
Guo et al.: On Consistency of Signature Using Lasso
Article submitted to Operations Research 1

Electronic Companion

Appendix A: Impact of Time Augmentation

First, recall that the time-augmented process of a d-dimensional continuous-time stochastic process Xt =

(X1
t ,X

2
t , . . . ,X

d
t )

⊤ ∈ Rd, 0 ≤ t ≤ T is a (d + 1)-dimensional process (Chevyrev and Kormilitzin 2016,

Lyons and McLeod 2022)

X̃t =
(
t,X⊤

t

)⊤
=
(
t,X1

t ,X
2
t , . . . ,X

d
t

)⊤
. (A.1)

The time augmentation does not change the core block-diagonal structure between signature components.

In particular, for a d-dimensional Brownian motion X given by (7), if all signature components with

the time dimension are grouped together, with other signature components arranged in recursive order (see

Definition B.1 in Appendix B), the correlation matrix for Itô signature of X̃ with orders truncated to K is

given by 
Ψ0,0 Ψ0,1 Ψ0,2 · · · Ψ0,K

Ψ1,0 Ω1 0 · · · 0
Ψ2,0 0 Ω2 · · · 0

...
... · · · . . .

...
ΨK,0 0 0 · · · ΩK

 ,

with Ωi defined by (10) and Ψ0,m the correlation matrix between all signature components with the time

dimension and all m-th order signature components without the time dimension.

Similarly, for the Stratonovich signature of a (d + 1)-dimensional time-augmented Brownian motion

given by (7) and (A.1), or the Itô or Stratonovich signature of a (d+ 1)-dimensional time-augmented OU

process given by (8) and (A.1), if we group all signature components with the time dimension together and

other signature components together, the correlation matrix for the signature with orders truncated to K can

be given by  Ψ0,0 Ψ0,odd Ψ0,even

Ψodd,0 Ψodd 0
Ψeven,0 0 Ψeven

 , (A.2)

where Ψodd and Ψeven are defined by (13), Ψ0,0 is the correlation matrix between all signature components

with the time dimension, and Ψ0,odd (Ψ0,even) is the correlation matrix between all signature components

with the time dimension and all odd (even) order signature components without the time dimension.

Simulation. Now we perform simulations to study the consistency of signature using Lasso regression for

the time-augmented Brownian motion. We consider X̃, the time-augmentation of a 2-dimensional Brownian

motion with an inter-dimensional correlation of ρ. The simulation setups are the same as in Section 4.

Figure A.1 shows the consistency rates for different values of inter-dimensional correlation ρ, and dif-

ferent numbers of true predictors q. The time augmentation generally increases the correlation between

signature components and, therefore, leads to a lower consistency rate for Lasso compared to the case with-

out time augmentation (Figure 1(a)). However, the main relationships of the consistency rate with respect

to ρ and q remain the same.
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Figure A.1 Consistency rates for the time-augmented Brownian motion with different values of inter-dimensional correlation

ρ and different numbers of true predictors q. Solid (dashed) lines correspond to the Itô (Stratonovich) signature.
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Learning option payoffs. We also demonstrate the ability of signature to learn option payoffs when

incorporating time augmentation. Following our framework in Section 5.1.1, we consider two underly-

ing assets, eight different option payoff functions, and three different types of predictors (Sig, RSam, and

USam). The only difference in this section is that we also include the time dimension when calculating

these three types of predictors.

Figure A.2 shows R2 as a function of the penalization parameter of the Lasso regression λ, when using

different types of predictors with time augmentation. Similar to our observations without time augmentation

(Figure 4), both in-sample and out-of-sample R2 values for Lasso regression with signature components

as predictors consistently outperform those for Lasso regression with random sampling and equidistant

sampling as predictors.

By comparing Figure A.2 and Figure 4, we also find that R2 values using signature with time augmen-

tation outperform those without time augmentation, particularly for path-dependent options. This demon-

strates that, although the signature of time-augmentation paths has a lower consistency rate due to the inclu-

sion of more predictors, it is more effective in approximating various nonlinear payoff functions, thanks to

the universal nonlinearity (Theorem 1).

Appendix B: Technical Details and Examples for the Calculation of Correlation Structures

This appendix provides details and examples for calculating the correlation structures of signature. Appen-

dices B.1 and B.2 discuss the Brownian motion and the OU process, respectively.

B.1. Brownian Motion

Itô Signature. Proposition 1 and Theorem 3 in the main paper give explicit formulas for calculating

the correlation structure of the Itô signature for Brownian motion. The “recursive order” mentioned in

Theorem 3 is defined as follows.

DEFINITION B.1 (RECURSIVE ORDER). Consider a d-dimensional process X. We order the indices of

all of its 1st order signature components as

1 2 · · · d.
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Figure A.2 In-sample and out-of-sample R2 for learning option payoffs using different types of predictors with time augmen-

tation.
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(a) Call option.
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(b) Put option.
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(c) Asian option.
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(d) Lookback option.
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(e) Rainbow option I.
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(f) Rainbow option II.
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(g) Rainbow option III.
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(h) Rainbow option IV.



Guo et al.: On Consistency of Signature Using Lasso
4 Article submitted to Operations Research

Then, if all k-th order signature components are ordered as

r1 r2 · · · rdk ,

we define the orders of all (k+1)-th order signature components as

r1,1 r2,1 · · · rdk ,1 r1,2 r2,2 · · · rdk ,2 · · · · · · · · · r1, d r2, d · · · rdk , d.

For example, for a d= 3-dimensional process, the recursive order of its signature is

• 1st order: 1 2 3

• 2nd order: 1,1 2,1 3,1 1,2 2,2 3,2 1,3 2,3 3,3

• 3rd order: 1,1,1 2,1,1 3,1,1 1,2,1 2,2,1 3,2,1 1,3,1 2,3,1 3,3,1

1,1,2 2,1,2 3,1,2 1,2,2 2,2,2 3,2,2 1,3,2 2,3,2 3,3,2

1,1,3 2,1,3 3,1,3 1,2,3 2,2,3 3,2,3 1,3,3 2,3,3 3,3,3

• ...

To provide intuition for Proposition 1 and Theorem 3 in the main paper, the following two examples

show the correlation structures of Itô signatures for 2-dimensional Brownian motions with inter-dimensional

correlations ρ= 0.6 and ρ= 0, respectively.

EXAMPLE B.1. Consider a 2-dimensional Brownian motion given by (7) with an inter-dimensional corre-

lation of ρ= 0.6. Figure B.1(a) shows the correlation matrix of its Itô signature calculated using Proposition

1. The figure illustrates Theorem 3—the correlation matrix has a block diagonal structure, and each block

of the matrix is the Kronecker product of the inter-dimensional correlation matrix
(

1 0.6
0.6 1

)
.

EXAMPLE B.2. Consider a 2-dimensional Brownian motion given by (7) with an inter-dimensional corre-

lation of ρ= 0. Figure B.1(b) shows the correlation matrix of its Itô signature calculated using Proposition

1. When ρ= 0, the block diagonal correlation matrix reduces to an identity matrix, indicating that all of its

Itô signature components are mutually uncorrelated.

Stratonovich Signature. Proposition 2 and Theorem 4 in the main paper provide formulas for cal-

culating the correlation structure of the Stratonovich signature for a Brownian motion. The following

proposition gives the concrete recursive formulas for calculating E
[
S(X)i1,...,i2n,St S(X)j1,...,j2m,S

t

]
and

E
[
S(X)

i1,...,i2n−1,S
t S(X)

j1,...,j2m−1,S
t

]
, which extends Proposition 2 in the main paper.

PROPOSITION B.1. Let X be a d-dimensional Brownian motion given by (7). For any l, t≥ 0 and m,n∈
N+, define f2n,2m(l, t) :=E

[
S(X)i1,...,i2n,Sl S(X)j1,...,j2m,S

t

]
, we have

f2n,2m(l, t) = g2n,2m(l, t)+
1

2
ρj2m−1j2mσj2m−1

σj2m

∫ t

0

f2n,2m−2(l, s)ds, (B.1)

g2n,2m(l, t) = ρi2nj2mσi2nσj2m

∫ l∧t

0

f2n−1,2m−1(s, s)ds

+
1

2
ρi2n−1i2nσi2n−1

σi2n

∫ l

0

g2n−2,2m(s, t)ds, (B.2)
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Figure B.1 Correlation matrices of signatures for 2-dimensional Brownian motions.

(a) Itô; Inter-dimensional correlation ρ= 0.6. (b) Itô; Inter-dimensional correlation ρ= 0.

(c) Stratonovich; Inter-dimensional correlation ρ= 0.6. (d) Stratonovich; Inter-dimensional correlation ρ= 0.

with initial conditions

f0,0(l, t) = 1, (B.3)

g0,2m(l, t) = 0. (B.4)

In addition, define f2n−1,2m−1(l, t) :=E
[
S(X)

i1,...,i2n−1,S

l S(X)
j1,...,j2m−1,S
t

]
, we have

f2n−1,2m−1(l, t) = g2n−1,2m−1(l, t)+
1

2
ρj2m−2j2m−1

σj2m−2
σj2m−1

∫ t

0

f2n−1,2m−3(l, s)ds, (B.5)

g2n−1,2m−1(l, t) = ρi2n−1j2m−1
σi2n−1

σj2m−1

∫ l∧t

0

f2n−2,2m−2(s, s)ds

+
1

2
ρi2n−2i2n−1

σi2n−2
σi2n−1

∫ l

0

g2n−3,2m−1(s, t)ds, (B.6)

with initial conditions

f1,1(l, t) = ρi1j1σi1σj1(l∧ t), (B.7)

g1,2m−1(l, t) = ρi1j2m−1

1

2m−1

(l∧ t)m−1

(m− 1)!
σi1

2m−1∏
k=1

σjk

m−1∏
k=1

ρj2k−1j2k . (B.8)

Here, x∧ y represents the smaller value between x and y.
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The following two examples show the correlation structures of Stratonovich signatures for 2-dimensional

Brownian motions with inter-dimensional correlations ρ = 0.6 and ρ = 0, respectively, calculated using

Proposition 2 and Theorem 4 in the main paper and Proposition B.1.

