Chapter 5. Differential Geometry of Surfaces

5.1 Surface in parametric form

In 3D, a surface can be represented by
(1). Explicit form $\mathrm{z}=\mathrm{f}(\mathrm{x}, \mathrm{y})$
(2). Implicit form $\mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z})=0$
(3). Vector form $\vec{r}(\mathrm{x}, \mathrm{y})=(\mathrm{x}, \mathrm{y}, \mathrm{f}(\mathrm{x}, \mathrm{y}))^{\mathrm{T}}$, or more general $\vec{r}(\mathrm{u}, \mathrm{v})=(\mathrm{x}(\mathrm{u}, \mathrm{v}), \mathrm{y}(\mathrm{u}, \mathrm{v}), \mathrm{z}(\mathrm{u}, \mathrm{v}))^{\mathrm{T}}$ depending on two parameters.

Example 1. The sphere of radius a has the geographical form

$$
\vec{r}(\theta, \phi)=(\operatorname{acos} \theta \cos \phi, \mathrm{a} \cos \theta \sin \phi, \mathrm{asin} \theta)^{\mathrm{T}} \quad 0 \leq \theta \leq \pi ~ 子=0 \leq \phi \leq 2 \pi .
$$

Example 2. The cylinder built on the curve $\vec{r}(\mathrm{t})=(\mathrm{x}(\mathrm{t}), \mathrm{y}(\mathrm{t}))^{\mathrm{T}}, \mathrm{a} \leq \mathrm{t} \leq \mathrm{b}$ in the xy -plane has the form

$$
\vec{r}(\mathrm{u}, \mathrm{v})=(\mathrm{x}(\mathrm{u}), \mathrm{y}(\mathrm{u}), \mathrm{v})^{\mathrm{T}}, \quad \mathrm{a} \leq \mathrm{u} \leq \mathrm{b},-\infty<\mathrm{v}<\infty
$$

Example 3. Surface of revolution by rotating a curve $\vec{r}(\mathrm{t})=(p(\mathrm{t}), 0, \mathrm{q}(\mathrm{t}))^{\mathrm{T}}(\mathrm{a} \leq \mathrm{t} \leq \mathrm{b})$ about the z -axis

$$
\begin{gathered}
\vec{r}(\mathrm{u}, \mathrm{v})=R_{z} \vec{r}(t)=\left[\begin{array}{ccc}
\cos v & -\sin v & \\
\sin v & \cos v & \\
& & 1
\end{array}\right]\left(\begin{array}{c}
p(u) \\
0 \\
q(u)
\end{array}\right)=(p(\mathrm{u}) \cos \mathrm{v}, p(\mathrm{u}) \sin \mathrm{v}, q(\mathrm{u}))^{\mathrm{T}} \\
\mathrm{a} \leq \mathrm{u} \leq \mathrm{b}, 0 \leq \mathrm{v} \leq 2 \pi
\end{gathered}
$$

Specical cases are: a torus with $\vec{r}(\mathrm{t})=(\mathrm{R}+\mathrm{a} \operatorname{cost}, 0, \mathrm{a} \sin \mathrm{t})^{\mathrm{T}}, \quad 0 \leq \mathrm{t} \leq 2 \pi$
A cone with $\vec{r}(\mathrm{t})=(\mathrm{t}, 0, \mathrm{mt})^{\mathrm{T}}, \quad-\infty \leq \mathrm{t} \leq \infty$

Tangent vectors on the surface are $\vec{r}_{u}(u, v)$ and $\vec{r}_{v}(u, v)$. Hence a unit normal \hat{n} at $\mathrm{r}(\mathrm{u}, \mathrm{v})$ is given by

$$
\hat{n}= \pm \frac{\vec{r}_{u}(u, v) \times \vec{r}_{v}(u, v)}{\left|\vec{r}_{u}(u, v) \times \vec{r}_{v}(u, v)\right|}
$$

assuming $\vec{r}_{u} \times \vec{r}_{v} \neq 0$ at (u,v), (non-singular point).
If the surface is given implicitly $f(x, y, z)=0$, then

