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Chapter 2 Figures and Shapes
2.1 Polyhedron in n-dimension

In linear programming we know about the simplex method which is so named
because the feasible region can be decomposed into simplexes.
A zero-dimensional simplex is a point, an 1D simplex is a straight line segment, a
2D simplex is a triangle, a 3D simplex is a tetrahedron.
In general, a n-dimensional simplex has n+1 vertices not all contained in a (n-1)-
dimensional hyperplane. Therefore simplex is the simplest building block in the
space it belongs.

An n-dimensional polyhedron can be constructed from simplexes with only possible
common face as their intersections. Such a definition is a bit vague and such a
figure need not be connected. Connected polyhedron is the prototype of a closed
manifold. We may use vertices, edges and faces (hyperplanes) to define a
polyhedron. A polyhedron is convex if all convex linear combinations of the
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If a polyhedron is not convex, then the smallest convex set which contains it is
called the convex hull of the polyhedron.

Separating hyperplane Theorem
For any given point outside a convex set, there exists a hyperplane with this given
point on one side of it and the entire convex set on the other.
Proof: Because the given point will be outside one of the supporting hyperplanes

of the convex set.

2.2 Platonic Solids
Known to Plato (about 500 B.C.) and explained in the Elements (Book XIII) of
Euclid (about 300 B.C.), these solids are governed by the rules that the faces are the
regular polygons of a single species and the corners (vertices) are all alike. Begin
from the equilateral �, the simplest regular polygon. To make a solid, at least three
must join at any corner, so can four or five. But when six join at a corner they lie
flat to make a regular hexagon.
Starting from a corner and by adding more polygons of the same kind according to
the rules, we have

Four � to make the tetrahedron,
Eight � to make the octahedron,
Twenty � to make the icosahedron.

(e.g. six � is a deltahedron violating the second rule).
Turn now to the square face, three can join at a corner but four joining lie flat.

Six  �  to make the cube.
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Three regular pentagons can join at a corner, but more will not fit together.
Twelve to make the dodecahedron.

Three regular hexagons joining at a corner lie flat ; three regular polygons with more
sides cannot join at a corner.
Therefore there are five and only five solids fitting the rules. The Platonic solids are
convex; there is a circumscribing sphere passing through all the corners and there is
an inscribing sphere touching all the faces, (e.g. having spherical symmetry).
Duality the interchanging relations faces � corners, edges � edges subdivide the

solids into three sets:

Solids faces F corners V edges E duality
tetrahedron 4 4 6 self-dual
cube 6 8 12
octahedron 8 6 12

dual

dodecahedron 12 20 30
icosahedron 20 12 30

dual

e.g. the cube has 6 four-sided faces meeting by threes in 8 corners,
   octahedron has 8 three-sided faces meeting by fours in 6 corners.
Therefore the octahedron can be constructed from a cube by making a point at the
middle of each face of a cube and connecting those points by lines.

Euler’s formula (�1750) is true for any simply connected convex polyhedron
(of genus=0): V-E+F=2.
For multi-connected figures, we have the Euler-Poincare’ formula:

V-E+F=2-2g
Where  g=0 for a sphere

 g=1 for a torus (sphere with one handle)
     g=2 for a solid figure eight (sphere with two handles)

 ……
If instead of regular polygons as faces, regular star polygons were used,

then four more regular solids (the Kepler-Poinsot solids)  �1600  �1850
will be obtained. They satisfy the regular rules, but are not convex solids.

Small stellated dodecahedron Great dodecahedron
Great stellated dodecahedron Great icosahedron

They can be constructed from the dodecahedron and icosahedron by stellating, i.e.
by extending the faces of the solid until they intersect again to form new shapes.
The Plato and Kepler-Poinsot solids are collectively known as the nine regular
solids.
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2.3 Archimedean Solids
If the face rule of a regular solid is relaxed by allowing the faces to be made of
several sorts of regular polygons but the corners are still required to be all alike,
then we come to the semi-regular solids. There are thirteen (types) of them, all
known to Archimedes (�250 B.C.) They share with the Platonic solids the property
of convexity and can be inscribed in a sphere that touches all its corners. Since they
have more corners than the Platonic solids, they can provide closer approximations
to a sphere, (e.g. the modern football is made from a truncated icosahedron). They
can be obtained from the Platonic solids by truncation.