EXAMPLE B.3. Consider a 2-dimensional Brownian motion given by (7) with an inter-dimensional corre-

lation of ρ= 0.6. Figure B.1(c) shows the correlation matrix of its Stratonovich signature calculated using

Propositions 2 and B.1. The figure illustrates that the correlation matrix has an odd–even alternating struc-

ture.

EXAMPLE B.4. Consider a 2-dimensional Brownian motion given by (7) with an inter-dimensional cor-

relation of ρ= 0. Figure B.1(d) shows the correlation matrix of its Stratonovich signature calculated using

Propositions 2 and B.1. The figure demonstrates that the correlation matrix has an odd–even alternating

structure, even though different dimensions of the Brownian motion are mutually independent (ρ= 0). This

is different from the result for Itô signature shown in Example B.2, where all Itô signature are mutually

uncorrelated.

In this case, assume that one includes all Stratonovich signature components of orders up to K = 4 in the

Lasso regression given by (4), and the true model given by (2) has beta coefficients β0 = 0, β1 > 0, β2 > 0,

β1,1 > 0, β1,2 > 0, β2,1 > 0, β2,2 < 0, and βi1,i2,i3 = βi1,i2,i3,i4 = 0. Let ∆2 be the correlation matrix between

all predictors given by Theorem 4. Then, by Proposition 2,

∆2
A∗c,A∗(∆2

A∗,A∗)−1sign(βA∗) = (0,0.77,0.5,0,0.5,0.5,0,0.5,0.77,1.01,0.73,0.47,0,

0.47,0,0.58,0.73,0.73,−0.58,0,0.47,0,0.47,0.73,−1.01)⊤,

which does not satisfy the irrepresentable conditions I and II defined in Definition 4 because | − 1.01|> 1.

B.2. OU Process

Deriving explicit formulas for calculating the exact correlation between signature components of OU pro-

cesses (both Itô and Stratonovich) is complicated. Here we provide an example to show the general approach

for calculating the correlation. The proof of this example is given in Appendix E, and one can use a similar

routine to compute the correlation for other setups of OU processes.

EXAMPLE B.5. Consider a 1-dimensional OU process Xt = Yt with a mean reversion speed κ> 0, which

is driven by

dYt =−κYtdt+dWt, Y0 = 0. (B.9)

The correlation coefficients between its 0-th order and 2nd order of signature are

E
[
S(X)0,IT S(X)1,1,IT

]√
E
[
S(X)0,IT

]2
E
[
S(X)1,1,IT

]2 =
−2κT − e−2κT +1√

4κTe−2κT +3e−4κT − 6e−2κT − 4κT +3+4κ2T 2
,

E
[
S(X)0,ST S(X)1,1,ST

]√
E
[
S(X)0,ST

]2
E
[
S(X)1,1,ST

]2 =

√
3

3
,
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for Itô and Stratonovich signature, respectively. The proof is provided in Appendix E.

Figure B.2(a) shows the absolute values of correlation coefficients between the 0-th order and 2nd order

signature components calculated using the formulas above under different values of κ with T = 1. Notably,

the correlation for Itô signature increases with respect to κ, while the correlation for Stratonovich signature

remains fixed at
√
3/3.

Figure B.2 Absolute values of correlation coefficients between signature components of the 1-dimensional OU process. Solid

(dashed) lines correspond to the Itô (Stratonovich) signature.
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(a) Correlation between the 0-th and the 2nd order signature

components.
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corr(S(X)0
t , S(X)1, 1

t )
corr(S(X)0

t , S(X)1, 1, 1, 1
t )

corr(S(X)1, 1
t , S(X)1, 1, 1, 1

t )
corr(S(X)1

t , S(X)1, 1, 1
t )

(b) Correlation between the first four order signature com-

ponents.

We further perform simulations to estimate the correlation coefficients for higher-order signature compo-

nents of the OU process. We generate 10,000 sample paths of the OU process using the methods discussed

in Appendix D. For each path, we calculate the corresponding signature components and then estimate

the sample correlation matrix based on the 10,000 simulated samples. Figure B.2(b) shows the simulation

results for the absolute values of correlation coefficients between the first four order signature components

under different values of κ. Consistent with the observation in Figure B.2(a), the correlations for Itô sig-

nature increase with respect to κ, while the correlations for Stratonovich signature remain relatively stable.

Notably, the correlations for Itô signature are zero when κ= 0, which reduces to the results for a Brown-

ian motion. In addition, when κ is sufficiently large, the absolute values of correlation coefficients for Itô

signature exceed those for Stratonovich signature.

Recall that the irrepresentable condition, as defined in Definition 4, illustrates that a higher correlation

generally leads to poorer consistency. Therefore, based on Example B.5, we can expect that the Lasso is

more consistent when using Itô signature for small values of κ (weaker mean reversion), and more con-

sistent when using Stratonovich signature for large values of κ (stronger mean reversion). This provides a

theoretical explanation for our observations in Section 4.3 of the main paper—When processes are suffi-

ciently rough or mean reverting (El Euch et al. 2018, Gatheral et al. 2018), using Lasso with Stratonovich

signature will likely lead to higher statistical consistency compared to Itô signature.
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Appendix C: Technical Details for Consistency of Signature

C.1. Tightness of the Sufficient Condition for Consistency

In this appendix, we investigate the irrepresentable condition for Itô signature of a multi-dimensional Brow-

nian motion with constant inter-dimensional correlation. This analysis not only provides further insights

into the irrepresentable condition but also demonstrates the tightness of the sufficient condition presented

in Theorem 5 in our main paper.

The following proposition characterizes the irrepresentable condition for a Brownian motion with con-

stant inter-dimensional correlation when using Itô signature. For mathematical simplicity, we assume that

only the first order signature components are included in the regression model.

PROPOSITION C.1. For a multi-dimensional Brownian motion given by (7) with equal inter-dimensional

correlation ρ= ρij , assume that only its first order Itô signature components are included in (2), and that

all true beta coefficients are positive. Then, the irrepresentable conditions I and II hold if ρ ∈ (− 1
2#A∗

1
,1),

and do not hold if ρ∈ (− 1
#A∗

1
,− 1

2#A∗
1
].

REMARK C.1. Proposition C.1 only discusses the results for ρ ∈ (− 1
#A∗

1
,1). If ρ≤− 1

#A∗
1

, then the inter-

dimensional correlation matrix for the Brownian motion is not positive definite.

Proposition C.1 demonstrates that the sufficient condition (14) is tight when the inter-dimensional corre-

lation ρ is constant and negative. Meanwhile, for ρ> 0, the irrepresentable conditions always hold but may

not satisfy (14).

C.2. Consistency of Lasso with General Predictors in Finite Sample

In this appendix, we present additional results on the consistency of Lasso with general predictors (not

necessarily signature components) in finite sample.

Consider a linear regression model with N samples and p predictors X1, . . . ,Xp given by

y=Xβ+ ε, (C.1)

where ε∈RN is a vector of independent and normally distributed white noise with mean zero and variance

σ2, X ∈ RN×p is the random design matrix with each row represents a random sample of (X1, . . . ,Xp)
⊤,

y ∈RN is the target to predict, and β ∈Rp is the vector of beta coefficients. Assume that X has full column

rank. Given a tuning parameter λ> 0, we adopt the Lasso estimator given by

β̂
N
(λ) = argmin

β̂

{∥∥∥y− X̃β̂
∥∥∥2
2
+λ

∥∥∥β̂∥∥∥
1

}
(C.2)

to identify the true predictors, where X̃ represents the standardized version of X across N samples by the

l2-norm, whose (n, j)-entry is defined by

X̃n,j =
Xn,j√∑N

m=1(Xm,j)2
/
N

, n= 1,2, . . . ,N ; j = 1,2, . . . , p.
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Therefore, the sample covariance matrix calculated using X̃ is the same as the sample correlation matrix of

X .

Denote by ∆̂ and ∆ the sample correlation matrix and the population correlation matrix of all predictors

in the Lasso regression, respectively. Because the number of samples, N , is finite, ∆̂ may deviate from ∆.

Therefore, when studying the consistency of Lasso, ∆̂ may not satisfy the irrepresentable condition even if

∆ does. Nevertheless, in this appendix, we show that ∆̂ will satisfy the irrepresentable condition with high

probability.

Our analysis aligns with existing works in high-dimensional statistics. For example, Wainwright (2009)

assumes that the predictors are normally distributed, while Cai et al. (2022) and Wüthrich and Zhu (2023)

assume a sub-Gaussian distribution. However, these results cannot be directly applied in our setup, because

the predictors in our paper are signature components, which are neither Gaussian nor sub-Gaussian.

We first introduce some notations. Denote the set of true predictors by A∗, false predictors by A∗c, the

number of true predictors by q = #A∗, the population covariance matrix of all predictors in the Lasso

regression by Σ, the population correlation matrix of all predictors in the Lasso regression by ∆, the cor-

relation matrix between predictors in sets A and B by ∆AB , and the volatility of components of ε in (C.1)

by σ. We also let β̃ be the vector containing all standardized beta coefficients of the true model whose j-th

component is given by

β̃j = βj ·

√√√√ 1

N

N∑
m=1

(Xm,j)2.

The following result shows the consistency of Lasso under the assumption that all predictors have finite

fourth moments.

THEOREM C.1. For the Lasso regression given by (C.1) and (C.2), assume that the following two condi-

tions hold:

(i) The irrepresentable condition II in Definition 4 holds for the population correlation matrix, i.e., there

exists some γ ∈ (0,1] such that
∥∥∆A∗cA∗∆−1

A∗A∗
∥∥
∞ ≤ 1− γ;

(ii) The predictors have finite fourth moments, i.e., there exists K < ∞ such that E[X4
i ] ≤ K for all

i= 1, . . . , p.