$$
\vec{n}= \pm \frac{\nabla f}{|\nabla f|}
$$

5.2 Metric properties

Distance on the surface is measured by

$$
\left[\begin{array}{c}
d x \\
d y \\
d z
\end{array}\right]=d \vec{r}=\vec{r}_{u} d u+\vec{r}_{v} d v=\left[\begin{array}{cc}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \\
\frac{\partial z}{\partial u} & \frac{\partial z}{\partial v}
\end{array}\right]\binom{d u}{d v}=A d \vec{u}
$$

$$
d s^{2}=d \vec{r} \cdot d \vec{r}=(d \vec{r})^{T} d \vec{r}=d \vec{u}^{T} A^{T} A d \vec{u}=d \vec{u}^{T} B d \vec{u}
$$

where $B=A^{T} A=\left[\begin{array}{ll}\vec{r}_{u} \cdot \vec{r}_{u} & \vec{r}_{u} \cdot \vec{r}_{v} \\ \vec{r}_{v} \cdot \vec{r}_{u} & \vec{r}_{v} \cdot \vec{r}_{v}\end{array}\right]=\left[\begin{array}{ll}E & F \\ F & G\end{array}\right]$ in standard notation
This is the $1^{\text {st }}$ fundamental form of the surface:

$$
d s^{2}=E d u^{2}+2 F d u d v+G d v^{2}
$$

The unit tangent \hat{t} along the curve $\vec{r}(\mathrm{t})=\vec{r}(\mathrm{u}(\mathrm{t}), \mathrm{v}(\mathrm{t}))$ is

$$
\hat{t}=\frac{\dot{\vec{r}}}{|\dot{\vec{r}}|}=\frac{A \dot{\vec{u}}}{\left(\dot{\vec{u}}^{T} B \overrightarrow{\vec{u}}\right)^{1 / 2}}
$$

The length of the segment of the curve $\vec{r}(\mathrm{t})$ from $\mathrm{t}=\mathrm{t}_{0}$ to $\mathrm{t}=\mathrm{t}_{1}$ is

$$
s=\int_{t_{2}}^{t_{1}}|\dot{\vec{r}}| d t=\int_{t_{2}}^{t_{1}}\left(\dot{\vec{u}}^{T} B \dot{\vec{u}}\right)^{1 / 2} d t
$$

If two curves $\vec{r}_{i}(t)=\vec{r}\left(u_{i}(t), v_{i}(t)\right)$ intersect at an angle θ on the surface, then

$$
\cos \theta=\hat{t}_{1} \cdot \hat{t}_{2}=\frac{\dot{\vec{u}}_{1} A^{T} A \dot{\vec{u}}_{2}}{\left(\dot{\vec{u}}_{1} B \dot{\vec{u}}_{1}\right)^{1 / 2}\left(\dot{\vec{u}}_{2} B \dot{\vec{u}}_{2}\right)^{1 / 2}}=\frac{\dot{\vec{u}}_{1} B \dot{\vec{u}}_{2}}{d S_{1} \cdot d S_{2}}
$$

An elementry area dA will be given by

$$
\begin{aligned}
d A & =|[\vec{r}(u+d u, v)-\vec{r}(u, v)] \times[\vec{r}(u, v+d v)-\vec{r}(u, v)]| \\
& \approx\left|\vec{r}_{u} d u \times \vec{r}_{v} d v\right| \\
& =\left|\vec{r}_{u} \times \vec{r}_{v}\right| d u d v
\end{aligned}
$$

We have $\left|\vec{r}_{u} \times \vec{r}_{v}\right|^{2}=\left|\vec{r}_{u}\right|^{2} \cdot\left|\vec{r}_{v}\right|^{2}-\left(\vec{r}_{u} \cdot \vec{r}_{v}\right)^{2}=E G-F^{2}=\operatorname{det}(B)=|B|$
Thus $\quad A_{R}=\iint_{R}|B|^{\frac{1}{2}} d u \cdot d v \quad$ for any Region R on the surface.

