
the proof of decomposition theorem
Fu Haoshuo

We use H to mean the cohomology of complex of sheaves and H to mean the hypercohomology.
dim means the dimension of complex varieties.

1 preparation results
1.1 semisimple of classical Hodge theory
See Hodge II section 4.2.

Let S be a smooth connected variety, Use C to denote the subcategory of all the families of structure
of Hodge, whose object H satisfies the condition: there exist a Zariski open subset U such that there
exist a projective and smooth morphism f : X → U and H|U is a direct factor of Rif∗QX ⊗Q(k) for
integers i and k.

Then, for any proper and smooth morphism f : X → S, using Chow lemma and resolution of
singularities, we get a projective and smooth morphism f ′ : X ′ → f−1(U)→ U , and that (Rif∗QX)|U
is a direct factor of Rif ′

∗QX′ , thus lies in C.

Theorem 1. The objects in C are semisimple as local systems on S.

Proof. We first claim that the category C satisfies the following proposition:

(i) C is stable under direct factor, direct sum, tensor product. the constant family Q(k) lies in C.

(ii) all homogeneous Hodge structure are polarizable.

(iii) for all H ∈ C, there exist HZ such that H = HZ ⊗Q.

(iv) for all H ∈ C, the largest constant sub-local system is a constant sub-family of Hodge structure
of H.

In order to verify this, we set C1 to be the direct factors of the families of Hodge structure in the form
Rif∗QX for projective and smooth morphism f : X → S. Then it is obvious C1 is stable under direct
factor. From the fact Rk(f×g)∗QX×Y = ⊕i+j=kR

if∗QX⊗Rjg∗QY , we know C1 is stable under tensor
product. Also since Ri(f ⊔ g)∗QX⊔Y = Rif∗QX ⊕Rig∗QY , we know C1 is stable under direct sum.

(ii) comes from the polarization of (Rif∗QX)s = Hi(f−1(s),Q) is polarized. (iii) comes from the
fact that Rif∗QX = Rif∗ZX ⊗Q. (iv) is the result of Hodge II 4.1.2.

In fact, for Rnf∗QX , the largest constant sub-local system is (Rnf∗QX)
π1(S,s)
s = H0(S,Rnf∗QX).

On the other hand, we have the morphisms Hn(X̄,Q) → Hn(X,Q) � H0(S,Rnf∗QX). The weight
miracle shows that the composition is also surjective. Further more, we also have the morphism
H0(S,Rnf∗QX) ↪→ Hn(f−1(s),Q). This shows that H0(S,Rnf∗QX) is the image of two polarized
Hodge structure and hence is a polarized Hodge structure.
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So the category of the form H⊗Q(k) for k ∈ Z satisfies these four propositions. As for the category
C, it suffices to note that if H is a family of Hodge structure and U is a Zariski open set of S, then the
subobject, polarization and integer result on H|U can extent uniquely to H.

Next, we have a lemma, where G is the real algebraic group C∗ acting on the Hodge structures by
zpzq on Hpq.

Lemma. If V is a sub-local system of rank 1 of HC = H ⊗ C such that V ⊗n is trivial, then for any
t ∈ G, we have tV is also a sub-local system of HC.

Proof. It suffice to proof (tV )⊗n ⊆ H⊗n
C is so. But from the triviality of V ⊗n, it is generated by a

global section v. According to (iv), we obtain (tV )⊗n = tV ⊗n is generated by the global section tv
and hence is locally constant.

Now, we can prove the theorem. We induct on the dimension of H. without loss of generality, we
can assume H is homogeneous. Set d the smallest dimension of the sub-local system of HC. Let W be
the sum of all sub-local system of HC of dimension d and hence is defined in Q. Then W is a complex
semisimple local system of dimension e, then WQ is rational semisimple local system.