In addition, we assume that the sequence of regularization parameters {λN} satisfies λN > 4σ
γ

√
2 lnp
N

. Then,

the following properties hold with probability greater than(
1− 8p4σ4

max(σ
4
min +K)

Nξ2σ4
min

)(
1− 4e−cNλ2

N

)
for some constant c > 0.

(a) The Lasso has a unique solution β̂
N
(λN) ∈Rp with its support contained within the true support, and

satisfies ∥∥∥β̂N
(λN)− β̃

∥∥∥
∞
≤ λN

ζ(2+ 2αζ + γ)

2+ 2αζ
+

4σ√
1
2
Cmin

=: h(λN);
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(b) If in addition mini∈A∗ |β̃i|>h(λN), then sign(β̂
N
(λN)) = sign(β̃).

Here, σmin = min1≤i≤p

√
Σii, σmax = max1≤i≤p

√
Σii, α = ∥∆A∗cA∗∥∞, ζ =

∥∥∆−1
A∗A∗

∥∥
∞, Cmin =

Λmin(∆A∗A∗) = 1

∥∆−1
A∗A∗∥2

> 0, and ξ =min
{
g−1
Σ

(
γ

ζ(2+2αζ+γ)

)
, g−1

Σ

(
Cmin
2
√
p

)}
> 0, where the definition of

gΣ(·) is given by (16).

A detailed proof of Theorem C.1 can be found in Appendix E.

Appendix D: Additional Details for Simulation

This appendix provides technical details, computational cost, more numerical experiments, and robustness

checks for the simulations conducted in this paper.

D.1. More Technical Details

Throughout our simulations in the paper, we set the time index 0 = t0 < t1 < · · ·< tn = T with tk+1 − tk =

∆t= T/n for any k ∈ {0,1, . . . , n− 1} and n= 100.

Simulation of Processes. We simulate the i-th dimension of the Brownian motion W i
t , and OU process

Y i
t , by discretizing the stochastic differential equations of the processes using the Euler–Maruyama schemes

given by

• Brownian motion: W i
tk+1

=W i
tk
+
√
∆tεik, W i

0 = 0;

• OU process: Y i
tk+1

= Y i
tk
−κiY

i
tk
∆t+

√
∆tεik, Y i

0 = 0,

with εik randomly drawn from the standard normal distribution.

The i-th dimension of the random walk and AR(1) model, both denoted by Zi
t , are simulated using the

following formulas.

• Random walk: Zi
tk+1

=Zi
tk
+ eik, Zi

0 = 0;

• AR(1) model: Zi
tk+1

= ϕiZ
i
tk
+ εik, Zi

0 = 0,

with eik randomly drawn from

P(eik =+1) = P(eik =−1) = 0.5,

and εik randomly drawn from the standard normal distribution.

After simulating each dimension of the processes, we simulate the inter-dimensional correlation between

different dimensions of the processes using the Cholesky decomposition. Finally, we generate X using (7)

or (8).

In all the simulations, we set the length of the processes T = 1, and the initial values of the processes

to zero. These choices have no impact on the results because the signature of a path X is invariant under a

time reparametrization and a shift of the starting point of X (Chevyrev and Kormilitzin 2016).

Calculation of Integrals. The calculation of Itô and Stratonovich signatures requires the calculation of

Itô and Stratonovich integrals. By definition, they are computed using the following schemes.

• Itô integral:
∫ T

0
AtdBt ≈

∑n−1

k=0 Atk(Btk+1
−Btk);

• Stratonovich integral:
∫ T

0
At ◦ dBt ≈

∑n−1

k=0
1
2
(Atk +Atk+1

)(Btk+1
−Btk).
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D.2. Computational Details

• The simulations are implemented using Python 3.7.

• The simulations are run on a laptop with an Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz.

• The random seed is set to 0 for reproducibility.

• The Lasso regressions are performed using the sklearn.linear model.lars path package.

• Each individual experiment, including generating 100 paths, calculating their signatures, and perform-

ing the Lasso regression, can be completed within one second.

D.3. Impact of the Dimension of the Process and the Number of Samples

Most simulations in Section 4 of our main paper consider the case of d= 2 (dimension of the process) and

N = 100 (number of samples).

Figure D.1 shows how the consistency of Lasso varies with the dimension of the process d, with Figure

D.1(a) for the Brownian motion and Figure D.1(b) for the OU process with κ = 2. We set the number of

true predictors to be three. Other simulation setups remain the same as in Section 4.1 of the main paper.

Figure D.1 Consistency rates for the Brownian motion and the OU process with different numbers of dimensions d and different

values of inter-dimensional correlation ρ. Solid (dashed) lines correspond to the Itô (Stratonovich) signature.
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(a) Brownian motion.
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(b) OU process.

First, for the Brownian motion, the consistency rate decreases with d. This can be attributed to the fact that

the inter-dimensional correlation of the process leads to stronger correlations between signature components

as more dimensions are included. Second, for the OU process, the consistency rate increases with d because

the inter-dimensional correlation of the process is weaker than the correlation between the increments of

the OU process itself.

Figure D.2 shows the relationship between the consistency rate and the number of samples. In general,

we find that the consistency rate increases as the number of samples increases.
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Figure D.2 Consistency rates for the Brownian motion and the OU process with different numbers of samples N and different

values of inter-dimensional correlation ρ. Solid (dashed) lines correspond to the Itô (Stratonovich) signature.
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(a) Brownian motion.
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(b) OU process.

D.4. The ARIMA Process

This appendix examines the consistency of signature for the ARIMA(p, I, q) model, where p is the lag of

AR, I is the degree of differencing, and q is the lag of MA.

Figure D.3 shows how the consistency rate varies with p, q, and I . We find that the consistency rate does

not exhibit any apparent dependence on p and q, but does highly rely on I . Specifically, the consistency rate

generally decreases as I increases due to the stronger correlation between the increments of the ARIMA

processes introduced by I .

Figure D.3 Consistency rates for the ARIMA(p, I, q) with different lags of AR, p, lags of MA, q, and degrees of differencing,

I . Solid (dashed) lines correspond to the Itô (Stratonovich) signature.
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(a) Consistency rates for different p and I .
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(b) Consistency rates for different q and I .

D.5. Robustness Checks

To show the robustness of our simulations shown in Section 4 of the main paper, we present Figures D.4

and D.5, which include confidence intervals (shaded regions) for the estimated consistency rates of the

Brownian motion/random walk and OU process/AR(1) model, respectively.
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In Figures D.4 and D.5, we estimate the consistency rate by repeating the procedure described in Section

4.1 100 times, and this process is repeated 30 times to obtain the confidence interval for the estimation.

Thus, these confidence intervals are based on 30 estimations of the consistency rate, with each estimation

calculated using 100 experiments.

Figure D.4 Consistency rates for the Brownian motion and the random walk with different values of inter-dimensional correla-

tion ρ and different numbers of true predictors q. Solid (dashed) lines correspond to the Itô (Stratonovich) signature.

Shaded regions are confidence intervals of the experiments.
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(a) Brownian motion.
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(b) Random walk.

Figure D.5 Consistency rates for the OU process and the AR(1) model with different parameters (κ and 1− ϕ) and different

numbers of true predictors q. Solid (dashed) lines correspond to the Itô (Stratonovich) signature. Shaded regions

are confidence intervals of the experiments.
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(a) OU process.
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(b) AR(1) model.

We observe that the confidence intervals of the consistency rates shown in Figures D.4 and D.5 are

narrow. Moreover, the observations made in Section 4 are consistent with the results presented here, further

confirming the robustness of our findings.

Appendix E: Lemmas and Proofs

This appendix provides the proofs of all theoretical results in this article and lemmas used in the proofs.
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E.1. Lemmas

LEMMA E.1. Assume that Σ̂ and Σ are p× p positive definite matrices with diagonal entries {σ̂2
i }

p
i=1 and

{σ2
i }

p
i=1, respectively, with σmin =min1≤i≤p σi and σmax =max1≤i≤p σi. Let ∆̂ and ∆ be p× p matrices

with (i, j)-entries ∆̂ij = Σ̂ij/(σ̂iσ̂j) and ∆ij =Σij/(σiσj) for i, j = 1,2, . . . , p, respectively. For ϵ < σ2
min,

if ∥Σ̂−Σ∥∞ ≤ ϵ, we have ∥∆̂−∆∥∞ ≤ gΣ(ϵ), where gΣ(·) is given by (16).

Proof of Lemma E.1. For any i, j = 1,2, . . . , p,

|Σ̂ij −Σij| ≤ ∥Σ̂−Σ∥∞ ≤ ϵ,

which implies that

Σ̂ij ∈ (Σij − ϵ,Σij + ϵ) .

Hence, for ϵ < σ2
min,

σ̂i ∈
(√

σ2
i − ϵ,

√
σ2
i + ϵ

)
.