5.3 Curvatures

Recalled that for a general space curve $\vec{\gamma}(t)$,
$\dot{\vec{\gamma}}(t)=\dot{s} \hat{t} \quad$ and $\quad \ddot{\vec{\gamma}}(t)=\ddot{s} \hat{t}+\dot{s}^{2} k \hat{N}$
where \hat{N} is the principal normal to the curve, not to confuse with the normal \hat{n} to the surface. If $\vec{\gamma}(t)$ lies on the surface, then $\vec{\gamma}(t)=\vec{r}(u(t), v(t))$, so that

$$
\overrightarrow{\dot{r}}=\vec{r}_{u} \dot{u}+\vec{r}_{v} \dot{v}
$$

Differentiating again

$$
\ddot{\vec{r}}=\vec{r}_{u u} \dot{u}^{2}+2 \vec{r}_{u v} \dot{u} \dot{v}+\vec{r}_{v v} \dot{v}^{2}+\vec{r}_{u} \ddot{u}+\bar{r}_{v} \ddot{v}
$$

Notice that the surface normal \hat{n} is perpendicular to \hat{t}, \vec{r}_{u} and \vec{r}_{v}

$$
\begin{aligned}
\therefore \ddot{\vec{r}} \cdot \hat{n} & =\dot{S}^{2} k \hat{N} \cdot \hat{n}=\hat{n} \cdot \vec{r}_{u u} \dot{u}^{2}+2 \hat{n} \cdot \vec{r}_{u v} \dot{u} \dot{v}+\hat{n} \cdot \vec{r}_{v v} \dot{v}^{2} \\
& =\dot{\vec{u}}^{T}\left[\begin{array}{ll}
\hat{n} \cdot \vec{r}_{u u} & \hat{n} \cdot \vec{r}_{u v} \\
\hat{n} \cdot \vec{r}_{u v} & \hat{n} \cdot \vec{r}_{v v}
\end{array}\right] \dot{\vec{u}}=\dot{\vec{u}}^{T} D \dot{\vec{u}}
\end{aligned}
$$

The right-hand side is the second fundamental form of the surface,
$D=\left[\begin{array}{cc}L & M \\ M & N\end{array}\right]$ is standard notation.

The normal curvature $\boldsymbol{\kappa}_{n}$ of the curve $\vec{\gamma}(t)$ in the surface is defined to be

$$
\kappa_{n}=\frac{\ddot{\vec{r}} \cdot \hat{n}}{\dot{S}^{2}}=\frac{\dot{\vec{u}}^{T} D \dot{\vec{u}}}{\dot{\vec{u}}^{T} B \dot{\vec{u}}}
$$

Note that $\kappa_{n}=\kappa \hat{N} \cdot \hat{n}=\kappa \cos \theta$, i.e. it is the component of κ in the direction of \hat{n}. The other component of κ in the tangent plane is known as the geodesic curvature κ_{g}, because of orthogonality, it has the magnitude

$$
\kappa_{g}^{2}=\kappa^{2}-\kappa_{n}^{2}=\kappa^{2} \sin ^{2} \theta
$$

A surface curve $\vec{\gamma}(t)$, for which $\kappa_{g}=0$ at every point is called a geodesic, (as straight as possible on the surface).

Consider row κ_{n} as a function of the direction $\dot{\vec{u}}=\left(\frac{d u}{d t}, \frac{d v}{d t}\right)^{T}$,
Let $\lambda=\frac{d v}{d u}$ then

$$
\kappa_{n}=\kappa_{n}(\lambda)=\frac{L \dot{u}^{2}+2 M \dot{u} \dot{v}+N \dot{v}^{2}}{E \dot{u}^{2}+2 F \dot{u} \dot{v}+G \dot{v}^{2}}=\frac{L+2 M \lambda+N \lambda^{2}}{E+2 F \lambda+G \lambda^{2}}
$$

As λ changes direction in the surface, κ_{n} will achieve a maximum and a minimum value unless L: M: N = E: F: G, in that case κ_{n} is independent of λ (such locations are called umbilic points)

