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Chapter 4  Design of Curves
4.1 Interpolation and approximation

There are two ways in which a set of control points (knots) {P0, P1, PN} can be
used to describe a curve. The first is called interpolation in which the curve
passes through each control point. The second is called approximation in which
the curve does not necessarily pass through any of the control points, but usually
passes close to all of them. The latter is useful in design, where we would like to
change the shape of the curve quickly by alternating some pre-defined
parameters. With this in mind, we would like to define a curve by
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where ir
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 are given vectors and fi are called blending functions. The curve is

parameterized to lie between u=0 and u=1. Both interpolation and
approximation can be written in this form, familiar examples for interpolation
would be Larange interpolation, Hermite cubic interpolation, cubic splines etc.

4.2 Bezier curves (1970)
The blending function of the Bezier curves of order N are the Bernstein
polynomials
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There is a simply recursive construction of the Bezier curves by Casteljaus
algorithm. Given ,rr (0)
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The point (u)r (N)
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 lies on the Bezier curve of order N. As u varies from 0 to 1, the

locus of the point (u)r (N)
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 produces the complete curve.
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For example, in the quardratic case
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Therefore we have the first properties of the Bezier curves:
(1) The curve passes through the end control points and is tangential at these

points to the first and last line segments defined by the control points.
(2) The Bezier curve has the convex hull property, i.e. it must lie inside the

convex hull of the control points ir
�

as shown by the Casteljaus
construction algorithm.

(3) The effect of increasing (0)r�
�

and (1)r�
�

, (or moving the points 1r
�

and 1Nr �

�

further out), may be seen as follows.

(4) Disadvantage: The Bezier curve is a blend of all the control points, local
features may be smoothed out, (diminishing variation property). As the
curve does not vary in an erratic manner, it may be an advantage in practice.
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4.3 B-splines
B-splines are produced by polynomial blending functions of the form
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The span over which Bj(v) is non-zero is given by 0<v<j+1, (j>0).
Therefore Bj are functions having finite support of length of j+1.
Example:
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We can centre the spline on the origin by considering
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Consider the curve represented by the jth order blending function in the form

where the N+1 knots ir
�

 are uniformly spaced at u=0, 1,N
1N,...,N

2 ,N
1 � .

In particular, the cubic B-spline (j=3) is frequently used:
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where B(x)=4B3(x+2) is the usual form of the cubic blending function.
For any non-integer value of Nu, only four of the terms in the summation are
non-zero, consequently each span of the curve NkuN1)(k ���  is

determined by at most four consecutive vertices 1kk1k2k r,r,r,r
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inside the convex hull.

(2) Consider the case Nu=k, (k�0 or N), then
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i.e. the curve passes through the point which is one-third of the way joining
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 to the mid-point of the line joining .r  tor 1k1k ��
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Hence the spline does not pass through these knots. To force the spline to
pass the end knots, we may extend the knots by two phantom control points
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(5) The effect of a double knot is to pull the curve towards that point. Closed
curves may be generated by choosing .rr
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4.4 Rational Parametric Curves
We may generalized the polynomial curves above into rational curves by using

homogeneous coordinates in R4, TT 1) ,r(R define and ,1)r(r
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4.4.1 The Nth degree rational curve is given by
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4.2   Rational B-splines
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An extension of this definition is to change the uniform knots uk=k/N into a
non-uniform set {u0, u1, u2, , uN+J+1}.
The non-uniform B-splines Bi ,j(u) is now defined by
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The only restriction on the knots is that it is non-decreasing.
The non-uniform rational B-spline of order J is then given by
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NURBS is one of the most popular design curve in modern CAD.
But as example, we will consider the
Rational quadratic curves-conic sections
In this case
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 is a plane curve. Also  (u)C
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quadratic; with suitable choices of the vectors ir
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 and weights �i, it can

represent any conic segments exactly.
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therefore the shape is not changed if �i�p2-i�i= i�̂ .

In particular, choose 02 ��p �  then 20 �̂�̂ � . Hence all (u)C
�

 with

�0, �2�0 can be transformed into 1ˆˆ 20 ���� .

For this particular choice of �i, we have
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The singularities, corresponding to the points at infinity of )(uC
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determined by the real roots of the denominator
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The curve reduces to
(1) a straight line if space �1 =0
(2) an elliptic segment if 0<�1<1
(3) a parabolic segment if �1=1
(4) a hyperbolic segment if �1 >1
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Geometrically, the curved are governed by the
parameter
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4.5 Composite Curves
Consider the problem of joining the curve segment 1)u(0(u),r (1) ��

�

with the curve segment 1).v(0(v),r (2) ��
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 Usually we would like to ensure
continuity of the curve, its slope and even the curvature.
Therefore, we have the conditions
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where t̂  is the common unit tangent and i� are parameters.
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where � is an arbitrary scalar.

Example: Composite Bezier cubic curve
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