Set H = HZ ⊗Q,WZ = W ∩HZ, then we have ∧eW = ∧eWZ ⊗ C, so π1(S) acts on it just by ±1.
Thus using the lemma, we obtain t(∧eW ) is also local system. If V is one of the local system of HC of
dimension d and V ′ is the complementary in W , we have ∧eW = ∧dV ⊗ ∧e−dV ′ ⊆ ∧dHC ⊗ ∧e−dHC
is sub-local system. Apply the lemma, we have ∧etW = ∧dtV ⊗ ∧e−dtV ′ ⊆ ∧dHC ⊗ ∧e−dHC is also
local system. Thus ∧dtV ⊂ ∧dHC and tV ⊂ HC is sub-local system. From the definition of W , we
have tV ⊂ W and hence W is stable under the action of G. Then WQ is sub-Hodge structure of H
and is orthogonal direct factor because of the polarization of H. Finally the result holds from the
induction.

1.2 a splitting criterion
Given a stratified space X with smallest stratum F of dimension s which is smooth and closed in X.
Let U be the compliment of F and denote the inclusion map F

i−→ X
j←− U .

For an element K in P (X), we know that K ∈ D≤−s and suppH−s(K) ⊆ F .
From the theorem of intermediate extension, we know that j!∗j

∗K = τ≤−s−1j∗j
∗K. Since K =

τ≤−sK, we have a natural map f : K → τ≤−sj∗j
∗K. From the distinguished triangle i!i

!K → K →
j∗j

∗K
+1−−→, we get a long exact sequence:

H−s−1(K)
α−→ H−s−1(j∗j

∗K)→ H−s(i!i
!K)

β−→ H−s(K)
γ−→ H−s(j∗j

∗K) (1)

Now we give a criterion for whether K is a direct sum of two intermediate extension complexes.

Theorem 2. If K satisfies the following property:

dimH−s(i!i
!K)x = dimH−s(i∗i

∗K)x,∀x ∈ F (2)

(caution that dimH−s(i∗i
∗K)x = dimH−s(K)x)

Then the following are equivalent:

(i) K = j!∗j
∗K ⊕H−s(K)[s].

(ii) β : H−s(i!i
!K)→ H−s(K) is an isomorphism.
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(iii) the morphism f : K → τ≤−sj∗j
∗K can be lifted to a morphism f̃ : K → τ≤−s−1j∗j

∗K = j!∗j
∗K.

Proof. (i) =⇒ (ii): From the property of j!∗, we know i!j!∗j
∗K ∈ pD≥1

F = D≥−s+1
F . Since i! is exact

we get H−s(i!i
!j!∗j

∗K) = 0.
(ii) ⇐⇒ (iii): apply Hom(K,−) to the following distinguished triangle:

τ≤−s−1j∗j
∗K → τ≤−sj∗j

∗K → H−s(j∗j
∗K)[s]

+1−−→

From the fact that both K and H−s(j∗j
∗K)[s] are in P (X) since (H−s(j∗j

∗K))U = 0, we know
Hom(K,H−s(K)[s][−1]) = 0, and this gives an exact sequence:

0→ Hom(K, τ≤−s−1j∗j
∗K)

t−→ Hom(K, τ≤−sj∗j
∗K)→ Hom(K,H−s(j∗j

∗K)[s])

Thus f ∈ imt if and only if the composite of f and τ≤−sj∗j
∗K → H−s(j∗j

∗K)[s] is zero. However,
since H−s(j∗j

∗K)[s] ∈ D≥−s, we know Hom(K,H−s(j∗j
∗K)[s]) = Hom(τ≥−sK,H−s(j∗j

∗K)[s]) =
Hom(H−s(K),H−s(j∗j

∗K)) and the composition is precisely the morphism γ in (1), for both of them
comes from the truncations of the adjoint map K → j∗j

∗K.
Now we know that γ = 0 if and only if β is surjective and thus according to (2), is equivalent to β

is isomorphism.
(ii)(iii) =⇒ (i): If the lift f̃ exist, we have an exact sequence in the category P (X):

0→ N → K → j!∗j
∗K → C → 0

Because the map f̃ is isomorphism restricted at U , the supports of N and C are in F . But from the
proposition of intermediate extension, we know j!∗j

∗K don’t have non-zero quotient whose support is
in F , which shows that C is equal to zero.

