Chapter 2  Figures and Shapes

2.1

2.2

Polyhedron in n-dimension

In linear programming we know about the simplex method which is so named
because the feasible region can be decomposed into simplexes.

A zero-dimensional simplex is a point, an 1D simplex is a straight line segment, a
2D simplex is a triangle, a 3D simplex is a tetrahedron.

In general, a n-dimensional simplex has n+1 vertices not all contained in a (n-1)-
dimensional_hyperplane. Therefore simplex is the simplest building block in the
space it belongs.

An n-dimensional polyhedron can be constructed from simplexes with only possible
common face as their intersections. Such a definition is a bit vague and such a
figure need not be connected. Connected polyhedron is the prototype of a closed
manifold. We may use vertices, edges and faces (hyperplanes) to define a
polyhedron. A polyhedron is _convex if all convex linear combinations of the

vertices V, are inside itself, i.eX «,V,is contained inside for alkz, > Oand

all _i

2o =1.

If a polyhedron is not convex, then the smallest convex set which contains it is
called the convex hull of the polyhedron.
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Non-colVex convex hull

hyperplane
Separating hyperplane Theorem
For any given point outside a convex set, there exists a hyperplane with this given
point on one side of it and the entire convex set on the other.
Proof:  Because the given point will be outside one of the supporting hyperplanes
of the convex set.

Platonic Solids
Known to Plato (about 500 B.C.) and explained in the Elements (Book XIlII) of
Euclid (about 300 B.C.), these solids are governed by the rules that the faces are the
regular polygons of a single species and the corners (vertices) are all alike. Begin
from the equilaterah, the simplest regular polygon. To make a solid, at least three
must join at any corner, so can four or five. But when six join at a corner they lie
flat to make a regular hexagon.
Starting from a corner and by adding more polygons of the same kind according to
the rules, we have

FourA to make the tetrahedron,

Eight A to make the octahedron,

TwentyA to make the icosahedron.
(e.g. sixA is a deltahedron violating the second rule).
Turn now to the square face, three can join at a corner but four joining lie flat.

Six O to make the cube.



Three regular pentagons can join at a corner, but more will not fit together.
Twelve <™ to make the dodecahedron.

Three regular hexagons joining at a corner lie flat ; three regular polygons with more

sides cannot join at a corner.

Therefore there are five and only five solids fitting the rules. The Platonic solids are

convex; there is a circumscribing sphere passing through all the corners and there is

an inscribing sphere touching all the faces, (e.g. having spherical symmetry).

Duality the interchanging relations faces corners, edges»> edges subdivide the
solids into three sets:

Solids faces F cornersV  edges E duality
tetrahedron 4 A 6 self-dual
cube 6 8 12 dual
octahedron 8 .6 2
dodecahedron 12 20 30 dual
icosahedron 20 12 30

e.g. the cube has 6 four-sided faces meeting by threes in 8 corners,

octahedron has 8 three-sided faces meeting by fours in 6 corners.
Therefore the octahedron can be constructed from a cube by making a point at the
middle of each face of a cube and connecting those points by lines.

Euler’s formula £1750) is true for any simply connected convex polyhedron

(of genus=0): V-E+F=2.
For multi-connected figures, we have the Euler-Poincare’ formula:
V-E+F=2-2g

Where g=0 for a sphere
g=1 for a torus (sphere with one handle)
g=2 for a solid figure eight (sphere with two handles)

If instead of regular polygons as faces, regular star polygons were used,

LR e

star-pentagon  star-hezagon star-heptagons

then four more regular solids (the Kepler-Poinsot solis§00 ~1850
will be obtained. They satisfy the regular rules, but are not convex solids.

Small stellated dodecahedron Great dodecahedron

Great stellated dodecahedron Great icosahedron
They can be constructed from the dodecahedron and icosahedron by stellating, i.e.
by extending the faces of the solid until they intersect again to form new shapes.
The Plato and Kepler-Poinsot solids are collectively known as the nine regular
solids.




2.3

Archimedean Solids

If the face rule of a regular solid is relaxed by allowing the faces to be made of
several sorts of regular polygons but the corners are still required to be all alike,
then we come to the semi-reqular solids. There are thirteen (types) of them, all
known to Archimedes~50 B.C.) They share with the Platonic solids the property

of convexity and can be inscribed in a sphere that touches all its corners. Since they
have more corners than the Platonic solids, they can provide closer approximations
to a sphere, (e.g. the modern football is made from a truncated icosahedron). They

can be obtained from the Platonic solids by truncation.

