Chapter 1  Transformation

1.1 What is Geometry?- Studies of figures
Felix Klein in his famous Erlangen Program (1872) defined geometry as a
discipline concerned with properties of figures which remain unchanged
under certain groups of transformations.

Look at the set of transformations forming a group (i.e. identity element,
inverse element & composition)

Example 1  Euclidean Geometry is the study of the properties of 3D
figures invariant under rigid body motions (transformations) and Similarity
transformations.
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Let p=|y and writep = Rp+b, R, rotation matrix,
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Any vectorAB will be transformed ad p = R-AB.
If R is a rigid body motion, it will preserve distance, i.e.
(Ap) -Ap=(Ap) R'RAp=(Ap) -Ap trueforall p.
Therefore RR= I3, i.e. R is orthonormal.
As rigid body motion will not change the sense of the axes (left hand or

right hand), so also det(R)= 1.
It will be convenient to write the transformation as

p=|P|=| Y| andp =BP=|R Plp
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1

The transformation B is known as an isometry because it preserves distance.
Special forms of B in 2D include

1.1.1  Pure transformation: BgBR=l, b =(by, by, 0)
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1.1.2  Pure rotation about z-axi® = B, = {% } with

1
cosd -—sind
B:O,R: R, =|sind cosd
1
X
Note: under these transformations, a position veBt@ y | becomes
0

.
p =|y | referring to the basic coordinate system (x, ¥, zp. the
0

—

point p is moving top measured in the same coordinate system.
Sometimes it would be convenient to regard the physical location of

the point remains fixed. If it is given b;z) in the coordinate system
(x, y, z), it will be given by B in the coordinate system™(x, y~ ,

Z" )T sztl_p=[|O3 _1b:l.p
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. \T/
in these two cases, regarded as coordinate ¥

transformations.

1.1.3  Arotation with center ab = (by, by, 0)': B=Ryp

_ _ a1 _ |y ERe O.
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b, (1-cosd) + b, sind
I, —b|_|R —bsind+b,(1-cos)
0 1 0o 1 0

(R;; is also a rotation with center Et, Cederberg p.93)



1.1.4  Rotation about x-axis ( y-axis ) yis a reflection in the y-z plane

(z-x plane)
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1.1.5 Reflection about an axil;: (my, Ny, 0) = (cosd, sing, 0)

C0S2¢  Sin2¢
sin2¢ —cos2 0
B.m =B, B,,XB;1 = 9 ¢
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0 1

(i.e. reflection changes the sense of the axes in 2D, butgit(Bin 3D)

1.1.6 A glide reflection with axisn is the product of a reflection abont and a
translationB =1 r?l along r?1
Am,
I, Am
Byn = ByBim = ’ “|'Ba M "
O .,-'-""P-.l '\._h
0 1 -
Finally, Similarity transformation in x-y plane is represented by
B, = HR D whereu = 0, distance will be scaled hy
0 1
Only angles and ratio of distances remain invariant.

1.1.7 A central similarity (homothety, or dilatation) with centeBdﬂ given by
B:Db: /ulb b(l_lu) with Db b — b
0 1 1 1
1.1.8 A sprial similarity is given byu = e* and R=R

eaHRg O
B-H, { ! J



1.1.9 Example of ratio of distances: Pythagoras Theorem.

a)® (b)’
For any right-angle, (—) +(—) =1
c c

1.2 Projections
We are concerned with transformations that produce 2D images of 3D
objects onto an image plane.

1.2.1 Parallel Projection

In this case, every point P is projected parallel to a veettw become P
on the image plane.

p'=p-ue :
. R N image plane
=b+u,e+u,e, P
where b is the origin of the - /
> o ' & _
coordinate system Be(,e, ) in ,%2—>.;1

the image plane.g,e,,e) need not be
orthogonal.

Therefore u = (p— b) (elx eZ)
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relating P and its image’P. Also on the image plane

(p-b)-(ex€) _(p-b)-(e,xe)

u =

9 en
u = (P=b)-(exe) _(p-Db)-(exe)
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e, (exe) en

as the coordinates of Prelative to Bg,,e, ).

(Orthographic projection)
In case the projection is perpendicular to the image plane:

e=n=gexe,, then



&, U=(p-b)-e, u=(p-b)-n
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where E], =| €] | is a rotation with EE = L.
nT

u is not a required datum in the image plane.

1.2.2 Axonometric projection
while orthographic projections along principal axes of an object are
common to obtain multi-view mechanical drawings, a special form of
orthographic projection is used to give simulated 3D images: - the
axonometric projection which scales the axes in fixed proportions.
Define the rotation matrix E as the product of two consecutive rotations

such that
U _[Rx O] [Ry O] 5
1 0 1 0 1|1
where
1 cosp sing cosp 0 sing
Ry Ry = cosy -—sind |- 1 =| singsind cosd -—cospsing

sind cosd | |-sing cosp —sinfcosfd sind  cospcosd

The axesB =(1,007,(010)",(0,0D)™ will be transformed into
Jl = (coP simsind -sipcoso)’, U: = (0 co® sim)’ and
J3 = (sinB -co$sind -co$cod)’

To develop an isometric image on the image plane, set

U, =|U,

= |U3| ignoring the u component (the third component), i.e.

cos S +sin® Bsin’ @ = cos’ @ = sin’®  +cos’ Bsin’ 6.
We may select a value 6fand comput§ from above.