Now, because N is a perverse sheaf supports in F , it must be in the form H−s(N)[s]. Then the
distinguished triangle

N → K → j!∗j
∗K

+1−−→

gives a long exact sequence:

0→ H−s−1(K)→ H−s−1(j∗j
∗K)→ H−s(N)→ H−s(K)→ 0

where the first map is equal to α in (1) and is surjective because of (ii). Hence we get H−s(N) =
H−s(K) and the boundary map in the middle is zero, which shows that the map in Hom(j!∗j

∗K,N [1]) =
Hom(τ≥−s−1j!∗j

∗K,N [1]) = Hom(H−s−1(j∗j
∗K),H−s(N)) is zero. This implies that the distinguished

triangle above splits, which means K = N ⊕ j!∗j
∗K = H−s(K)[s]⊕ j!∗j

∗K. This is (i).

1.3 degenerate of spectral sequence
Given a triangulated category D with a t-structure, we use simply H to denote the cohomology with
respect to this t-structure.

For an element K ∈ D and a map η : K → K[2], we use the same notion for the morphism of
cohomology η : H∗(K)→ H∗+2(K).

Theorem 3. If ηj : H−j(K)→ Hj(K) are isomorphism for all integer j, then we have⊕
j

Hj(K)[−j] ≃ K.
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Proof. Let P−j = ker(ηj+1 : H−j(K) → Hj+2(K)), j ≥ 0. Then we have a splitting short exact
sequence:

0→ P−j → H−j(K)→ Hj+2(K)→ 0

Thus H−j(K) = P−j ⊕ ηH−j−2(K) = ⊕i≥0η
iP−j−2i, j ≥ 0.

Now for any exact functor F , we have the spectral sequence Ep,q
2 = F pHq(K)⇒ F p+q(K). We use

induction to prove this spectral sequence degenerate at E2-page.
Assume Er = E2, we will prove dr in the Er-page are all zero. We need only prove that

dr(F
p(ηiP−q−2i)) = 0, i, q ≥ 0. Since η acts on K, we have a natural map η : Ep,q

2 → Ep,q+2
2 .

This gives a commutative diagram:

F p(ηiP−q−2i) F p+r(ηiH−q−2i−r+1)

F p(η2i+q+1P−q−2i) F p+rHq+2i+3−r

dr

ηi+q+1 ηi+p+1

dr

According to the condition, we know that the map on the right η2i+p+1 : H−q−2i−r+1 → Hq+2i+3−r is
injective. Then the map on the left being equal to zero implies that the map on the top is equal to
zero. This finishes our proof.

1.4 affine morphism
Theorem 4. Let f : X → Y be an affine morphism, F be a constructible sheaf on X. If dim suppF ≤ d,
then dim suppRqf∗(F ) ≤ d− q.

Proof. See SGA 4 XIII.

Corollary 5. Let f : X → Y be an affine morphism, them f∗ is right t-exact and f! is left t-exact.

Proof. For any complex of sheaves K ∈ pD≤0(X), we have dim suppHq(K) ≤ −q. Thus by the theorem
above, we obtain dim suppRpf∗(Hq(K)) ≤ −q − p.

Using the spectral sequence:
Rpf∗(Hq(K))⇒ Rp+qf∗(K)

We know that dim suppRp+qf∗(K) ≤ −(p+ q), which shows that f∗(K) ∈ pD≤0(Y ). This proves that
f∗ is right t-exact.

Using Verdier duality, we know f! = Df∗D and D maps pD≥0 between pD≤0. This proves the
second assertion.