The archimedean or semiregular polyhedra:

Name Diagram Name Diagram

truncated truncated

tetrahedron dodecahedron

truncated truncated

cube icosahedron

fruncated icosidodecahedron

octahedron

4 small

cuboctahedron @ rhombicosidodecahedron @

small great
rhombicuboctahedran rhombicosidodecahedron

great snub ,!.;ﬁ-"*
rhombicuboctahedrgn @ dodecahedron ﬁ__‘g:j

snub cube @
name c e f3 f4 5 f6 f8 f10
truncated tetrahedron 12 18 4 - - 4 - -
truncated cube 24 36 8 - - - 6 -
truncated octahedron 24 36 - 6 - 8 - -
cuboctahedron 12 24 8 6 - - - -
small rhombicuboctahedron 24 48 8 18 - - - -
great rhombicuboctahedron 48 72 - 12 - 8 6 -
snub cube 24 60 32 6 - - - -
truncated dodecahedron 60 90 20 - - - 12
truncated icosahedron 60 90 - - 12 20 - -
icosidodecahedron 30 60 20 - 12 - - -
small rhombicosidodecahedron 60 120 20 30 12 - -
great rhombicosidodecahedron 120 180 - 30 - 20 -
snub dodecahedron 60 150 80 - 12 - - -
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A sequence of truncation of a cube:
Cube

transition of a truncated cube cuboctahedron

(d)

(e)

(f) (@)
Barycentric coordinates (introduced by Mobius 1827)

We mentioned that points inside a simplex can be represented by convex
combination of the vertices. More specific

2.4

1D simplex: A straight line passing through two verti\a’?;‘,i*j2 is given by
B(t) =0{1\71+ 052\72 , a, +a,=1
—(A-V,+tV,, te®

(t<0) |l t = [« 1t (t>1)

Py
- - -

V, P V,

(ou , o) is the barycentric coordinate &f with respect td/, , V, .

-> > >

We haveratio(V,,P,V,) = Ierlgtk(li—vi) - Ifngtﬂthzvl)l _ 1tt
length(V,—P) lengt(1-t)(V,-V,)] —

> o> o

For example, given three vertice¥sV,,V, and

8 = 1V, 1V,

a, =@l-9)V,+sV,

\:

b =(1- t)\72+ t\Z,

b, =@Q-9)V,+sV,

let ¢ be the intersection of the

straight Iinesa?bt anda.b, , then

Sss !



i - = - S i -> > - t
ratio (a,,c,b,) =—— and ratio(a,,c,b,) =—.
(a.cb) == (a,0.b,) =
Proof: E satisfies the two equations
c=(1-s)a+sb, andc=(1-t)a,+th,
Q.E.D.

This result is a CAD version of the famous Menelaus Theorem

-> 5> >

ratio(k?s,k;,\Z) : ratio(\72,ai,z;s) -ratio(ag, c,b,) =-1
(bca is a line segment meeting the sides ofAh&/»a;)

> o> o

2D simplex  Giverv,,V,,V, in R? and write
P=o,V,+a,V,+a;V, with o, +a, +a; =1.
The coefficients 1, oo, as) are the barycentric coordinates Bf in R with

respect to V.. They are sometimes known as the area coordinates as
o - area(P,Vv,,V,)
CoareaV,,V,,V;)

_areaV,,P,V;)
2 areaV,,V,,V,)
0 = areaVv,,Vv,,P)
* areaV,,V,,V,)
&y =)
- R
V(0,013 V(1,0,0)
More geometrical properties are illustrated below (in ratios):

>
¥

M+ A
51’1+||!:'3 1 }

An immediate consequence is known as the Ceva’s Theorem

- - -

ratio(V;, 53\72) -ratio(V,, I31\73) -ratio(V;, ISZ\Z) =1



2.5 Curvatures

Recall that the curvature of a plane curve is defined as
angleof embrace 6

Curvature = =—
lengthof arc AB
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Gauss introduced an auxiliary circle, of unit radius, onto which points on the curve may be
mapped by the rule of parallel normals, then
arclengthof image_ ab

lengthof arc AB

If the curve has different curvature at different points, then we may take limit on the right
hand side as the arc length tends to zero, obtaining curvature at a point.

Curvature =

Gauss Map (1825, 1827)
To measure the curvature of an argeaA a surface, we may first map the boundary oA
the rule of parallel normals onto a unit sphere and define

. a‘ S

Gaussian curvatur§ = ——
A S

Whereas is the mapped area on the unit sphere and equals to the soli® sugistended at
the centre of the sphere.

