Chapter 3 Differential Geometry of Curves

3.1. Parameterization and arc length

A curve in space \Re^3 can be represented as the intersection of two cartesian equations $g_1(x, y, z) = 0$ and $g_2(x, y, z) = 0$

$$\vec{r}(t) = (x(t), y(t), z(t))^T, \qquad t \in \mathfrak{R}$$

The same curve may have different parameterizations. The most natural parameter on a curve is its length s measured from an arbitrary point $\vec{r}(t_0)$

As
$$ds = (dx^2 + dy^2 + dz^2)^{\frac{1}{2}}$$

$$\therefore \qquad S(t) = \int_{t_0}^t (\dot{x}^2 + \dot{y}^2 + \dot{z}^2)^{\frac{1}{2}} dt = \int_{t_0}^t |\dot{\vec{r}}| dt$$

The speed of an particle moving along the curve is

$$\dot{s} = \frac{dS}{dt} = |\dot{\vec{r}}|$$

Since S is related to t, we may regard $\vec{r}(t) = \vec{r}(t(s))$ and the curve is paramaterized by S. In this case

$$\hat{t} = \frac{d\vec{r}}{ds} = \frac{d\vec{r}}{dt} \cdot \frac{dt}{ds} = \vec{r} \cdot \frac{1}{|\vec{r}|}$$

is a unit vector — the <u>unit tangent</u> vector. Equation of tangent is

$$\vec{X} = \vec{r} + \alpha \hat{t}$$
, $(\alpha \in \Re)$

for any \vec{X} on the tangent line.

3.2 Frenet Frame

Since \hat{t} is a unit vector, $\hat{t} \cdot \hat{t} = 1$, hence $\hat{t} \cdot \dot{\hat{t}} = 0$. i.e. $\dot{\hat{t}}$ lies in the plane through $\vec{r} \perp$ to the tangent at \vec{r} .

i.e. t lies in the plane through $r \perp$ to the tangent at r.

Any point \vec{X} in this <u>Normal plane</u> is governed by $\hat{t} \cdot (\vec{X} - \vec{r}) = 0$

$$\cdot (X - \vec{r}) = 0$$

We will call the unit direction \hat{n} <u>Principal normal</u> where

$$\hat{n} = \frac{\hat{t}}{\left| \dot{\hat{t}} \right|}$$

Also, $\frac{d\hat{t}}{ds}$ measured the rate of rotation of \hat{t} along the curve, let

$$\kappa = \left| \frac{d\hat{t}}{ds} \right| = \left| \frac{d\hat{t}}{dt} \cdot \frac{dt}{ds} \right| = \frac{\left| \hat{t} \right|}{\dot{s}}$$

 κ is called the <u>curvature</u> of the curve. The plane defined by \hat{t} and \hat{n} at \vec{r} is called the <u>osculating plane</u>, any point \vec{x} on it will satisfy

$$(\vec{X} - \vec{r}) \cdot (\hat{t} \times \hat{n}) = 0$$

Finally, we pick a second normal direction, the binormal as

$$\hat{b} = \hat{t} \times \hat{n}$$
 (unit vector)
The change in \hat{b} along the curve will measure the torsion τ (twisting). Now

$$\frac{d\hat{b}}{ds} = \frac{d}{ds}(\hat{t} \times \hat{n}) = \frac{d\hat{t}}{ds} \times \hat{n} + \hat{t} \times \frac{d\hat{n}}{ds} = \hat{t} \times \frac{d\hat{n}}{ds}$$

therefore $\frac{d\hat{b}}{ds} \perp \hat{t}$. Also from $\hat{b} \cdot \hat{b} = 1, \frac{d\hat{b}}{ds} \perp \hat{b}$
 \therefore the torsion can be defined as $\frac{d\hat{b}}{ds} = -\tau \hat{n}$, i.e.

 $|\tau| = \left| \frac{d\hat{b}}{ds} \right|$ and lie along \hat{n} with a negative sign to preserve the right-hand screw

direction as s increases. The plane determined by \hat{t} and \hat{b} is called the <u>rectifying</u> plane. Now we have the Frenet frame $(\hat{t}, \hat{n}, \hat{b})$

and
$$\frac{d\hat{n}}{ds} = \frac{d\hat{b}}{ds} \times t + \hat{b} \times \frac{d\hat{t}}{ds} = -\tau(\hat{n} \times \hat{t}) + \kappa(\hat{b} \times \hat{n})$$

= $\tau \hat{b} - \kappa \hat{t}$.