1.5 projection
We consider the projection p : Y × X → Y , where X is smooth of dimension d. Then we have
p∗[d] = p![−d] is t-exact. The result is:

Theorem 6. The functor p∗[d] : P (Y ) → P (Y × X) makes P (Y ) a fully faithful subcategory of
P (Y ×X).

Proof. When K,L are two elements in Db(Y ), we have the isomorphism:

p∗RHom(K,L)
∼−→ RHom(p∗K, p∗L)
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If K,L are in P (Y ), we have RHom(K,L) ∈ D≥0(Y ), thus applying 0p∗H0, we obtain:

0p∗p
∗H0RHom(K,L)

∼−→ 0p∗H0RHom(p∗K[d], p∗L[d])

Because 0p∗p
∗ = id for sheaves on Y , we can take the functor Γ, which shows that

Hom(K,L) = Hom(p∗K[d], p∗L[d])

This proves our assertion.

Now, we denote p∗[d] and its left and right adjoint pHdp! and pH−dp∗ by u∗, u! and u∗, respectively.
Therefore, from the property of fully faithful, we have Hom(A,B) = Hom(u∗A, u∗B) = Hom(A, u∗u

∗B)
for any A,B ∈ P (Y ), which shows u∗u

∗B = B for any B ∈ P (Y ).
If S is a simple element of P (Y ), namely, S = j!∗L[dimU ] for some smooth subset U of Y and

some simple sheaf L on U . then u∗S = j!∗p
∗L[dimU + d] is also simple in P (Y ×X). Because P (Y )

is Noetherian and Artian, the element of P (Y ) has finite length. Let K is an element in P (Y ), we
have a filtration 0 = K0 ⊂ K1 ⊂ · · · ⊂ Kn = K with simple quotients, then 0 = u∗K0 ⊂ u∗K1 · · · ⊂
u∗Kn = u∗K is a filtration with simple quotients of the form u∗S. This implies the sub-object of u∗K
are all comes from u∗P (Y ).

Then, given an element K in P (Y ×X), we have a morphism u∗u∗K → K. We will prove this is
the largest sub-object coming from P (Y ).

For any element A ∈ P (Y ), we have Hom(u∗A,K) = Hom(A, u∗K) = Hom(u∗A, u∗u∗K). So if a
morphism u∗A → u∗u∗K satisfies the composite with u∗u∗K → K is zero, then it is also zero. This
shows that u∗u∗K → K is injective since the kernel is a sub-object of u∗u∗K, which must has the form
u∗A for some A.

Then for any sub-object of K in the form u∗A, the above argument shows that it pass through
u∗u∗K. Thus u∗A is sub-object of u∗u∗K, showing that u∗u∗K is the largest.

u∗u∗K K

u∗A

From this, we call u∗u∗K the largest sub-object of K coming from Y . For the same reason, we
know u∗u!K is the largest quotient object of K coming from Y .

1.6 universal hyperplane section and weak Lefschetz
Assume X is a quasi-projective variety which embeds in a projective space P with dimension d. We
denote P∨ the dual space of P. Then let X = {(x, s) : s(x) = 0} ⊆ X×P∨ be the universal hyperplane
section.

Since X embeds into P, we know that X×P∨ embeds into P×P∨, which is a projective space. The
tautological bundle OP×P∨(1) give the very ample bundle O(1) on X × P∨, which contains a section
S : (x, s) 7→ s(x). Thus the open space X × P∨ −X is just the space (X × P∨)S .

