A PROOF OF ZORN'S LEMMA

JINPENG AN

Zorn's Lemma. Let X be a partially ordered set. Suppose that every totally ordered subset of X has an upper bound. Then X has a maximal element.

The following proof appears, for example, in [1, 2].

Proof. Suppose the contrary. Then it follows from the Axiom of Choice that for every totally ordered subset $A \subset X$, we can choose and fix an upper bound g(A) in $X \setminus A$. For a subset $A \subset X$ and $a \in A$, denote

$$A_{$$

We call a subset $A \subset X$ a *g*-set if

- A is totally ordered;
- A contains no infinite descending sequences, that is, there is no infinite sequences $a_1 > a_2 > \cdots$ in A;
- For every $a \in A$, $g(A_{\leq a}) = a$.

Note that \emptyset is a *g*-set, and if A is a *g*-set then so is $A \cup \{g(A)\}$.

We prove that if $A, B \subset X$ are distinct g-sets, then either $A = B_{<b}$ for some $b \in B$, or $B = A_{<a}$ for some $a \in A$. To see this, let

$$C = \{ c \in A \cap B : A_{< c} = B_{< c} \}.$$

We show that either C = A or $C = A_{<a}$ for some $a \in A$. Suppose $C \neq A$. Then $A \setminus C$ has a smallest element a, for otherwise there would be an infinite descending sequence in A. It follows that $A_{<a} \subset C$. On the other hand, if there is $c \in C \setminus A_{<a}$, then $a \in A_{<c} \subset C$, a contradiction. So $C = A_{<a}$. Similarly, either C = B or $C = B_{<b}$ for some $b \in B$. Suppose $C \neq A$ and $C \neq B$. Then $C = A_{<a} = B_{<b}$ for some $a \in A$ and $b \in B$. But

$$a = g(A_{< a}) = g(B_{< b}) = b.$$

So $a \in C$, a contradiction. It follows that either C = A or C = B. If C = A, then $C \neq B$, and hence $A = C = B_{<b}$ for some $b \in B$. Similarly, if C = B, then $B = A_{<a}$ for some $a \in A$.

Date: 2019-10-08.

JINPENG AN

Let E be the union of all g-sets. We prove that for $a \in E$, if A is a g-set containing a, then $A_{\leq a} = E_{\leq a}$. It is clear that $A_{\leq a} \subset E_{\leq a}$. To prove the converse, let $x \in E_{\leq a}$ and suppose B is a g-set containing x. If $B \subset A$, then $x \in A$ and hence $x \in A_{\leq a}$. If $B \not\subset A$, then $A = B_{\leq b}$ for some $b \in B$. Since x < a and a < b, we have $x \in B_{\leq b} = A$ and hence $x \in A_{\leq a}$. This proves $E_{\leq a} \subset A_{\leq a}$.

We now verify that E is a g-sets:

- E is totally ordered: For any $a, b \in E$, there are g-sets A and B containing a and b, respectively. Since either $A \subset B$ or $B \subset A$, a and b are contained in a single g-set and hence are comparable.
- E contains no infinite descending sequences: Suppose E contains an infinite descending sequence $a_1 > a_2 > \cdots$. Let A be a g-set containing a_1 . Then for $i \geq 2$ we have $a_i \in E_{\langle a_1 \rangle} = A_{\langle a_1 \rangle} \subset A$. It follows that A contains an infinite descending sequence, a contradiction.
- $g(E_{\langle a \rangle}) = a$ for every $a \in E$: Let A be a g-set containing a. Then $a = g(A_{\langle a \rangle}) = g(E_{\langle a \rangle})$.

This implies that E is the largest g-set. But $E \cup \{g(E)\}$ is also a g-set, a contradiction.

References

- H. Kneser, Eine direkte Ableitung des Zornschen Lemmas aus dem Auswahlaxiom, Math. Z. 53 (1950), 110–113.
- [2] T. Szele, On Zorn's lemma, Publ. Math. Debrecen 1 (1950), 254–256, erratum 257.