Now we estimate the difference between ∆ij and ∆̂ij . If ∆ij > 0,

∆ij − ∆̂ij =
Σij

σiσj

− Σ̂ij

σ̂iσ̂j

≤ Σij

σiσj

− Σij − ϵ√
σ2
i + ϵ ·

√
σ2
j + ϵ

=
Σij

√
σ2
i + ϵ

√
σ2
j + ϵ− (Σij − ϵ)σiσj

σiσj

√
σ2
i + ϵ

√
σ2
j + ϵ

≤
Σij

(√
σ2
i + ϵ

√
σ2
j + ϵ−σiσj

)
+ ϵσiσj

σ2
i σ

2
j

=

Σij ·
ϵ(σ2

i +σ2
j )+ϵ2√

σ2
i +ϵ

√
σ2
j+ϵ+σiσj

+ ϵσiσj

σ2
i σ

2
j

≤
Σij ·

ϵ(σ2
i +σ2

j )+ϵ2

2σiσj
+ ϵσiσj

σ2
i σ

2
j

=∆ij ·
ϵ(σ2

i +σ2
j )+ ϵ2

2σ2
i σ

2
j

+
ϵ

σiσj

≤∆ij ·
2ϵσ2

min + ϵ2

2σ4
min

+
ϵ

σ2
min

. (E.1)

Meanwhile,

∆̂ij −∆ij =
Σ̂ij

σ̂iσ̂j

− Σij

σiσj

≤ Σij + ϵ√
σ2
i − ϵ ·

√
σ2
j − ϵ

− Σij

σiσj

=
(Σij + ϵ)σiσj −Σij

√
σ2
i − ϵ

√
σ2
j − ϵ

σiσj

√
σ2
i − ϵ

√
σ2
j − ϵ

=
Σij ·

(
σiσj −

√
σ2
i − ϵ

√
σ2
j − ϵ

)
+ ϵσiσj

σiσj

√
σ2
i − ϵ

√
σ2
j − ϵ

=∆ij ·
ϵ(σ2

i +σ2
j )− ϵ2√

σ2
i − ϵ

√
σ2
j − ϵ

(
σiσj +

√
σ2
i − ϵ

√
σ2
j − ϵ

) +
ϵ√

σ2
i − ϵ

√
σ2
j − ϵ

≤∆ij ·
ϵ(σ2

i +σ2
j )√

σ2
i − ϵ

√
σ2
j − ϵ

(
σiσj +

√
σ2
i − ϵ

√
σ2
j − ϵ

) +
ϵ√

σ2
i − ϵ

√
σ2
j − ϵ

≤∆ij ·
2ϵσ2

min√
σ2
min − ϵ

√
σ2
min − ϵ

(
σ2
min +

√
σ2
min − ϵ

√
σ2
min − ϵ

) +
ϵ√

σ2
min − ϵ

√
σ2
min − ϵ

=∆ij ·
2ϵσ2

min

(σ2
min − ϵ) (2σ2

min − ϵ)
+

ϵ

σ2
min − ϵ

. (E.2)
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Combining (E.1) and (E.2), we see

|∆̂ij −∆ij| ≤∆ij ·
2ϵσ2

min

(σ2
min − ϵ) (2σ2

min − ϵ)
+

ϵ

σ2
min − ϵ

.

For the case of ∆ij ≤ 0, one can similarly establish

|∆̂ij −∆ij| ≤ |∆ij| ·
2ϵσ2

min

(σ2
min − ϵ) (2σ2

min − ϵ)
+

ϵ

σ2
min − ϵ

.

Hence,

∑
1≤j≤p

|∆̂ij −∆ij|=
∑

1≤j≤p,j ̸=i

|∆̂ij −∆ij| ≤
2ϵσ2

min

(σ2
min − ϵ) (2σ2

min − ϵ)
·
∑

1≤j≤p,j ̸=i

|∆ij|+
(p− 1)ϵ

σ2
min − ϵ

≤ 2ϵσ2
min(p− 1)ρ

(σ2
min − ϵ) (2σ2

min − ϵ)
+

(p− 1)ϵ

σ2
min − ϵ

.

Finally,

∥∆̂−∆∥∞ ≤ 2ϵσ2
min(p− 1)ρ

(σ2
min − ϵ) (2σ2

min − ϵ)
+

(p− 1)ϵ

σ2
min − ϵ

= gΣ(ϵ). □

LEMMA E.2. Let A and B be invertible p× p matrices satisfying ∥I −A−1B∥< 1, where I is an p× p

identity matrix. Then,

∥A−1 −B−1∥ ≤ ∥A−1∥2∥A−B∥
1−∥A−1∥∥A−B∥

.

Here, ∥ · ∥ is any specific sub-multiplicative matrix norm.

Proof of Lemma E.2. Since ∥I − A−1B∥ < 1, we have B−1A = (A−1B)−1 =
∑∞

n=0(I − A−1B)n.

Thus, B−1 =
∑∞

n=0(I −A−1B)nA−1. Hence,

∥A−1 −B−1∥=

∥∥∥∥∥I −
∞∑

n=0

(I −A−1B)nA−1

∥∥∥∥∥=
∥∥∥∥∥

∞∑
n=1

(I −A−1B)nA−1

∥∥∥∥∥
≤ ∥A−1∥ ·

∞∑
n=1

∥I −A−1B∥n = ∥A−1∥ · ∥I −A−1B∥
1−∥I −A−1B∥

= ∥A−1∥ · ∥A−1(A−B)∥
1−∥A−1(A−B)∥

≤ ∥A−1∥ · ∥A−1∥ · ∥A−B∥
1−∥A−1∥ · ∥A−B∥

=
∥A−1∥2∥A−B∥

1−∥A−1∥∥A−B∥
. □

LEMMA E.3. Let X be a d-dimensional Brownian motion given by (7) or an OU process given by (8). For

any k= 1,2, . . . , there exists a constant λk <∞ such that for all 0≤ t≤ T and i1, . . . , ik ∈ {1,2, . . . , d},

E
(
S(X)

i1,...,ik,I
t

)4

≤ λk, (E.3)

and

E
(
S(X)

i1,...,ik,S
t

)4

≤ λk. (E.4)
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Proof of Lemma E.3. The proofs for OU process and Brownian motion are similar, and we will focus

on the case of the Brownian motion. We first prove (E.3) by induction. Let σmax =maxj=1,...,d σj . When

k= 1,

E
(
S(X)i1,It

)4
=E(X i1

t )4 = 3σ4
i1
t2 ≤ 3σ4

maxT
2 =: λ1 <∞.

Now, for n > 1, assume that (E.3) holds for all k < n. Then, for k = n, the quadratic variation of the Itô

signature component satisfies

E
([
S(X)i1,...,in,I

]
t

)2
=E

(∫ t

0

(
S(X)i1,...,in−1,I

s

)2
σ2
in
ds

)2

= σ4
in
·E
∫ t

0

∫ t

0

(
S(X)i1,...,in−1,I

w

)2 (
S(X)i1,...,in−1,I

s

)2
dwds

= σ4
in
·
∫ t

0

∫ t

0

E
((

S(X)i1,...,in−1,I
w

)2 (
S(X)i1,...,in−1,I

s

)2)
dwds

≤ σ4
in
·
∫ t

0

∫ t

0

√
E
(
S(X)

i1,...,in−1,I
w

)4

·E
(
S(X)

i1,...,in−1,I
s

)4

dwds

≤ σ4
in
·
∫ t

0

∫ t

0

√
λn−1 ·λn−1dwds= λn−1σ

4
in
t2.

Thus, by the Burkholder–Davis–Gundy inequality, there exists a constant c <∞ such that for all 0≤ t≤ T

and i1, . . . , in ∈ {1,2, . . . , d},

E
(
S(X)i1,...,in,It

)4
≤ c ·E

([
S(X)i1,...,in,I

]
t

)2 ≤ cλn−1σ
4
in
t2 ≤ cλn−1σ

4
maxT

2 =: λn <∞.

This implies that (E.3) holds when k= n, which completes the proof of (E.3).

Now we prove (E.4). By the relationship between the Stratonovich integral and the Itô integral, we have

S(X)
i1,...,ik,S
t =

∫ t

0

S(X)
i1,...,ik−1,S
s ◦ dX ik

s

=

∫ t

0

S(X)
i1,...,ik−1,S
s dX ik

s +
1

2

[
S(X)i1,...,ik−1,S,X ik

]
t
,

where [A,B]t represents the quadratic covariation between processes A and B from time 0 to t. Further-

more, by properties of the quadratic covariation,

[
S(X)i1,...,ik−1,S,X ik

]
t
=

∫ t

0

S(X)
i1,...,ik−2,S
s d

[
X ik−1 ,X ik

]
s

= ρik−1ikσik−1
σik

∫ t

0

S(X)
i1,...,ik−2,S
s ds.

Therefore,

S(X)
i1,...,ik,S
t =

∫ t

0

S(X)
i1,...,ik−1,S
s dX ik

s +
1

2
ρik−1ikσik−1

σik

∫ t

0

S(X)
i1,...,ik−2,S
s ds. (E.5)
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We prove (E.4) by induction. Let σmax =maxj=1,...,d σj . When k= 1, we have

E
(
S(X)i1,St

)4
=E

(
S(X)i1,It

)4
=E(X i1

t )4 = 3σ4
i1
t2 ≤ 3σ4

maxT
2 =: λ1 <∞.

When k= 2, by (E.3) and (E.5), there exists a constant C such that

E
(
S(X)i1,i2,St

)4
=E

(
S(X)i1,i2,It +

1

2
ρi1i2σi1σi2t

)4

≤ 8E
(
S(X)i1,i2,It

)4
+

1

2
ρ4i1i2σ

4
i1
σ4
i2
t4

≤ 8C +
1

2
σ8
maxT

4 =: λ2 <∞.

For n> 2, assume that (E.4) holds for all k < n. Thus, for k= n, we have

E
([∫ t

0

S(X)i1,...,in−1,S
s dX in

s

]
t

)2

=E
(∫ t

0

(
S(X)i1,...,in−1,S

s

)2
σ2
in
ds

)2

= σ4
in
·E
∫ t

0

∫ t

0

(
S(X)i1,...,in−1,S

w

)2 (
S(X)i1,...,in−1,S

s

)2
dwds

= σ4
in
·
∫ t

0

∫ t

0

E
((

S(X)i1,...,in−1,S
w

)2 (
S(X)i1,...,in−1,S

s

)2)
dwds

≤ σ4
in
·
∫ t

0

∫ t

0

√
E
(
S(X)

i1,...,in−1,S
w

)4

·E
(
S(X)

i1,...,in−1,S
s

)4

dwds

≤ σ4
in
·
∫ t

0

∫ t

0

√
λn−1 ·λn−1dwds= λn−1σ

4
in
t2.

Hence, by the Burkholder–Davis–Gundy inequality, there exists a constant c <∞ such that for all 0≤ t≤ T

and i1, . . . , in ∈ {1,2, . . . , d},

E
(∫ t

0

S(X)i1,...,in−1,S
s dX in

s

)4

≤ c ·E
([∫ t

0

S(X)i1,...,in−1,S
s dX in

s

]
t

)2

≤ cλn−1σ
4
in
t2.

