A PROOF OF ZORN'S LEMMA

JINPENG AN

Zorn's Lemma. Let X be a partially ordered set. Suppose that every totally ordered subset of X has an upper bound. Then X has a maximal element.

The following proof appears, for example, in [1, 2].
Proof. Suppose the contrary. Then it follows from the Axiom of Choice that for every totally ordered subset $A \subset X$, we can choose and fix an upper bound $g(A)$ in $X \backslash A$. For a subset $A \subset X$ and $a \in A$, denote

$$
A_{<a}=\{x \in A: x<a\} .
$$

We call a subset $A \subset X$ a g-set if

- A is totally ordered;
- A contains no infinite descending sequences, that is, there is no infinite sequences $a_{1}>a_{2}>\cdots$ in A;
- For every $a \in A, g\left(A_{<a}\right)=a$.

Note that \varnothing is a g-set, and if A is a g-set then so is $A \cup\{g(A)\}$.
We prove that if $A, B \subset X$ are distinct g-sets, then either $A=B_{<b}$ for some $b \in B$, or $B=A_{<a}$ for some $a \in A$. To see this, let

$$
C=\left\{c \in A \cap B: A_{<c}=B_{<c}\right\} .
$$

We show that either $C=A$ or $C=A_{<a}$ for some $a \in A$. Suppose $C \neq A$. Then $A \backslash C$ has a smallest element a, for otherwise there would be an infinite descending sequence in A. It follows that $A_{<a} \subset C$. On the other hand, if there is $c \in C \backslash A_{<a}$, then $a \in A_{<c} \subset C$, a contradiction. So $C=A_{<a}$. Similarly, either $C=B$ or $C=B_{<b}$ for some $b \in B$. Suppose $C \neq A$ and $C \neq B$. Then $C=A_{<a}=B_{<b}$ for some $a \in A$ and $b \in B$. But

$$
a=g\left(A_{<a}\right)=g\left(B_{<b}\right)=b .
$$

So $a \in C$, a contradiction. It follows that either $C=A$ or $C=B$. If $C=A$, then $C \neq B$, and hence $A=C=B_{<b}$ for some $b \in B$. Similarly, if $C=B$, then $B=A_{<a}$ for some $a \in A$.

Date: 2019-10-08.

Let E be the union of all g-sets. We prove that for $a \in E$, if A is a g-set containing a, then $A_{<a}=E_{<a}$. It is clear that $A_{<a} \subset E_{<a}$. To prove the converse, let $x \in E_{<a}$ and suppose B is a g-set containing x. If $B \subset A$, then $x \in A$ and hence $x \in A_{<a}$. If $B \not \subset A$, then $A=B_{<b}$ for some $b \in B$. Since $x<a$ and $a<b$, we have $x \in B_{<b}=A$ and hence $x \in A_{<a}$. This proves $E_{<a} \subset A_{<a}$.

We now verify that E is a g-sets:

- E is totally ordered: For any $a, b \in E$, there are g-sets A and B containing a and b, respectively. Since either $A \subset B$ or $B \subset A$, a and b are contained in a single g-set and hence are comparable.
- E contains no infinite descending sequences: Suppose E contains an infinite descending sequence $a_{1}>a_{2}>\cdots$. Let A be a g-set containing a_{1}. Then for $i \geq 2$ we have $a_{i} \in E_{<a_{1}}=$ $A_{<a_{1}} \subset A$. It follows that A contains an infinite descending sequence, a contradiction.
- $g\left(E_{<a}\right)=a$ for every $a \in E$: Let A be a g-set containing a. Then $a=g\left(A_{<a}\right)=g\left(E_{<a}\right)$.
This implies that E is the largest g-set. But $E \cup\{g(E)\}$ is also a g-set, a contradiction.

References

[1] H. Kneser, Eine direkte Ableitung des Zornschen Lemmas aus dem Auswahlaxiom, Math. Z. 53 (1950), 110-113.
[2] T. Szele, On Zorn's lemma, Publ. Math. Debrecen 1 (1950), 254-256, erratum 257.

