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Chapter 5.  Differential Geometry of Surfaces

5.1 Surface in parametric form
In 3D, a surface can be represented by

(1). Explicit form z = f(x,y)
(2). Implicit form f(x,y,z) = 0
(3). Vector form r

�
(x,y) = (x,y,f(x,y))T, or more general r

�
(u,v)=(x(u,v),y(u,v),z(u,v))T

depending on two parameters.

Example 1. The sphere of radius a has the geographical form

0 �� � �r
�

(�,�)=(acos�cos�,acos�sin�,asin�)T

0 � �� 2�

Example 2. The cylinder built on the curve r
�

(t) = (x(t),y(t))T,  a � t � b in the xy-plane
has the form
r
�

(u,v)=(x(u),y(u),v)T , a � u �b , -� < v < �
Example 3. Surface of revolution by rotating a curve r

�
(t) = (p(t),0,q(t))T (a � t � b)

about the z-axis
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=(p(u)cos v, p(u)sin v,q(u) )T

a � u � b, 0 � v � 2�

Specical cases are: a torus with r
�

(t) = ( R + a cost,0, a sin t)T, 0 � t � 2�
A cone with r

�
(t) = (t, 0, mt)T, -� � t � �

Tangent vectors on the surface are ),( vuru

�
and ),( vurv

�
. Hence a unit normal n̂at r(u,v) is

given by
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assuming 0�� vu rr

��
 at (u,v), ( non-singular point).

If the surface is given implicitly f(x,y,z) = 0, then
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5.2 Metric properties
Distance on the surface is measured by
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 in standard notation

This is the 1st fundamental form of the surface:
222 2 GdvFdudvEduds ���

The unit tangent t̂  along the curve r
�

(t) = r
�

(u(t),v(t)) is
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The length of the segment of the curve r

�
(t) from t = t0 to t = t1 is
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If two curves ))(),(()( tvturtr iii
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�  intersect at an angle � on the surface, then
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An elementry area dA will be given by

We have

Thus for any Region R on the surface.

5.3 Curvatures

Recalled that for a general space curve ,

and  

where      is the principal normal to the curve, not to confuse with the normal     to the

surface. If        lies on the surface, then                             , so that

Differentiating again

Notice that the surface normal     is perpendicular to    ,      and
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The right-hand side is the second fundamental form of the surface,
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D  is standard notation.

The normal curvature n�  of the curve � �t�
�

in the surface is defined to be
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Note that ���� cosˆˆ ��� nNn , i.e. it is the component of � in the direction ofn̂ . The

other component of � in the tangent plane is known as the geodesic curvature g� ,

because of orthogonality, it has the magnitude

�����
22222 sin��� ng

A surface curve � �t�
�

, for which g� = 0 at every point is called a geodesic, (as straight as

possible on the surface).

Consider row n� as a function of the direction
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As � changes direction in the surface, n�  will achieve a maximum and a minimum value

unless L: M: N = E: F: G, in that case n�  is independent of � (such locations are called

umbilic points)

Setting 0�
�

�

d

d n , the principal directions � and the corresponding principal

curvatures k are governed by

� � � � � � 02 ������ FLEMGLENGMFN ��
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The solutions satisfy
� � 02121 ���� ���� GFE
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21kkK �  is called the Gaussian Curvature.

� �212
1 kkH ��  is the mean Curvature (Germain Curvature).
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therefore the two principal directions are orthogonal.
Some geometrical meaning of the curvatures are the following.

1) A surface is called minimal if H = 0 everywhere. A minimal surface with boundary l
has the smallest surface area among all surfaces with boundary l.

2) If the principal directions are taken as the parametric curves, then MF �� 0 and
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curvature in any other direction � is then given by
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where � is the angle betweenur
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� which is known as the

Euler s formula.
3) If K>0 at a point P on the surface, then P is an elliptic point. As k1, k2 have the same

sign, so all the surface is bending the same way in all directions.
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4) If K<0 at a point P, then it is an hyperbolic point. Tangent directions at P can bend
away or towards the tangent plane.

5) If K=0 then either
(a) One principal curvature only is zero. The point P is a parabolic point, and one of
the principal direction is straight near P.
(b) Both principal curvature are zero. The point is a special type of umbilic point and
is planar.
Note: Isolated planar points can exist on surfaces which is far from planar. E.g. the

monkey saddle surface � �� �yxyxxz 33 ��� at P(0,0,0)

6) Consider a point P on the surface z = �(x,y) By a change of coordinates, choose the
origin at P, and x, y axes along the principal directions at P, also z-axis in the direction
of the surface normal at P, then the surface has equation z = f(x,y) local to (0,0,0) with
f(0,0)=0
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Now, taking � �� �yxfyxr ,,,�
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At P = (0,0,0), � � � �0,0,1�prx

�
,  � � � �0,1,0�pry

�
 and � �1,0,0�n
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These conics justify the terminology used. The simplest surface on which all three cases

of Gaussian curvature
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5.4  Special cases

5.4.1 Developable surfaces

Consider a surface in R3 which is constructed by a moving straight line, this so called
ruled surface has the form

� � � � � �uavurvur
���

�� 0,
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where � �ur0

�
is the position vector of a point on a given line, � �ua

�
is the direction of the

moving line (generators)

or if straight lines are used to join two given curves� �ur0

�
, � �ur1
�

then

� � � � � � � �urvurvvur 101,
���

���

Examples are cylinders and cones.
Now we look for conditions so that a ruled surface can be unrolled into a flat plane
without distortion, (i.e. distances are preserved). If a ruled surface is developable,
then all the generators eventually lie on a plane, therefore they are either parallel or
intersect one another.

Now the intersection of two generatorsa
�

and duaa ���
� is governed by

� � � �� � � � 0000 ��������� aarduaaardurr �������������
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In case all the generators are parallel, the above condition is also satisfied. Therefore it is
the condition for a ruled surface becomes developable. As
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In case the ruled surface is governed by two curves� �ur0

�
, � �ur1

�
, the condition becomes

� � � � 01001 ���� rrrr ������
, this fact is used in the tangent plane method of generating

developable surface passing through two curves.
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5.4.2 Envelope of space curves

Regarding � �vurr ,
��

� as a family of curves � �� �urr v

��
� depending on a parameter v. There

may exist a curve � �vrr e

��
� which is tangential to every curve� � � �ur v

�
at the parametric value

v. Such a curve, if it exists, is called the envelope of the family of curves.
In terms of the original parameters� �vur ,

�
it implies ur

�
is parallel to vr

�
and the surface

normal is not defined at these points:
0�� vu rr

��

In case of the developable surface, the generators will have an envelope if they are not
parallel. An envelope satisfies

� � 00 ����� aavrrr vu
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so long as the generators are not parallel, 0�� aa
��� hence the location of common tangent
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