In addition, we have

E
(∫ t

0

S(X)i1,...,in−2,S
s ds

)4

=E
∫ t

0

∫ t

0

∫ t

0

∫ t

0

S(X)i1,...,in−2,S
w S(X)i1,...,in−2,S

s S(X)i1,...,in−2,S
u S(X)i1,...,in−2,S

v dwdsdudv

=

∫ t

0

∫ t

0

∫ t

0

∫ t

0

E
(
S(X)i1,...,in−2,S

w S(X)i1,...,in−2,S
s S(X)i1,...,in−2,S

u S(X)i1,...,in−2,S
v

)
dwdsdudv

≤
∫ t

0

∫ t

0

∫ t

0

∫ t

0

1

4

(
E
(
S(X)i1,...,in−2,S

w

)4
+E

(
S(X)i1,...,in−2,S

s

)4
+E

(
S(X)i1,...,in−2,S

u

)4
+E

(
S(X)i1,...,in−2,S

v

)4 )
dwdsdudv

≤
∫ t

0

∫ t

0

∫ t

0

∫ t

0

1

4
· 4λn−2dwdsdudv= λn−2t

4.

Therefore, by (E.5),

E
(
S(X)i1,...,in,St

)4
≤ 8E

(∫ t

0

S(X)i1,...,in−1,S
s dX in

s

)4

+
1

2
ρ4in−1in

σ4
in−1

σ4
in
E
(∫ t

0

S(X)i1,...,in−2,S
s ds

)4
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≤ 8cλn−1σ
4
in
t2 +

1

2
ρ4in−1in

σ4
in−1

σ4
in
λn−2t

4

≤ 8cλn−1σ
4
maxT

2 +
1

2
σ8
maxλn−2T

4 =: λn <∞.

This implies that (E.4) holds when k= n, which completes the proof. □

LEMMA E.4. For the Lasso regression given by (C.1) and (C.2), assume that conditions (i) and (ii) in

Theorem C.1 hold. Then,

P
(
Λmin(∆̂A∗A∗)≥ 1

2
Cmin

)
≥ 1− 4p4σ4

max(σ
4
min +K)

Nξ2σ4
min

holds with ξ = g−1
Σ

(
Cmin
2
√
p

)
> 0, and the definition of gΣ(·) and other notations the same as in Theorem C.1.

Proof of Lemma E.4. Condition (ii) implies that

E
[
X4

i

Σ2
ii

]
≤E

[
X4

i

σ4
min

]
≤ K

σ4
min

.

Hence, by Ravikumar et al. (2011, Lemma 2), for any i, j ∈ {1, . . . , p},

P
(∣∣∣Σ̂ij −Σij

∣∣∣> ξ

p

)
≤

4p2σ4
max(1+

K
σ4
min

)

Nξ2
.

Thus,

P

(
p∑

j=1

∣∣∣Σ̂ij −Σij

∣∣∣≤ ξ

)
≥ 1−

4p3σ4
max(1+

K
σ4
min

)

Nξ2
,

which further implies that

P
(
∥Σ̂−Σ∥∞ ≤ ξ

)
≥ 1−

4p4σ4
max(1+

K
σ4
min

)

Nξ2
= 1− 4p4σ4

max(σ
4
min +K)

Nξ2σ4
min

. (E.6)

Therefore, by Lemma E.1, we have

P
(
∥∆̂−∆∥2 ≤

Cmin

2

)
≥ P

(
∥∆̂−∆∥∞ ≤ Cmin

2
√
p

)
≥ P

(
∥Σ̂−Σ∥∞ ≤ g−1

Σ

(
Cmin

2
√
p

))
≥ P

(
∥Σ̂−Σ∥∞ ≤ ξ

)
≥ 1− 4p4σ4

max(σ
4
min +K)

Nξ2σ4
min

.

Now, whenever ∥∆̂−∆∥2 ≤ Cmin
2

holds, we have

∥I −∆−1
A∗A∗∆̂A∗A∗∥2 ≤ ∥∆−1

A∗A∗∥2 · ∥∆A∗A∗ − ∆̂A∗A∗∥2

=
1

Cmin

· ∥∆A∗A∗ − ∆̂A∗A∗∥2 ≤
1

Cmin

· ∥∆̂−∆∥2 ≤
1

2
< 1,
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which implies that

∥∆̂−1
A∗A∗∥2 ≤ ∥∆̂−1

A∗A∗ −∆−1
A∗A∗∥2 + ∥∆−1

A∗A∗∥2 = ∥∆̂−1
A∗A∗ −∆−1

A∗A∗∥2 +
1

Cmin

≤
1

C2
min

· Cmin
2

1− 1
Cmin

· Cmin
2

+
1

Cmin

=
2

Cmin

,

where the second inequality holds because of Lemma E.2. Therefore, ∥∆̂−∆∥2 ≤ Cmin
2

implies

Λmin(∆̂A∗A∗) =
1

∥∆̂−1
A∗A∗∥2

≥ 1

2
Cmin.

Thus,

P
(
Λmin(∆̂A∗A∗)≥ 1

2
Cmin

)
≥ 1− 4p4σ4

max(σ
4
min +K)

Nξ2σ4
min

,

which completes the proof. □

LEMMA E.5. For the Lasso regression given by (C.1) and (C.2), assume that conditions (i) and (ii) in

Theorem C.1 hold. Then,

P
(∥∥∥∆̂A∗cA∗∆̂−1

A∗A∗

∥∥∥
∞
≤ 1− γ

2

)
≥ 1− 4p4σ4

max(σ
4
min +K)

Nξ2σ4
min

holds with ξ = g−1
Σ

(
γ

ζ(2+2αζ+γ)

)
> 0, and the definition of gΣ(·) and other notations the same as in Theorem

C.1.

Proof of Lemma E.5. By Lemma E.1,

P
(
∥∆̂−∆∥∞ ≤ γ

ζ(2+ 2αζ + γ)

)
≥ P

(
∥Σ̂−Σ∥∞ ≤ g−1

Σ

(
γ

ζ(2+ 2αζ + γ)

))
≥ P

(
∥Σ̂−Σ∥∞ ≤ ξ

)
≥ 1− 4p4σ4

max(σ
4
min +K)

Nξ2σ4
min

,

where the last inequality holds by (E.6). Whenever ∥∆̂−∆∥∞ ≤ γ
ζ(2+2αζ+γ)

holds, we have

∥∆̂A∗cA∗ −∆A∗cA∗∥∞ ≤ ∥∆̂−∆∥∞ ≤ γ

ζ(2+ 2αζ + γ)
,

∥∆̂A∗A∗ −∆A∗A∗∥∞ ≤ ∥∆̂−∆∥∞ ≤ γ

ζ(2+ 2αζ + γ)
,

∥∆̂A∗cA∗∥∞ ≤ ∥∆A∗cA∗∥∞ + ∥∆̂A∗cA∗ −∆A∗cA∗∥∞ ≤ α+
γ

ζ(2+ 2αζ + γ)
,

and

∥I −∆−1
A∗A∗∆̂A∗A∗∥∞ ≤ ∥∆−1

A∗A∗∥∞ · ∥∆A∗A∗ − ∆̂A∗A∗∥∞ = ζ · ∥∆A∗A∗ − ∆̂A∗A∗∥∞

≤ ζ · ∥∆̂−∆∥∞ ≤ γ

2+2αζ + γ
< 1.
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Therefore, applying Lemma E.2 yields

∥∆̂−1
A∗A∗ −∆−1

A∗A∗∥∞ ≤ ∥∆−1
A∗A∗∥2∞ · ∥∆̂A∗A∗ −∆A∗A∗∥∞

1−∥∆−1
A∗A∗∥∞ · ∥∆̂A∗A∗ −∆A∗A∗∥∞

≤
ζ2 · γ

ζ(2+2αζ+γ)

1− ζ · γ
ζ(2+2αζ+γ)

=
γζ

2+2αζ
,

which further implies that

∥∆̂−1
A∗A∗∥∞ ≤ ∥∆−1

A∗A∗∥∞ + ∥∆̂−1
A∗A∗ −∆−1

A∗A∗∥∞ ≤ ζ +
γζ

2+2αζ
=

ζ(2+ 2αζ + γ)

2+ 2αζ
.

Hence, ∥∆̂−∆∥∞ ≤ γ
ζ(2+2αζ+γ)

implies that∥∥∥∆̂A∗cA∗∆̂−1
A∗A∗

∥∥∥
∞
≤
∥∥∥∆̂A∗cA∗∆̂−1

A∗A∗ − ∆̂A∗cA∗∆−1
A∗A∗

∥∥∥
∞
+∥∥∥∆̂A∗cA∗∆−1

A∗A∗ −∆A∗cA∗∆−1
A∗A∗

∥∥∥
∞
+
∥∥∆A∗cA∗∆−1

A∗A∗
∥∥
∞

≤∥∆̂A∗cA∗∥∞ · ∥∆̂−1
A∗A∗ −∆−1

A∗A∗∥∞+

∥∆−1
A∗A∗∥∞ · ∥∆̂A∗cA∗ −∆A∗cA∗∥∞ +1− γ

≤
(
α+

γ

ζ(2+ 2αζ + γ)

)
· γζ

2+2αζ
+ ζ · γ

ζ(2+ 2αζ + γ)
+ 1− γ

=1− γ

2
.