Notice that a sphere of unit radius has total surface atgedehce the total solid angle
surrounding a point in three-dimensional spacetis 4



2.5.1 Curvature of piecewise flat surfaces
(&) Plane surface. Since the normals at all points are parallel, the entire plane maps onto a

single point of the unit sphere, therefére 0 andk = 0.
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(b) Roof with one fold. Planes P and Q will be mapped onto p and q. The fold has no unique
normal and will map onto the arc pg of a great circle lying in a diametral plane
perpendicular to the fold. A contour such as B maps to zero area on the unit sphere,
hencex =0. Similarly, for a cylinder with infinitely many parallel folds.

(c) Roof with two folds intersecting at an angle Planes P, Q and R will be
mapped onto p,q and r. The arcs pq and qgr follow great circles perpendicular to
the folds, hence intersect each other at the same angl€he curvature of any
enclosed area is still zero.

(5] L&y



(d) Roof with a convex vertex. The number of flat surfaces is immaterial, but for a convex
vertex to occur_ x4 < 2z . There is a positive angular defe@t= 27 - 4, when the
i

roof is flattened onto a plane.
In this case, the Guass map encloses an area proportignal to

Jij _
d =L =0
an K (ﬂ )

It should be noted that the contours B and b transverse in the same direction, which is the
case when a convex surface is mapped onto the unit sphere. For a saddle surface, the
reverse will happen an& will be negative.

<>

2.5.2 Parallel postulate, Angular excess and defect
The differences in the Guass maps from different geometries are intrinsic. It all starts
from the parallel postulate.

elliptic geametry Euclidean gaometry hyperbolic geometry



(@ In the Euclidean plane, acceptance of the parallel postulate implies that the sum of the
interior angles of a\ is .

Exer. The angle sum of a plane n-gon is (n-2)

(b) In spherical geometry, (consider geometry on a spherical surface), 'lines' are great circles.
They are of finite length and any two lines meet at two points. In fact there are no
parallel lines and two lines determine an area ( a lune):

Area A, = area of sphereziz 200 (radius =1)
JT

A, =areaof sphericah=oy +aytaz-m
= sum of interior anglesw
= Angular excess.
Hence the angular excess is always positive on a sphere.

Exer. The area of a spherical n-gon is equal to its angular excess, namely, the
sum of its interior angles less the corresponding sum for a plane figure;

ie. A =Zai -(n-2x

Return now to the roof with a pointed vertex. Its Gauss map encloses aq anegrstwith
exterior anglesu, hence

2= Y (x )~ (0~
= nﬂ—z,ui -(n-2)x
= Zﬂ_Zlui =p

i.e. the angular defeg of the flattened vertex equals the mapped area and in turn equals the
angular excess of the spherical n-gon.

(c) The hyperbolic plane was constructed by Lobatchevsky (1829) and Bolyai (1832)
independently where more than one ‘line' can be drawn passing a point and parallel to a
given 'line'. There are also lines which are ultra-parallel (not parallel but never meet). In
this case the sum of the interior angles of a hyperhaicalways less than, i.e. the
angular excess is negative with Ar - sum of interior angles.



2.5.3 Curvature of closed surfaces
For a complete sphere of radius R, its total curvature
a A 1

K=—=—=—
A 4R R?

For a polyhedron, its total curvature is the sum of curvatures of all its vertices,
hence

_ totalangularexcess totalangulardefect T

totalsurfacearea totalsurfacearea A

For instance, at any vertex of a cube there are three ang%céo the angular
defect is2z — 3x % . The total angular defect of the cubelis 8x % =4r.
Exer. Determine the total angular defect for each of the five platonic solids.

Descartes's Formula:
For any polyhedron, the total angular defect is related to the Euler characteristic by

T=2ry =2n(V-E+F)

proof:
T =) angular defect

vertices

= z (27 - sumof faceanglesat thevertex)

vertices

=272V — Z(sumof interioranglesof theface)

faces

=2V ->.(n, -2rx
faces

(n¢ is the number of edges on the faces, i.e. the faceg@n

=27V - anﬂ+ ZZﬂ

faces faces
=27V - 27E + 27F
=27V —-E+F)=2ny

Q.E.D.
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We have also obtained the Gauss-Bonnet Theorem for any closed polygonalised (or smooth)
surface:

kA=T=2ny .

Examples:
(1) S*(Sphere of genus=0)

V=6,E=12,F=8 togivey =2.
(2) T?(torus of genus = 1)

V=1,E=2,F=1 togivg =0.
(3) T?#T? (double toridal surface of genus =2)

V=8 E=16,F=6 to give =-2.

The aspect of a surface's nature which is unaffected by deformation is called the topolgy of
the surface (invariant under differentiable transformations). The Euler number and total
Gaussian curvature are topology properties.
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