we next check whether it is internal or not.

7

For a given diagonal s = vivj, we have to find a way to check whether it is in the
cone determined by vi-1, vi, vi+1 labeled counterclockwise.

(a) Convex
s = vivj is an internal diagonal

� vi-1 is on the left of s = vivj and vi+1 is on the right.

(b) Reflex
s = vivj is internal

� it is not external : it is not the case that both vi+1 is left or on vivj, and
vi-1 is left or on vjvi.

(See Code 1.11 InCone)

Note that this test simply builds on the codes Left and Collinear.

Data Structures
- The coordinates of the vertices of a polygon are inputed in the counter-

clockwise order and assigned with a number.

- When an internal diagonal is found and the ear tip vi is to be deleted the
polygon array location [i+1, n-1] is copied into locations [i, n-2], thereby
overwriting location i.
(See Code 1.17 ClipEar1)

- Output is a sequence of pairs of endpoint indices representing diagonals.

8

Polygon P

 Input Triangulation Diagonals

 i x y 1 3
 0 0 0 4 6
 1 10 7 3 6
 2 12 3 3 7
 3 20 8 1 7
 4 13 17 0 7
 5 10 12 9 11

 6 12 14 9 12
 7 13 11 12 14
 8 7 11 9 14

 9 6 14 8 14
10 10 15 8 15
11 6 18 7 15
12 –1 15 7 16
13 1 13 7 17
14 4 14
15 5 10
16 -2 9
17 5 5

n = 18 vertices

9

Complexity

Triangulation [T(n)]
if n > 3 then

for each potential ear
diagonal (i, i+2) do [� n iteration]

if Diagonal (i, i+2) then [O(n)]
Print diagonal [O(1)]
Remove ear at vi [O(n)]
Recurse on remainder of polygon [T(n-1)]
break

	T(n) = O(n)
 O(n) + O(1) + O(n) + T(n-1)
�T(n) = O(n2) + T(n-1)
�T(n) = O(n3)

History of Triangulation Algorithms

1978 O(n log n)
1988 O(n log log n)
1989 O(n log*n)
1991 O(n)

log*n = no. of times the log must be iterated to reduce n to 1 or less

e.g. For n =
1622 � 1019728,

log*n = 5.