For example, lesin® 4 = % thensin® g = %

The anglex that the X -axis (U, ) made with g-axis is



U, singsing 5
U, cosp

tana =

roa=30 if;fz'z
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Other requirement such a\HUl
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—

= :U3
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can also be constructed. They are used for  hand

drafting purposes.

1.2.3

u=

Central projection (perspective transformation)

In the case, the imagé€ Pof the object point P is in the line from a specific
view point R, (the center of projection)

we have

image plane

p'=p,+u(p-p,) |~

\

=b+u,e+u,e
Let n=exe, to describe

the image plana- (E'— B) =0
Therefore

(b-p,)-(exe,) (b-p,)-n
(p-p)-(exe) (p-p,)-n
b pru(po p) = (=PI P+ (P p,—(b-n) P,
(p-p,)-n
Although this is a rational form, we can still use homogenous coordinates to
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write @'= (E- B— pv-ﬁ)a) and
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Also
= (P=D) T (=PI _ (b P [ex (0-p.)]
&-[&x(p-p)] (p-p,)-n
4, - (P [ex(P=p)] _ (P~ P).[ex(R-b)
&, [ex(p-p)] (p-p,)-n



These can be further simplified if the origin B in the image plane is chosen such that
E joining the view point to this origin is normal to this image plane, then
p, =b+de=b+dn and

_ d(p-b)-g

d—(p-b)-n

1

d(p_ b)'ez

U, = > o> o
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d
Us——"7—7—=
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uis nota reql]ired datum on _the image plane. In case
gl = ; ez :;/ and B is the origin, then

dx U, = dy

d-z d-z




1.3 Projective views
1.3.1  Vanishing points and vanishing planes
Points at infinity may appear on the image plane as vanishing points.

Consider the point at infinity of a line L in 3D in the directia;g. A
general point on L can be represented?baf g.+ﬂlf_ The image of P in

the central projection asl -« is given by substituting pinto the
projection formulae to obtain

—-d u. e
1= - -
u.-n
_du -e,
u, == L_)%
LN
(U1, W) is the vanishing point in the image plane so long,as # 0

In caseu, - n =0 ,the vanishing point fou, is at infinity.

Projective geometry is therefore a generalization of Euclidean Geometry with the
inclusion of points at infinity (ideal points and lines). The concept of parallelism and
similarity no longer apply. Only concept of incidence remains.




In 2D projective geometry
One ordinary point and one ideal points
determine a line through the ordinary
point in the direction of the ideal point.
Two ideal points determine the ideal line
where all ideal points lie,

(e.g. the horizon).

Two lines which are parallel determine
an ideal point.

An ordinary line and the ideal line

determine the ideal point.

From a central projection, in 3D, a lidein planer is
transformed into a liné” in planen’ , ( except the line s
which lies on the plane through Parallel tox” ), and vice
versa, (except the liné s, which lies on the plane through P
parallel tor).

©
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If 1, andl, are parallel lines im, they are transformed into lines’ andl,” onn
meeting at a point | on’S.

Proof:  this follows because the planeg T, determined by the point,Rnd the
lines |, andl; respectively, intersect in a linglPparallel tor and meeting
n” in a point | on the special lin€ S
Exceptions to this rule are lines parallel to S; these lines are mapped onto
lines parallel to the intersection ofandn” (or parallel to S )

T T A s W

Note that | is the image of the ideal point foandl, onn’ (i.e. | is the vanishing
point).

Conversely, let; andl; in the planer intersect in a point M on the special line S.

Then their images under a central projection are two parallel llifesandl,” in
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Proof: the planess; and o, determined by the point,Rnd the lined; andl,
respectively, intersect in the line Mparallel tor” . It follows that the
projectionl; ” andl,” are parallel int” .

We may use these properties to prove a fundamental result in Renaissance geometry.

Desarques Theoremik [ £ ¥1639): If two AABC and AA:B1C, are located in a
plane so that lines AABB; and CG are concurrent, then the points of intersection of
lines AB and AB;, AC and AC,, BC and BC, are collinear, and vice versa.

€,
Note that the theorem expresses a property of lines and points in a plane not
necessarily tied to a pair of triangles. For example O€Collinear forAPBB; and
AQAA;; or B is the center of concurrency fiPRB, and CAO.
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Proof of Desargués Theorem:
Project the plane of the triangles onto a pland such that QR is the special line s

we haveA'B'// RP. // AB, and AC'// QP /| AC,

Also O" will be concurrent withA' A’ ,C'C, and B'B,
It follows O'B'/O'B, =O'A/O'A =0O'C'/O'C,, hence
B'C' and B,C, are parallel, therefore

the point P of intersection of BC and@ lies on the special
line S ofr, i.e. P, Q, R are collinear.

Conversely, if P, Q, R are collinear, then lines of the corresponding vertices of the
APB;B andAQA;A are concurrent at R. By the first part of the assertion, the points
C,, C, and O of intersection of the corresponding sides are collinear.

Q.E.D.
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