The archimedean or semiregular polyhedra:
Name Diagram Name Diagram

truncated
tetrahedron

truncated
dodecahedron

truncated
cube

truncated
icosahedron

truncated
octahedron

icosidodecahedron

cuboctahedron
small

rhombicosidodecahedron

small
rhombicuboctahedron

great
rhombicosidodecahedron

great
rhombicuboctahedron

snub
dodecahedron

snub cube

name c e f3 f4 f5 f6 f8 f10
truncated tetrahedron 12 18 4 - - 4 - -
truncated cube 24 36 8 - - - 6 -
truncated octahedron 24 36 - 6 - 8 - -
cuboctahedron 12 24 8 6 - - - -
small rhombicuboctahedron 24 48 8 18 - - - -
great rhombicuboctahedron 48 72 - 12 - 8 6 -
snub cube 24 60 32 6 - - - -
truncated dodecahedron 60 90 20- - - - 12
truncated icosahedron 60 90 - - 12 20 - -
icosidodecahedron 30 60 20 - 12 - - -
small rhombicosidodecahedron 60 120 20 30 12 - - -
great rhombicosidodecahedron 120 180 - 30 - 20 - 12
snub dodecahedron 60 150 80 - 12 - - -
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A sequence of truncation of a cube:
Cube transition of a truncated cube cuboctahedron

              (a)
  

              (b)                       (c) (d)
truncated octahedron transition to an octahedron

(e)
 

                 (f)                          (g)

2.4      Barycentric coordinates (introduced by Mobius 1827)
We mentioned that points inside a simplex can be represented by convex
combination of the vertices. More specific

1D simplex: A straight line passing through two vertices 
��

21,VV is given by
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��� 21)1( VtVt , t	�
(t<0) 
�  t  � 
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 (t>1)
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(�1 , �2 ) is the barycentric coordinate of 
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P  with respect to 
�

1V , 
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For example, given three vertices 
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c  be the intersection of the

straight lines 
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ttba and 
�

ssba , then
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Proof: 
�

c  satisfies the two equations
���

��� tt bsasc )1(  and 
���

��� ss btatc )1(

Q.E.D.

This result is a CAD version of the famous Menelaus Theorem

1),,(),,(),,( 22 ����
���������

ssstts bcaratioaaVratioVbbratio

(btcat is a line segment meeting the sides of the �bsV2as)

2D simplex Given 
���

321 ,, VVV  in 2�  and write
����

��� 332211 VVVP ���  with 1321 ��� ��� .

The coefficients (�1, �2, �3) are the barycentric coordinates of 
�

P  in 2�  with

respect to 
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iV . They are sometimes known as the area coordinates as
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More geometrical properties are illustrated below (in ratios):

An immediate consequence is known as the Ceva’s Theorem

1),,(),,(),,( 123312231 ���
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VPVratioVPVratioVPVratio
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2.5 Curvatures

Recall that the curvature of a plane curve is defined as

Curvature = 
AB

�
�

arc oflength 

embrace of angle

Gauss introduced an auxiliary circle, of unit radius, onto which points on the curve may be
mapped by the rule of parallel normals, then

Curvature = 
AB

ab
�

arc oflength 

image oflength  arc

If the curve has different curvature at different points, then we may take limit on the right
hand side as the arc length tends to zero, obtaining curvature at a point.

Gauss Map (1825, 1827)
To measure the curvature of an area As on a surface, we may first map the boundary of As by
the rule of parallel normals onto a unit sphere and define

Gaussian curvature 
s

s

A

a
��

Where as is the mapped area on the unit sphere and equals to the solid angle � substended at
the centre of the sphere.

Notice that a sphere of unit radius has total surface area 4�, hence the total solid angle
surrounding a point in three-dimensional space is 4�.
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2.5.1   Curvature of piecewise flat surfaces
(a) Plane surface. Since the normals at all points are parallel, the entire plane maps onto a

single point of the unit sphere, therefore � = 0 and � = 0.

(b) Roof with one fold. Planes P and Q will be mapped onto p and q.  The fold has no unique
normal and will map onto the arc pq of a great circle lying in a diametral plane
perpendicular to the fold. A contour such as B maps to zero area on the unit sphere,
hence � =0.  Similarly, for a cylinder with infinitely many parallel folds.