Combining the results together, we have the <u>Frenet-Serret formula</u>

oscillating plane normal plane

<u>Theorem</u> If $\tau(t) = 0$ for all t, then the curve is planar and lies in the osculating plane at $\vec{r}(t_{\circ})$. (Assignment)

Example: let $\vec{r}(t)$ represented the motion of a particle in space, then

velocity
$$\vec{v} = \frac{d\vec{r}}{dt} = \dot{s}\hat{t}$$
 ($\dot{s} = \frac{ds}{dt}$ is the speed)
acceleration $\vec{a} = \frac{d\vec{v}}{dt} = \frac{d(\dot{s}\hat{t})}{dt} = \ddot{s}\hat{t} + \dot{s}\frac{d\hat{t}}{dt}$
 $= \ddot{s}\hat{t} + \kappa(\dot{s})^2\hat{n}$

(in Physics, we often use $v = \dot{s}, a = \frac{dv}{dt} = \ddot{s}$)

3.3 Computational formulae

Let $\vec{r}(t)$ be a regular curve $(\left|\dot{\vec{r}}\right| \neq 0)$, then

$$\hat{t} = \frac{\dot{\vec{r}}}{\left|\dot{\vec{r}}\right|}$$

Now, we follow the example above, and using

$$\vec{r} = a\hat{t} + \kappa v^2 \hat{n}$$
$$\vec{r} \times \vec{r} = v\hat{t} \times (a\hat{t} + \kappa v^2 \hat{n}) = \kappa v^3 \hat{b}.$$

then Hence

$$\hat{b} = \frac{\dot{\vec{r}} \times \ddot{\vec{r}}}{\left|\dot{\vec{r}} \times \ddot{\vec{r}}\right|} \quad \text{and} \quad \left|\kappa = \frac{\left|\dot{\vec{r}} \times \ddot{\vec{r}}\right|}{\left|\dot{\vec{r}}\right|^3}\right|$$

Now, $\vec{r} = \dot{a}\hat{t} + a\dot{\hat{t}} + (2\kappa va + \dot{\kappa}v^2)\hat{n} + \kappa v^2\dot{\hat{n}}$ $= \dot{a}\hat{t} + a\kappa v\hat{n} + (2\kappa va + \dot{\kappa}v^2)\hat{n} - \kappa^2 v^3\hat{t} + \tau\kappa v^3\hat{b}$ and $(\vec{r} \times \vec{r}) \cdot \vec{r} = \kappa^2 v^6 \tau$ therefore $\begin{bmatrix} \tau = \frac{(\vec{r} \times \vec{r}) \cdot \vec{r}}{|\vec{r} \times \vec{r}|^2} \end{bmatrix}$

Finally, $\hat{n} = \hat{b} \times \hat{t}$, and $\rho = \frac{1}{\kappa}$ is the <u>radius of curvature</u>.

Given a Frenet frame $(\hat{t}_{\circ}, \hat{n}_{\circ}, \hat{b}_{\circ})$ at $\vec{r}(0)$, we can also approximate $\vec{r}(t)$ near $\vec{r}(0)$ by using

$$\vec{r}(t) = \vec{r}(0) + \dot{\vec{r}}(0)t + \frac{\ddot{\vec{r}}(0)}{2}t^2 + \frac{\ddot{\vec{r}}(0)}{6}t^3 + \dots$$

where $\dot{\vec{r}}(0) = v_{\circ}\hat{t}_{\circ}, \quad \ddot{\vec{r}}(0) = a_{\circ}\hat{t}_{\circ} + \kappa_{\circ}v_{\circ}^{2}\hat{n}_{\circ} \quad \dots \text{etc}$ to obtain $\vec{r}(t) = \vec{r}(0) + [v_{\circ}t + 0(t^{2})]\hat{t}_{\circ} + [\frac{\kappa_{\circ}v_{\circ}^{2}}{2}t^{2} + 0(t^{3})]\hat{n}_{\circ} + [\frac{\tau_{\circ}\kappa_{\circ}v_{\circ}^{3}}{6}t^{3} + 0(t^{4})]\hat{b}_{\circ}.$

A straight line will be given by $\vec{r} = \vec{r}(0) + s\hat{t}_{\circ}$.