Therefore,

P
(∥∥∥∆̂A∗cA∗∆̂−1

A∗A∗

∥∥∥
∞
≤ 1− γ

2

)
≥ 1− 4p4σ4

max(σ
4
min +K)

Nξ2σ4
min

. □

E.2. Proofs

Proof of Theorem 2. For any θ > 0,

P(|La −Lb|> η)≥P

(∣∣∣∣∣
p∑

i=1

ciSi

∣∣∣∣∣> η,∥S∥2 < θ
√
p∥Σ∥2

)

=P

(∣∣∣∣∣
p∑

i=1

ciSi

∣∣∣∣∣> η
∣∣∣∥S∥2 < θ

√
p∥Σ∥2

)
·P
(
∥S∥2 < θ

√
p∥Σ∥2

)
. (E.7)

By Markov’s inequality,

P
(
∥S∥2 ≤ θ

√
p∥Σ∥2

)
≥ 1−P

(
∥S∥2 > θ

√
p∥Σ∥2

)
≥ 1− E∥S∥2

θ
√
p∥Σ∥2

≥ 1−
√
E∥S∥22

θ
√

p∥Σ∥2
= 1−

√
tr(Σ)

θ
√
p∥Σ∥2

≥ 1−
√
p∥Σ∥2

θ
√
p∥Σ∥2

= 1− 1

θ
. (E.8)

In addition, applying Markov’s inequality to X = θ∥C∥∞p
√
∥Σ∥2 − |

∑p

i=1 ciSi| for a sufficiently small

η > 0 yields

P

(∣∣∣∣∣
p∑

i=1

ciSi

∣∣∣∣∣≤ η
∣∣∣∥S∥2 ≤ θ

√
p∥Σ∥2

)
= P

(
X ≥ θ∥C∥∞p

√
∥Σ∥2 − η

∣∣∣∥S∥2 ≤ θ
√
p∥Σ∥2

)

≤
E
[
X
∣∣∣∥S∥2 ≤ θ

√
p∥Σ∥2

]
θ∥C∥∞p

√
∥Σ∥2 − η

=
θ∥C∥∞p

√
∥Σ∥2 −E

[
|
∑p

i=1 ciSi|
∣∣∣∥S∥2 ≤ θ

√
p∥Σ∥2

]
θ∥C∥∞p

√
∥Σ∥2 − η

.
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Hence,

P

(∣∣∣∣∣
p∑

i=1

ciSi

∣∣∣∣∣> η
∣∣∣∥S∥2 ≤ θ

√
p∥Σ∥2

)
≥

E
[
|
∑p

i=1 ciSi|
∣∣∣∥S∥2 ≤ θ

√
p∥Σ∥2

]
− η

θ∥C∥∞p
√
∥Σ∥2 − η

. (E.9)

Under the condition of ∥S∥2 ≤ θ
√
p∥Σ∥2,∣∣∣∣∣

p∑
i=1

ciSi

∣∣∣∣∣≤ ∥C∥∞ · ∥S∥1 ≤ ∥C∥∞ · √p∥S∥2 ≤ θ∥C∥∞p
√
∥Σ∥2,

and by multiplying both sides of the above inequality by |
∑p

i=1 ciSi| and taking expectations, we obtain

E

[∣∣∣∣∣
p∑

i=1

ciSi

∣∣∣∣∣ ∣∣∣∥S∥2 ≤ θ
√

p∥Σ∥2

]
≥

E
[
(
∑p

i=1 ciSi)
2
∣∣∣∥S∥2 ≤ θ

√
p∥Σ∥2

]
θ∥C∥∞p

√
∥Σ∥2

. (E.10)

Thus, by combining (E.7), (E.8), (E.9), and (E.10), we obtain

P(|La −Lb|> η)≥
(
1− 1

θ

)
·

E
[
(
∑p

i=1 ciSi)
2

∣∣∣∥S∥2≤θ
√

p∥Σ∥2

]
θ∥C∥∞p

√
∥Σ∥2

− η

θ∥C∥∞p
√
∥Σ∥2 − η

.

When θ is sufficiently large, E
[
(
∑p

i=1 ciSi)
2
∣∣∣∥S∥2 ≤ θ

√
p∥Σ∥2

]
> 0 because the distribution of S is non-

degenerate. Therefore, (5) holds. Furthermore, (6) is a direct result of the triangle inequality, which com-

pletes the proof. □

Proof of Proposition 1. First, we have

E
[
S(X)i1,...,in,It

]
=E

[∫ t

0

S(X)i1,...,in−1
s dX in

s

]
= 0 (E.11)

Next we prove E
[
S(X)i1,...,in,It S(X)j1,...,jm,I

t

]
= 0 for m ̸= n by induction. Without loss of generality,

we assume that m>n. When n= 1, for any m> 1, we have

E
[
S(X)i1,It S(X)j1,...,jm,I

t

]
=E

[(∫ t

0

dX i1
s

)(∫ t

0

S(X)j1,...,jm−1
s dXjm

s

)]
=

∫ t

0

E
[
S(X)j1,...,jm−1,I

s

]
ρi1jmσi1σjmds= 0,

where the second equality uses the Itô isometry and the third equality uses (E.11). Now assume

E
[
S(X)i1,...,in,It S(X)j1,...,jm,I

t

]
= 0 for any m>n. Then,

E
[
S(X)

i1,...,in+1,I
t S(X)

j1,...,jm+1,I
t

]
=E
[(∫ t

0

S(X)i1,...,in,It dX in+1
s

)(∫ t

0

S(X)j1,...,jm,I
s dXjm+1

s

)]
=

∫ t

0

E
[
S(X)

i1,...,ik,I
t S(X)j1,...,jm,I

s

]
ρin+1jm+1

σin+1
σjm+1

ds= 0.
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This proves E
[
S(X)i1,...,in,It S(X)j1,...,jm,I

t

]
= 0.

We finally prove E
[
S(X)i1,...,in,It S(X)j1,...,jn,It

]
= tn

n!

∏n

k=1 ρikjkσikσjk by induction. When n= 1,

E
[
S(X)i1,It S(X)j1,It

]
=E
[(∫ t

0

dX i1
s

)(∫ t

0

dXj1
s

)]
=

∫ t

0

ρi1j1σi1σj1ds= tρi1j1σi1σj1 .

Now, assume E
[
S(X)i1,...,in,It S(X)j1,...,jn,It

]
= tn

n!

∏n

k=1 ρikjkσikσjk , then

E
[
S(X)

i1,...,in+1,I
t S(X)

j1,...,jn+1,I
t

]
=E
[(∫ t

0

S(X)i1,...,in,Is dX in+1
s

)(∫ t

0

S(X)j1,...,jn,Is dXjn+1
s

)]
=

∫ t

0

E
[
S(X)i1,...,in,Is S(X)j1,...,jn,Is

]
ρin+1jn+1

σin+1
σjn+1

ds

=

∫ t

0

(
sn

n!

n∏
k=1

ρikjkσikσjk

)
ρin+1jn+1

σin+1
σjn+1

ds=
tn+1

(n+1)!

n+1∏
k=1

ρikjkσikσjk .

Therefore, E
[
S(X)i1,...,in,It S(X)j1,...,jn,It

]
= tn

n!

∏n

k=1 ρikjkσikσjk . □

Proof of Theorem 3. By Proposition 1, for any n,

E
[
S(X)i1,...,in,It S(X)j1,...,jn,It

]√
E
[
S(X)i1,...,in,It

]2
E
[
S(X)j1,...,jn,It

]2 =
tn

n!

∏n

k=1 ρikjkσikσjk√
tn

n!

∏n

k=1 σikσik ·
tn

n!

∏n

k=1 σjkσjk

=

n∏
k=1

ρikjk ,

implying
E
[
S(X)i1,It S(X)j1,It

]√
E
[
S(X)i1,It

]2
E
[
S(X)j1,It

]2 = ρi1j1

and

E
[
S(X)i1,...,in,It S(X)j1,...,jn,It

]√
E
[
S(X)i1,...,in,It

]2
E
[
S(X)j1,...,jn,It

]2 = ρinjn ·
E
[
S(X)

i1,...,in−1,I
t S(X)

j1,...,jn−1,I
t

]
√

E
[
S(X)

i1,...,in−1,I
t

]2
E
[
S(X)

j1,...,jn−1,I
t

]2 .
This proves the Kronecker product structure given by (10).

Proposition 1 also implies that, for any m ̸= n,

E
[
S(X)i1,...,in,It S(X)j1,...,jm,I

t

]√
E
[
S(X)i1,...,in,It

]2
E
[
S(X)j1,...,jm,I

t

]2 = 0.

This proves that Itô signatures of different orders are uncorrelated and, therefore, the correlation matrix is

block diagonal. □

Proof of Proposition 2. Equations

E
[
S(X)

i1,...,i2n−1,S
t

]
= 0
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and

E
[
S(X)i1,...,i2n,St S(X)

j1,...,j2m−1,S
t

]
= 0

can be proven using a similar approach to the proof of Theorem 4. Now we prove

E
[
S(X)i1,...,i2n,St

]
=

1

2n
tn

n!

n∏
k=1

ρi2k−1i2k

2n∏
k=1

σik (E.12)

by induction. If n= 0, (E.12) holds because of (B.3) in Proposition B.1. Now we assume that (E.12) holds

for n= j. Then, when n= j+1, by Proposition B.1,

E
[
S(X)

i1,...,i2(j+1),S

t

]
=
1

2
ρi2j+1i2j+2

σi2j+1
σi2j+2

∫ t

0

1

2j
sj

j!

j∏
k=1

ρi2k−1i2k

2j∏
k=1

σikds

=
1

2j+1

tj+1

(j+1)!

j+1∏
k=1

ρi2k−1i2k

2(j+1)∏
k=1

σik .

Therefore, (E.12) holds. □

Proof of Theorem 4. For the Stratonovich signature of a Brownian motion, this is a direct corollary of

Proposition 2. For both the Itô and Stratonovich signatures of an OU process, we only need to prove that,

for an odd number m and an even number n, we have

E
[
S(X)i1,...,imt S(X)j1,...,jnt

]
= 0

for any i1, . . . , im and j1, . . . , jn taking values in {1,2, . . . , d}. Here the signatures can be defined in the

sense of either Itô or Stratonovich.

Consider the reflected OU process, X̌t = −Xt. By definition, X̌t is also an OU process with the same

mean reversion parameter. Therefore, the signatures of X̌t and Xt should have the same distribution. In

particular, we have

E
[
S(X̌)i1,...,imt S(X̌)j1,...,jnt

]
=E

[
S(X)i1,...,imt S(X)j1,...,jnt

]
. (E.13)

Now we consider the definition of the signature

S(X)i1,...,imt =

∫
0<t1<···<tm<t

dX i1
t1
· · ·dX im

tk
,

where the integral can be defined in the sense of either Itô or Stratonovich. We therefore have

S(X̌)i1,...,imt = S(−X)i1,...,imt =

∫
0<t1<···<tm<t

d(−X i1
t1
) · · ·d(−X im

tk
)

= (−1)m
∫
0<t1<···<tm<t

dX i1
t1
· · ·dX im

tk
= (−1)mS(X)i1,...,imt .