Setting $\frac{d \kappa_{n}}{d \lambda}=0$, the principal directions λ and the corresponding principal curvatures k are governed by

$$
\begin{array}{ll}
& (F N-G M) \lambda^{2}+(E N-G L) \lambda+(E M-F L)=0 \\
\text { and } \quad & \left(E G-F^{2}\right) k^{2}-(L G+N E-2 F M) k-\left(L N-M^{2}\right)=0
\end{array}
$$

The solutions satisfy

$$
\begin{aligned}
& E+F\left(\lambda_{1}+\lambda_{2}\right)+G \lambda_{1} \lambda_{2}=0 \\
& \frac{1}{2}\left(k_{1}+k_{2}\right)=\frac{L G-2 F M+N E}{2\left(E G-F^{2}\right)} \\
& k_{1} k_{2}=\frac{L N-M^{2}}{E G-F^{2}}=\frac{\operatorname{det}(D)}{\operatorname{det}(B)}
\end{aligned}
$$

$K=k_{1} k_{2}$ is called the Gaussian Curvature.
$H=\frac{1}{2}\left(k_{1}+k_{2}\right)$ is the mean Curvature (Germain Curvature).
If the two directions λ_{1}, λ_{2} correspond to

$$
\begin{aligned}
& d \vec{r}_{1}=d \vec{r}\left(\lambda_{1}\right)=\vec{r}_{u} d u_{1}+\vec{r}_{v} d v_{1} \\
& d \vec{r}_{2}=d \vec{r}\left(\lambda_{2}\right)=\vec{r}_{u} d u_{2}+\vec{r}_{v} d v_{2}
\end{aligned}
$$

then $\dot{\vec{r}}_{1} \cdot \dot{\vec{r}}_{2}=E \frac{d u_{1}}{d t} \frac{d u_{2}}{d t}+F\left(\frac{d u_{1}}{d t} \frac{d v_{2}}{d t}+\frac{d u_{2}}{d t} \frac{d v_{1}}{d t}\right)+G \frac{d v_{1}}{d t} \frac{d v_{2}}{d t}=0$
therefore the two principal directions are orthogonal.
Some geometrical meaning of the curvatures are the following.

1) A surface is called minimal if $\mathrm{H}=0$ everywhere. A minimal surface with boundary l has the smallest surface area among all surfaces with boundary l.
2) If the principal directions are taken as the parametric curves, then $F \equiv 0 \equiv M$ and

$$
k_{1}=\frac{L}{E}, k_{2}=\frac{N}{G}
$$

curvature in any other direction λ is then given by

$$
\begin{aligned}
K(\lambda) & =\frac{L+N \lambda^{2}}{E+G \lambda^{2}}=k_{1} \frac{E}{E+G \lambda^{2}}+k_{2} \frac{G \lambda^{2}}{E+G \lambda^{2}} \\
& =k_{1} \cos ^{2} \psi+k_{2} \sin ^{2} \psi
\end{aligned}
$$

where ψ is the angle between \vec{r}_{u} and $\dot{\vec{r}}=\vec{r}_{u} \dot{u}+\vec{r}_{v} \dot{v}, \quad\left(\lambda=\frac{\dot{v}}{\dot{u}}\right)$ which is known as the Euler* s formula.
3) If $\mathrm{K}>0$ at a point P on the surface, then P is an elliptic point. As k_{1}, k_{2} have the same sign, so all the surface is bending the same way in all directions.

4) If $\mathrm{K}<0$ at a point P , then it is an hyperbolic point. Tangent directions at P can bend away or towards the tangent plane.
5) If $\mathrm{K}=0$ then either
(a) One principal curvature only is zero. The point P is a parabolic point, and one of the principal direction is straight near P.
(b) Both principal curvature are zero. The point is a special type of umbilic point and is planar.
Note: Isolated planar points can exist on surfaces which is far from planar. E.g. the monkey saddle surface $z=x(x+\sqrt{3} y)(x-\sqrt{3} y)$ at $\mathrm{P}(0,0,0)$