Now, if f : X → Y is a proper morphism, f ′ : X × P∨ → Y × P∨ is also proper. For any affine
open subset Y ′ = SpecA of Y × P∨, we have a very ample bundle L on X ′ = f ′−1(Y ′). This makes
X ′ embeds into P = Proj

⊕
n Γ(X

′, L⊗n) which is a projective space over SpecA. Because of the
properness of f ′, we obtain X ′ is equal to P . Thus X ′

S is just the basic open sets of P , which is affine.
This shows that the map X × P∨ −X → Y × P∨ is affine.
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If we set P = {(x, s) : s(x) = 0} ⊆ P × P∨, then P is smooth over P. Since P ∩ (X × P∨) = X ,
we have X is smooth over X, which shows that the embedding i : X → X × P∨ is transversal. Thus
i∗[−1] = i![1] is t-exact. Furthermore, it implies

ICX = i∗[−1]ICX×P∨ = i∗p∗ICX [d− 1] (3)

Now, let’s look at a general case. Assume we have a diagram of morphisms:

X1 X X −X1

Y

i

g
f

j

u

where i is closed embedding while j is open embedding. f is proper and u = f ◦ j is affine. Then we
have our theorem:

Theorem 7. Let K be a perverse sheaf on X. Then

(i) the map pHp(f∗K)→ pHp(g∗i
∗K) induced by id→ i∗i

∗ is isomorphism for p ≤ −2 and monomor-
phism for p = −1.

(ii) the map pHp(g∗i
!K)→ pHp(f∗K) induced by i!i

! → id is isomorphism for p ≥ 2 and epimorphism
for p = 1.

Proof. Consider the distinguished triangle j!j
!K → K → i∗i

∗K
+1−−→ and apply f∗ = f! we obtain the

following distinguished triangle:

u!j
!K → f∗K → g∗i

∗K
+1−−→ .

Taking the perverse cohomology, we have the exact sequence:
pHp(u!j

!K)→ pHp(f∗K)→ pHp(g∗i
∗K)→ pHp+1(u!j

!K)

Since j! = j∗ is exact and u! is left t-exact from corollary 5, we get u!j
!K ∈ pD≥0(Y ). This means

pHp(u!j
!K) = 0 for p < 0. Therefore the first statement is proved. The other statement can be proved

in the same way or just use Verdier duality.

Here is the reason why this theorem is called weak Lefschetz theorem. When we take Y to be a
point and X1 to be a hyperplane section of the projective variety X, the results just shows that the
restriction map Hp(X,K)→ Hp(X1, i

∗K) is isomorphism for p ≤ −2 and monomorphism for p = −1,
and that the map Hp(X1, i

!K)→ Hp(X,K) is isomorphism for p ≥ 2 and epimorphism for p = 1.
Return to our special case, assume f : X → Y is a proper morphism where X is quasi-projective.

Take X, Y , X1 in the theorem to be X × P∨, Y × P∨, X , respectively. We have the maps:

X X × P∨ X

Y × P∨ Y

i

g

p

f ′ f

p

For any perverse sheaf K on X, set K ′ = p∗K[d] ∈ P (X ×P∨) and M = i∗K ′[−1] ∈ P (X ). According
to the t-exactness of p∗[d] we have pHp(f ′

∗K
′) = pHp(p∗f∗K[d]) = p∗pHp(f∗K)[d]. Then the theorem

says that:
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(i) p∗pHp(f∗K)[d]→ pHp+1(g∗M) is isomorphism for p ≤ −2 and monomorphism for p = −1.

(ii) pHp−1(g∗M)→ p∗pHp(f∗K)[d] is isomorphism for p ≥ 2 and epimorphism for p = 1.

Now we will prove the additional results that pH−1(f ′
∗K

′) is the largest sub-object of pH0(g∗M) coming
from Y and that pH1(f ′

∗K
′) is the largest quotient object of pH0(g∗M) coming from Y .