Similarly, we have

S(X̌)j1,...,jnt = (−1)nS(X)j1,...,jnt .
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Therefore,

=−E
[
S(X)i1,...,imt S(X)j1,...,jnt

]
,

and combining this with (E.13) leads to the result. □

Proof of Theorem 5. Note that, for a block diagonal correlation matrix ∆, the irrepresentable conditions

given by Definition 4 hold if and only if they hold for each block. Thus, the first necessary and sufficient

condition for the irrepresentable conditions holds due to Theorem 3. The second sufficient condition holds

due to (E.18) in the proof of Theorem 7 because ρ< 1
2qmax−1

implies γ > 0. This completes the proof. □

Proof of Theorem 6. Note that, for a block diagonal correlation matrix ∆, the irrepresentable conditions

given by Definition 4 hold if and only if they hold for each block. Thus, this result holds because of Theorem

4. □

Proof of Theorem 7. We use Theorem C.1 to obtain the result. Lemma E.3 implies that the finite fourth-

moment condition for the Itô signature of Brownian motion holds. By Theorem 3, the correlation matrix of

the Itô signature of Brownian motion exhibits a block-diagonal structure

∆1 =diag{Ω0,Ω1,Ω2, . . . ,ΩK},

whose diagonal blocks Ωk are given by

Ωk =Ω⊗Ω⊗ · · ·⊗Ω︸ ︷︷ ︸
k

, k= 1,2, . . . ,K,

and Ω0 = 1. Because ρ=maxi ̸=j |ρij|, for any k = 1,2, . . . ,K, we have maxi ̸=j {|Ωk,ij|} ≤ ρ, where Ωk,ij

is the (i, j)-entry of Ωk. Hence,

∥Ωk,A∗c
k

A∗
k
∥∞ ≤#A∗

k · ρ≤ qmaxρ (E.14)

and

∥Ωk,A∗
k
A∗

k
∥2 ≤

√
#A∗

k · ∥Ωk,A∗
k
A∗

k
∥∞ ≤

√
#A∗

k · (1+ (#A∗
k − 1)ρ)≤√

qmax (1+ (qmax − 1)ρ) . (E.15)

Let X = (X1, . . . ,X#A∗
k
)⊤ ∈R#A∗

k be any vector of constants satisfying ∥X∥∞ = 1. Without loss of gen-

erality, we assume X1 = 1. Therefore,

∥Ωk,A∗A∗X∥∞ ≥ |(Ωk,A∗A∗)1,1X1 + · · ·+(Ωk,A∗A∗)1,#A∗
k
X#A∗

k
|

= |1+ (Ωk,A∗A∗)1,2X2 + · · ·+(Ωk,A∗A∗)1,#A∗
k
X#A∗

k
|

≥ 1− |(Ωk,A∗A∗)1,2X2| − · · · − |(Ωk,A∗A∗)1,#A∗
k
X#A∗

k
|

≥ 1− (#A∗
k − 1)ρ≥ 1− (qmax − 1)ρ,



Guo et al.: On Consistency of Signature Using Lasso
Article submitted to Operations Research 25

which implies that

∥Ω−1
k,A∗A∗∥∞ =

1

min∥X∥∞=1 ∥Ωk,A∗A∗X∥∞
≤ 1

1− (qmax − 1)ρ
, (E.16)

∥Ωk,A∗cA∗Ω−1
k,A∗A∗∥∞ ≤ ∥Ωk,A∗cA∗∥∞ · ∥Ω−1

k,A∗A∗∥∞ ≤ qmaxρ

1− (qmax − 1)ρ
. (E.17)

Equations (E.14), (E.15), (E.16), and (E.17) lead to the parameters for Theorem C.1 given by

α= ∥∆A∗cA∗∥∞ = max
1≤k≤K

∥Ωk,A∗cA∗∥∞ ≤ qmaxρ,

ζ =
∥∥∆−1

A∗A∗
∥∥
∞ = max

1≤k≤K

∥∥Ω−1
k,A∗A∗

∥∥
∞ ≤ 1

1− (qmax − 1)ρ
,

Cmin =Λmin(∆A∗A∗) =
1

∥∆−1
A∗A∗∥2

=
1

max1≤k≤K ∥Ω−1
k,A∗A∗∥2

≥ 1

max1≤k≤K
√
qmax∥Ω−1

k,A∗A∗∥∞
≥ 1− (qmax − 1)ρ

√
qmax

,

γ = min
1≤k≤K

{
1−

∥∥Ωk,A∗cA∗Ω−1
k,A∗A∗

∥∥
∞

}
≥ 1− (2qmax − 1)ρ

1− (qmax − 1)ρ
. (E.18)

Plugging these into Theorem C.1 leads to the result. □

Proof of Theorem 8. Theorem 4 implies that the correlation structure can be represented by

diag{Ψodd,Ψeven}. Lemma E.3 implies that the finite fourth-moment condition for Stratonovich signature

of Brownian motion holds, while Lemma E.3 implies that the finite fourth-moment condition for both Itô

and Stratonovich signature of OU process holds. Combining these with Theorem C.1 leads to the result.

□

Proof of Proposition B.1. For any l, t≥ 0 and m,n= 0,1, . . . , define

fn,m(l, t) :=E
[
S(X)i1,...,in,Sl S(X)j1,...,jm,S

t

]
,

gn,m(l, t) :=E
[
S(X)i1,...,in,Sl

∫ t

0

S(X)j1,...,jm−1,S
s dXjm

s

]
.

Then, by (E.5) in the proof of Lemma E.3 and Fubini’s theorem,

fn,m(l, t) =E
[
S(X)i1,...,in,Sl S(X)j1,...,jm,S

t

]
=E
[
S(X)i1,...,in,Sl

(∫ t

0

S(X)j1,...,jm−1,S
s dXjm

s +
1

2
ρjm−1jmσjm−1

σjm

∫ t

0

S(X)j1,...,jm−2,S
s ds

)]
=gn,m(l, t)+

1

2
ρjm−1jmσjm−1

σjmE
[
S(X)i1,...,in,Sl

∫ t

0

S(X)j1,...,jm−2,S
s ds

]
=gn,m(l, t)+

1

2
ρjm−1jmσjm−1

σjm

∫ t

0

E
[
S(X)i1,...,in,Sl S(X)j1,...,jm−2,S

s

]
ds

=gn,m(l, t)+
1

2
ρjm−1jmσjm−1

σjm

∫ t

0

fn,m−2(l, s)ds.
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This proves (B.1) and (B.5). In addition, by Itô isometry and Fubini’s theorem,

gn,m(l, t) =E
[
S(X)i1,...,in,Sl

∫ t

0

S(X)j1,...,jm−1,S
s dXjm

s

]
=E

[(∫ l

0

S(X)i1,...,in−1,S
s dX in

s +
1

2
ρin−1inσin−1

σin

∫ l

0

S(X)i1,...,in−2,S
s ds

)

·
∫ t

0

S(X)j1,...,jm−1,S
s dXjm

s

]

=E
[∫ l

0

S(X)i1,...,in−1,S
s dX in

s

∫ t

0

S(X)j1,...,jm−1,S
s dXjm

s

]
+

1

2
ρin−1inσin−1

σinE
[∫ l

0

S(X)i1,...,in−2,S
s ds

∫ t

0

S(X)j1,...,jm−1,S
s dXjm

s

]
=ρinjmσinσjm

∫ l∧t

0

E
[
S(X)i1,...,in−1,S

s S(X)j1,...,jm−1,S
s

]
ds

+
1

2
ρin−1inσin−1

σin

∫ l

0

E
[
S(X)i1,...,in−2,S

s

∫ t

0

S(X)j1,...,jm−1,S
u dXjm

u

]
ds

=ρinjmσinσjm

∫ l∧t

0

fn−1,m−1(s, s)ds+
1

2
ρin−1inσin−1

σin

∫ l

0

gn−2,m(s, t)ds.

This proves (B.2) and (B.6).

Now we prove the initial conditions. First, (B.3) follows from the definition of 0-th order of signature.

Second, (B.4) follows from the property of Itô integral

g0,2m(l, t) =E
[∫ t

0

S(X)j1,...,j2m−1,S
s dXj2m

s

]
= 0.

Third,

f1,1(l, t) =E
[
S(X)i1,Sl S(X)j1,St

]
=E

[∫ l

0

1 ◦ dX i1
s

∫ t

0

1 ◦ dXj1
s

]
=E

[
X i1

l Xj1
t

]
= ρi1j1σi1σj1(l∧ t),

which proves (B.7). Fourth, by Itô isometry,

g1,2m−1(l, t) =E
[
S(X)i1,Sl

∫ t

0

S(X)j1,...,j2m−2,S
s dXj2m−1

s

]
=E

[∫ l

0

1 ◦ dX i1
s

∫ t

0

S(X)j1,...,j2m−2,S
s dXj2m−1

s

]
=E

[∫ l

0

dX i1
s

∫ t

0

S(X)j1,...,j2m−2,S
s dXj2m−1

s

]
=

∫ l∧t

0

E
[
S(X)j1,...,j2m−2,S

s

]
ρi1j2m−1

σi1σj2m−1
ds

= ρi1j2m−1
σi1σj2m−1

∫ l∧t

0

f0,2m−2(s, s)ds.
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In addition, by using (B.1) recursively, we can obtain that

f0,2m−2(s, s) =
1

2m−1

sm−1

(m− 1)!

m−1∏
k=1

ρj2k−1j2k

2m−2∏
k=1

σjk .