The monkey saddle point
6) Consider a point P on the surface $z=\psi(x, y)$ By a change of coordinates, choose the origin at P , and x, y axes along the principal directions at P , also z -axis in the direction of the surface normal at P , then the surface has equation $z=f(x, y)$ local to $(0,0,0)$ with $f(0,0)=0$

$$
\begin{aligned}
& \frac{\partial f(0,0)}{\partial x}=\frac{\partial f(0,0)}{\partial y}=0 \quad(\because \mathrm{x}-\mathrm{y} \text { is the tangent plane }) \\
& z=f(x, y)=\frac{1}{2}\left\{\frac{\partial^{2} f(0,0)}{\partial x^{2}} x^{2}+2 \frac{\partial^{2} f(0,0)}{\partial x \partial y} x y+\frac{\partial^{2} f(0,0)}{\partial y^{2}} y^{2}\right\}+O\left(x^{3}, y^{3}\right)
\end{aligned}
$$

and

Now, taking $\vec{r}=(x, y, f(x, y))$

$$
\begin{aligned}
& \qquad \vec{r}_{x}=\left(1,0, \frac{\partial f}{\partial x}\right), \vec{r}_{y}=\left(0,1, \frac{\partial f}{\partial y}\right) \\
& \text { At } P=(0,0,0), \vec{r}_{x}(p)=(1,0,0), \quad \vec{r}_{y}(p)=(0,1,0) \text { and } \hat{n}=(0,0,1) \\
& \qquad E=\vec{r}_{x}(p) \cdot \vec{r}_{x}(p)=1, F=\vec{r}_{x}(p) \cdot \vec{r}_{y}(p)=0, G=\vec{r}_{y}(p) \cdot \vec{r}_{y}(p)=1
\end{aligned}
$$

the principal directions are orthogonal. Also

$$
\vec{r}_{x x}(p)=\left(0,0, \frac{\partial^{2} f}{\partial x^{2}}\right)_{p}, \vec{r}_{x y}(p)=\left(0,0, \frac{\partial^{2} f}{\partial x \partial y}\right)_{p}, \vec{r}_{y y}(p)=\left(0,0, \frac{\partial^{2} f}{\partial y^{2}}\right)_{p}
$$

Hence

$$
\begin{gathered}
L=\hat{n} \cdot \vec{r}_{x x}(p)=\frac{\partial^{2} f(0,0)}{\partial x^{2}} \\
M=\widehat{n} \cdot \vec{r}_{x y}(p)=\frac{\partial^{2} f(0,0)}{\partial x \partial y} \\
N=\hat{n} \cdot \vec{r}_{y y}(p)=\frac{\partial^{2} f(0,0)}{\partial y^{2}} \\
\therefore z=\frac{1}{2}\left\{L x^{2}+2 M x y+N y^{2}\right\}+O\left(x^{3}, y^{3}\right) \\
=\frac{1}{2}\left\{k_{1} x^{2}+k_{2} y^{2}\right\}+O\left(x^{3}, y^{3}\right)
\end{gathered}
$$

These conics justify the terminology used. The simplest surface on which all three cases of Gaussian curvature $\left(\begin{array}{c}> \\ K=0 \\ <\end{array}\right)$ occur is the torus.

5.4 Special cases

5.4.1 Developable surfaces

Consider a surface in $\mathbf{R}^{\mathbf{3}}$ which is constructed by a moving straight line, this so called ruled surface has the form

$$
\vec{r}(u, v)=\vec{r}_{0}(u)+v \vec{a}(u)
$$

where $\vec{r}_{0}(u)$ is the position vector of a point on a given line, $\vec{a}(u)$ is the direction of the moving line (generators)

or if straight lines are used to join two given curves $\vec{r}_{0}(u), \vec{r}_{1}(u)$ then

$$
\vec{r}(u, v)=(1-v) \vec{r}_{0}(u)+v \vec{r}_{1}(u)
$$

Examples are cylinders and cones.
Now we look for conditions so that a ruled surface can be unrolled into a flat plane without distortion, (i.e. distances are preserved). If a ruled surface is developable, then all the generators eventually lie on a plane, therefore they are either parallel or intersect one another.
Now the intersection of two generators \vec{a} and $\vec{a}+\dot{\vec{a}} d u$ is governed by

$$
\left(\vec{r}_{0}+\dot{\vec{r}} d u-\vec{r}_{0}\right) \cdot[\vec{a} \times(\vec{a}+\dot{\vec{a}} d u)]=\dot{\vec{r}_{0}} \cdot(\vec{a} \times \dot{\vec{a}})=0
$$