(c)   Roof with two folds intersecting at an angle �.  Planes P, Q and R will be
mapped onto p,q and         r.  The arcs pq and qr follow great circles perpendicular to
the folds, hence intersect each other at the same angle �.  The curvature of any
enclosed area is still zero.



8

(d) Roof with a convex vertex.  The number of flat surfaces is immaterial, but for a convex
vertex to occur, � �

i
i �� 2 .  There is a positive angular defect ���

i i��� 2  when the

roof is flattened onto a plane.
In this case, the Guass map encloses an area proportional to �

and
sA

�
� � (� = � )

It should be noted that the contours B and b transverse in the same direction, which is the
case when a convex surface is mapped onto the unit sphere.  For a saddle surface, the
reverse will happen and �  will be negative.

2.5.2    Parallel postulate, Angular excess and defect
The differences in the Guass maps from different geometries are intrinsic. It all starts
from the parallel postulate.
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(a) In the Euclidean plane, acceptance of the parallel postulate implies that the sum of the
interior angles of a �  is �.

Exer: The angle sum of a plane n-gon is (n-2)�.

(b) In spherical geometry, (consider geometry on a spherical surface), 'lines' are great circles.
They are of finite length and any two lines meet at two points.  In fact there are no
parallel lines and two lines determine an area ( a lune):

Area A� = area of sphere 
�

�

2
� = 2� (radius =1)

A � = area of spherical � = �1 + �2 + �3 - �
= sum of interior angles - �
= Angular excess.

Hence the angular excess is always positive on a sphere.

Exer. The area of a spherical n-gon is equal to its angular excess, namely, the
sum of its interior angles less the corresponding sum for a plane figure;
i.e. �� )2( ��� � nA

i
in

Return now to the roof with a pointed vertex. Its Gauss map encloses an area as = pqrst with
exterior angles �i, hence

as = ��� )2()( ���� n
i

i

  = ��� )2( ���� nn
i

i

  = ��� ���
i

i2

i.e. the angular defect � of the flattened vertex equals the mapped area and in turn equals the
angular excess of the spherical n-gon.

(c) The hyperbolic plane was constructed by Lobatchevsky (1829) and Bolyai (1832)
independently where more than one 'line' can be drawn passing a point and parallel to a
given 'line'. There are also lines which are ultra-parallel (not parallel but never meet).  In
this case the sum of the interior angles of a hyperbolic� is always less than �, i.e. the
angular excess is negative with A= � - sum of interior angles.
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2.5.3     Curvature of closed surfaces
For a complete sphere of radius R, its total curvature

22

1

4

4

RRA

a
���

�

�
�

For a polyhedron, its total curvature is the sum of curvatures of all its vertices,
hence

A

T

area surface total

defectangular  total

area surface total

excessangular  total
����

For instance, at any vertex of a cube there are three angles of 2
�  so the angular

defect is 232 �� �� .  The total angular defect of the cube is �� 428T ��� .

Exer. Determine the total angular defect for each of the five platonic solids.

Descartes's Formula:
For any polyhedron, the total angular defect is related to the Euler characteristic by

T = 2�  � = 2 � ( V - E + F )
proof:

T = �
vertices

angular defect

  = �
vertices

 vertex)at the angles face of sum -(2�

= ��
faces

V face)  theof anglesinterior  of (sum2�

= � ��
faces

fnV �� )2(2

(nf is the number of edges on the faces, i.e. the faces is nf-gon)

= �� ��
facesfaces

fnV ��� 22

= FEV ��� 222 ��

= ��� 2)(2 ��� FEV

Q.E.D.
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We have also obtained the Gauss-Bonnet Theorem for any closed polygonalised (or smooth)
surface:

� A = T = 2�  � .

Examples:
(1) S2 (Sphere of genus = 0 )

V = 6, E = 12, F = 8 to give  �  = 2 .

(2) T2 (torus of genus = 1 )

V = 1, E = 2, F = 1 to give  �  = 0 .

(3) T2#T2 (double toridal surface of genus =2)

V = 8, E = 16, F = 6 to give  �  = -2 .

The aspect of a surface's nature which is unaffected by deformation is called the topolgy of
the surface (invariant under differentiable transformations).  The Euler number and total
Gaussian curvature are topology properties.