Therefore,

g1,2m−1(l, t) = ρi1j2m−1

1

2m−1

(l∧ t)m−1

(m− 1)!
σi1

2m−1∏
k=1

σjk

m−1∏
k=1

ρj2k−1j2k ,

which proves (B.8). □

Proof of Example B.5. The solution to stochastic differential equation (B.9) can be explicitly expressed

as

Yt =

∫ t

0

e−κ(t−s)dWs, t≥ 0,

where Wt is a standard Brownian motion. Therefore, by Itô isometry, Yt is a Gaussian random variable with

zero mean and

Var(Yt) =E
[
Y 2
t

]
=E

[∫ t

0

e−κ(t−s)dWs

]2
=

∫ t

0

[
e−κ(t−s)

]2
ds=

1− e−2κt

2κ
.

Now we calculate the correlation coefficient for its Itô and Stratonovich signature, respectively.

Itô Signature. By the definition of signature and (B.9),

E
[
S(X)1,1,IT

]
=E

[∫ T

0

YtdYt

]
=−κE

[∫ T

0

Y 2
t dt

]
+E

[∫ T

0

YtdWt

]
=−κ

∫ T

0

E
[
Y 2
t

]
dt

=−κ

∫ T

0

1− e−2κt

2κ
dt=−T

2
+

1− e−2κT

4κ
. (E.19)

For the second moment, by Itô isometry,

E
[
S(X)1,1,IT

]2
=E

[∫ T

0

YtdYt

]2
=E

[
−κ

∫ T

0

Y 2
t dt+

∫ T

0

YtdWt

]2
= κ2

∫ T

0

∫ T

0

E
[
Y 2
t Y

2
s

]
dtds− 2κE

[∫ T

0

Y 2
t dt

∫ T

0

YtdWt

]
+

∫ T

0

E
[
Y 2
t

]
dt

=: (a)− (b)+ (c).

It is easy to calculate Term (c):

(c) =
∫ T

0

E
[
Y 2
t

]
dt=

∫ T

0

1− e−2κt

2κ
dt=

T

2κ
+

e−2κT − 1

4κ2
. (E.20)

To derive Term (a), we need to calculate E [Y 2
t Y

2
s ]. Assume that s < t and denote Mt =

∫ t

0
eκudWu, we

have Yt = e−κtMt, and therefore

E
[
Y 2
t Y

2
s

]
= e−2κ(t+s)E

[
M 2

t M
2
s

]
= e−2κ(t+s)E

[
(Mt −Ms +Ms)

2M 2
s

]
= e−2κ(t+s)

[
E
[
(Mt −Ms)

2M 2
s

]
+2E

[
(Mt −Ms)M

3
s

]
+E

[
M 4

s

]]
.
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Because Mt −Ms =
∫ t

s
eκudWu is a Gaussian random variable with mean 0 and variance

Var(Mt −Ms) =E
[
(Mt −Ms)

2
]
=E

[∫ t

s

eκudWu

]2
=

∫ t

s

[eκu]
2
du=

e2κt − e2κs

2κ
,

and Mt has independent increments, we have

E
[
Y 2
t Y

2
s

]
= e−2κ(t+s)

[
E
[
(Mt −Ms)

2
]
E
[
M 2

s

]
+2E [Mt −Ms]E

[
M 3

s

]
+E

[
M 4

s

]]
= e−2κ(t+s)

[
e2κt − e2κs

2κ
· e

2κs − 1

2κ
+0+3

(
e2κs − 1

2κ

)2
]

=
1+2e−2κt+2κs − e−2κs − 5e−2κt +3e−2κt−2κs

4κ2

when s < t. One can similarly write the corresponding formula for the case of s > t and therefore

(a) = κ2

∫ T

0

∫ T

0

E
[
Y 2
t Y

2
s

]
dtds

=
1

4

(
T 2 +

T

κ
+

10Te−2κT

2κ
+

3e−4κT

4κ2
− 9

4κ2
+

3e−2κT

2κ2

)
.

For Term (b), note that

2κE
[∫ T

0

Y 2
t dt

∫ T

0

YtdWt

]
= 2κ

∫ T

0

E
[
Y 2
s

∫ T

0

YtdWt

]
ds,

By Itô’s lemma,

dY 2
s = 2YsdYs +d[Y,Y ]s =−2κY 2

s ds+2YsdWs +ds,

which implies that

Y 2
s =−2κ

∫ s

0

Y 2
u du+2

∫ s

0

YudWu +

∫ s

0

du.

Therefore, for s < T , with the help of Itô isometry and (E.20), we have

f(s) =E
[
Y 2
s

∫ T

0

YtdWt

]
=E

[(
−2κ

∫ s

0

Y 2
u du+2

∫ s

0

YudWu +

∫ s

0

du

)∫ T

0

YtdWt

]
=−2κ

∫ s

0

E
(
Y 2
u

∫ T

0

YtdWt

)
du+2

∫ s

0

E
[
Y 2
t

]
dt+0

=−2κ

∫ s

0

f(u)du+
s

κ
+

e−2κs − 1

2κ2
,

and taking derivatives of both sides leads to

df

ds
=−2κf(s)+

1

κ
− e−2κs

κ
.

Solving this ordinary differential equation with respect to f with initial condition f(0) = 0, we obtain that

f(s) =
1

2κ2
− se−2κs

κ
− e−2κs

2κ2
.
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Therefore,

(b) = 2κ

∫ T

0

f(s)ds=
T

κ
+

Te−2κT

κ
+

e−2κT − 1

κ2
.

Finally,

E
[
S(X)1,1,IT

]2
= (a)− (b)+ (c) =

Te−2κT

4κ
+

3e−4κT

16κ2
− 3e−2κT

8κ2
− T

4κ
+

3

16κ2
+

T 2

4
. (E.21)

Therefore,

E
[
S(X)0,IT S(X)1,1,IT

]√
E
[
S(X)0,IT

]2
E
[
S(X)1,1,IT

]2 =
E
[
S(X)1,1,IT

]√
E
[
S(X)1,1,IT

]2
=

−2κT − e−2κT +1√
4κTe−2κT +3e−4κT − 6e−2κT − 4κT +3+4κ2T 2

,

where the 0-th order of signature is defined as 1.

Stratonovich Signature. The Stratonovich integral and the Itô integral are related by∫ t

0

As ◦ dBs =

∫ t

0

AsdBs +
1

2
[A,B]t.

Therefore,

S(X)1,ST =

∫ T

0

1 ◦ dYt =

∫ T

0

1dYt +
1

2
[1, Y ]T =

∫ T

0

1dYt = S(X)1,IT = YT ,

and

S(X)1,1,ST =

∫ T

0

S(X)1,ST ◦ dYt =

∫ T

0

Yt ◦ dYt =

∫ T

0

YtdYt +
1

2
[Y,Y ]T = S(X)1,1,IT +

T

2
,

where we use the fact that [1, Y ]T = 0 and [Y,Y ]T = T . Now by (E.19) and (E.21), we have

E
[
S(X)1,1,ST

]
=E

[
S(X)1,1,IT

]
+

T

2
=

1− e−2κT

4κ
,

and

E
[
S(X)1,1,ST

]2
=E

[
S(X)1,1,IT +

T

2

]2
=E

[
S(X)1,1,IT

]2
+TE

[
S(X)1,1,IT

]
+

T 2

4
=

3(1− e−2κT )2

16κ2
.

Therefore,
E
[
S(X)0,ST S(X)1,1,ST

]√
E
[
S(X)0,ST

]2
E
[
S(X)1,1,ST

]2 =

√
3

3
. □
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Proof of Proposition C.1. Let a = #A∗
1 and b = #A∗c

1 . Under the equal inter-dimensional correlation

assumption, we have ΣA∗,A∗ = (1− ρ)Ia + ρ1a1
⊤
a , where Ia is an a× a identity matrix and 1a is an a-

dimensional all-one vector. In addition, ΣA∗c,A∗ = ρ1b1
⊤
a , where 1b is a b-dimensional all-one vector. By

the Sherman–Morrison formula,

Σ−1
A∗,A∗ =

1

1− ρ
Ia −

ρ

(1− ρ)(1+ (a− 1)ρ)
1a1

⊤
a .

Therefore, since all true beta coefficients are positive, we have

ΣA∗c,A∗Σ−1
A∗,A∗sign(βA∗) =

aρ

1+ (a− 1)ρ
1a.

Hence, the irrepresentable condition

∥∥ΣA∗c,A∗Σ−1
A∗,A∗sign(βA∗)

∥∥= a|ρ|
1+ (a− 1)ρ

< 1

holds if and only if a|ρ|
1+(a−1)ρ

< 1. One can easily verify that this holds if ρ∈ (− 1
2#A∗

1
,1), and does not hold

if ρ∈ (− 1
#A∗

1
,− 1

2#A∗
1
]. This completes the proof. □

Proof of Theorem C.1. For ξ =min
{
g−1
Σ

(
γ

ζ(2+2αζ+γ)

)
, g−1

Σ

(
Cmin
2
√
p

)}
> 0, Lemmas E.4 and E.5 imply

that

P
(
Λmin(∆̂A∗A∗)≥ 1

2
Cmin

)
≥ 1− 4p4σ4

max(σ
4
min +K)

Nξ2σ4
min

,

P
(∥∥∥∆̂A∗cA∗∆̂−1

A∗A∗

∥∥∥
∞
≤ 1− γ

2

)
≥ 1− 4p4σ4

max(σ
4
min +K)

Nξ2σ4
min

.

Hence,

P
(
Λmin(∆̂A∗A∗)≥ 1

2
Cmin,

∥∥∥∆̂A∗cA∗∆̂−1
A∗A∗

∥∥∥
∞
≤ 1− γ

2

)
≥ 1− 8p4σ4

max(σ
4
min +K)

Nξ2σ4
min

. (E.22)

Equation (E.22) gives the probability that the conditions of Wainwright (2009, Theorem 1) hold. Therefore,

applying Wainwright (2009, Theorem 1) yields the result. □
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Wüthrich K, Zhu Y (2023) Omitted variable bias of Lasso-based inference methods: A finite sample analysis. The

Review of Economics and Statistics 105(4):982–997.


	Background
	Theoretical Results
	Simulation
	Electronic Companion
	The ARIMA Process
	Robustness Checks





