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Chapter 3  Differential Geometry of Curves

3.1. Parameterization and arc length
A curve in space 3�  can be represented as the intersection of two cartesian
equations

g1(x,y,z) =0 and g2(x,y,z) = 0
or more conveniently, as a vector depending on a single parameter
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The same curve may have different parameterizations. The most natural parameter
on a curve is its length s measured from an arbitrary point )( 0tr
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The speed of an particle moving along the curve is

Since S is related to t, we may regard ))(()( strtr
��

�  and the curve is
paramaterized by S. In this case

is a unit vector  the unit tangent vector.
Equation of tangent is
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3.2    Frenet Frame
Since t̂  is a unit vector, tt ˆˆ 
 =1, hence tt �ˆˆ

� =0.

i.e. t�̂  lies in the plane through �r
�

 to the tangent at r
�
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Any point X

�
 in this Normal plane  is governed by
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We will call the unit direction n̂  Principal normal  where
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Also, ds
tdˆ  measured the rate of rotation of t̂  along the curve, let
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� is called the curvature of the curve. The plane defined by t̂  and n̂
at r

�
is called the osculating plane , any point x
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 on it will satisfy
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Finally, we pick a second normal direction, the binormal as

 ˆˆˆ ntb �  (unit vector)

The change in b̂  along the curve will measure the torsion �(twisting). Now
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direction as s increases. The plane determined by t̂  and b̂  is called the rectifying

plane. Now we have the Frenet frame ( )ˆ,ˆ,ˆ bnt
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Combining the results together, we have the Frenet-
Serret formula
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Theorem   If �(t) =0 for all t, then the curve is planar and lies in the osculating plane
at )(

�

�
tr . (Assignment)

Example: let )(tr
�

 represented the motion of a particle in space, then
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(in Physics, we often use ), s
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3.3  Computational formulae
Let )(tr

�
 be a regular curve ( ),0�r�

�
 then
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Now, we follow the example above, and using
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Finally, ,ˆˆˆ tbn �  and 
�

� 1�  is the radius of curvature.

Given a Frenet frame (0),rat   )ˆ,ˆ,ˆ(
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A straight line will be given by 
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