In case all the generators are parallel, the above condition is also satisfied. Therefore it is the condition for a ruled surface becomes developable. As

$$
\begin{aligned}
& \vec{r}_{u}=\dot{\vec{r}}_{0}+v \dot{\vec{a}}, \quad \vec{r}_{v}=\vec{a}, \quad \hat{n}=\frac{\vec{r}_{u} \times \vec{r}_{v}}{\left|\vec{r}_{u} \times \vec{r}_{v}\right|} \\
& \vec{r}_{u u}=\ddot{\vec{r}}_{0}+v \ddot{\vec{a}}, \quad \vec{r}_{u v}=\dot{\vec{a}}, \quad \vec{r}_{v v}=0
\end{aligned}
$$

therefore,

$$
\begin{aligned}
& N=\hat{n} \cdot \vec{r}_{v v}=0 \\
& M=\hat{n} \cdot \vec{r}_{u v}=\hat{n} \cdot \dot{\vec{a}}=\frac{1}{\left|\vec{r}_{u} \times \vec{r}_{v}\right|}\left(\dot{\dot{r}_{0}}+v \dot{\vec{a}}\right) \times \vec{a} \cdot \dot{\vec{a}}=0 \\
& \therefore K=\frac{\operatorname{det}(D)}{\operatorname{det}(B)}=\frac{L N-M^{2}}{\operatorname{det}(B)}=0 \quad \text { for developable surfaces. }
\end{aligned}
$$

In case the ruled surface is governed by two curves $\vec{r}_{0}(u), \vec{r}_{1}(u)$, the condition becomes $\left(\vec{r}_{1}-\vec{r}_{0}\right) \cdot\left(\dot{\vec{r}}_{0} \times \dot{\vec{r}}_{1}\right)=0$, this fact is used in the tangent plane method of generating developable surface passing through two curves.

5.4.2 Envelope of space curves

Regarding $\vec{r}=\vec{r}(u, v)$ as a family of curves $\vec{r}=\vec{r}_{(v)}(u)$ depending on a parameter v. There may exist a curve $\vec{r}=\vec{r}_{e}(v)$ which is tangential to every curve $\vec{r}_{(v)}(u)$ at the parametric value v. Such a curve, if it exists, is called the envelope of the family of curves.
In terms of the original parameters $\vec{r}(u, v)$ it implies \vec{r}_{u} is parallel to \vec{r}_{v} and the surface normal is not defined at these points:

$$
\vec{r}_{u} \times \vec{r}_{v}=0
$$

In case of the developable surface, the generators will have an envelope if they are not parallel. An envelope satisfies

$$
\vec{r}_{u} \times \vec{r}_{v}=\left(\dot{\vec{r}}_{0}+v \dot{\vec{a}}\right) \times \vec{a}=0
$$

so long as the generators are not parallel, $\dot{\vec{a}} \times \vec{a} \neq 0$ hence the location of common tangent occurs at

$$
v=\frac{(\vec{a} \times \dot{\vec{a}}) \cdot\left(\dot{\vec{r}}_{0} \times \vec{a}\right)}{|\vec{a} \times \dot{\vec{a}}|^{2}}
$$

and the equation of the envelope of the generators is

$$
\vec{r}_{e}=\vec{r}_{0}(u)+\frac{(\vec{a} \times \dot{\vec{a}}) \cdot\left(\dot{\vec{r}_{0}} \times \vec{a}\right)}{|\vec{a} \times \dot{\vec{a}}|^{2}} \vec{a}(u)
$$