We only prove the first assertion and the second is deduced for the similar reason. We only need
to prove pH−dp∗

pH−1(f ′
∗K

′)
∼−→ pH−dp∗

pH0(g∗M).
First, from id → i∗i

∗, we have a morphism f ′
∗K

′[−1] → g∗M . The previous result shows the
morphism pτ≤−1f

′
∗K

′[−1] → pτ≤−1g∗M is isomorphism. Thus we obtain the following morphism of
distinguished triangle:

pτ≤−1f
′
∗K

′[−1] f ′
∗K

′[−1] pτ≥0f
′
∗K

′[−1]

pτ≤−1g∗M g∗M
pτ≥0g∗M

∼

+1

+1

Apply the cohomological functor pH•p∗, using the fact that pH−dp∗
pτ≥0 = pH−dp∗

pH0 because of the
left exactness of p∗[−d].

pH−dp∗
pτ≤−1N

pH−dp∗N
pH−dp∗

pH0N pH−d+1p∗
pτ≤−1N

pH−d+1p∗N

pH−dp∗
pτ≤−1g∗M

pH−dp∗g∗M
pH−dp∗

pH0g∗M
pH−d+1p∗

pτ≤−1g∗M
pH−d+1p∗g∗M

∼ ∼

where N = f ′
∗K

′[−1]. It is sufficient to show pHlp∗N → pHlp∗g∗M are isomorphisms for l = −d and
−d+ 1.

Lemma. If q : X → Y is a morphism such that every fiber are projective space of dimension d and η
is the first Chern class of O(1) and K ∈ Db(Y ), we have

∑
ηi :

d⊕
i=0

K[−2i]→ q∗q
∗K

is an isomorphism.

Proof. Passing to the fiber, we can assume X is a point. Then the result is just the property of the
projective space.

Since p∗N = f∗p∗p
∗K[d−1] and p∗g∗M = f∗(pi)∗(pi)

∗K[d−1], it suffices to prove pHl(f∗p∗p
∗K)→

pHl(f∗(pi)∗(pi)
∗K) is isomorphism for l = −1 and 0. Because p and p ◦ i both satisfy the condition of

the lemma, we have f∗p∗p
∗K =

⊕d
i=0 f∗K[−2i] and f∗(pi)∗(pi)

∗K =
⊕d−1

i=0 f∗K[−2i]. Thus it suffices
to prove pHl(f∗K[−2d]) = 0 for l = −1 and 0. Indeed, since every fiber of f has dimension ≤ d,
we have f∗pD≤0(Y ) ⊆ pD≤d(X). Using the duality, we obtain f∗

pD≥0(X) ⊆ pD≥−d(Y ), which shows
f∗K[−2d] ∈ pD≥d(Y ). Then the above result holds for d ≥ 1.
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1.7 the defect of semismallness
For any morphism f : X → Y , the defect of semismallness of f is defined by

r(f) = dimX ×Y X − dimX.

If we set Y i = {y ∈ Y : dim f−1(y) = i}, then dimX ×Y X = maxi:Y i ̸=∅{2i + dimY i}. Caution
dimX ≥ dim f(X) implies r(f) ≥ 0. If r(f) is equal to zero, we call f is semismall. If furthermore
r(f) = maxi:Y i ̸=∅{2i+dimY i−dimX} take the maximal value only at i = 0, i.e. dim(X×Y X−∆(X)) <
dimX, we call f is small.

Note that if f is semismall and proper, X is nonsingular of dimension n, we have f∗QX [n] =
pH0(f∗QX [n]). Indeed, we just need to check the supp condition and the co-supp condition is satisfied
by duality.

It suffices to prove dimHn−i(f∗QX) ≤ i. For any y ∈ Y , Hn−i(f∗QX)y ̸= 0 is equivalent to
Hn−i(f−1(y),Qf−1(y)) ̸= 0. It implies 2 dim f−1(y) ≥ n − i, hence y ∈ ∪2j≥n−iY

j . Since dimY j ≤
n− 2j ≤ i, we obtain dimHn−i(f∗QX) ≤ dim∪2j≥n−iY

j ≤ i. This proves our result.

Theorem 8. Let f, g be the same as the previous section, then we have

(i) If r(f) > 0, then r(g) < r(f).

(ii) If r(f) = 0, then g is small.

Proof. We separate Yi = {(y, s) ∈ Y × P∨ : dim g−1(y, s) = i} into two parts and estimate their
dimension separately.

Note that g−1(y, s) = f−1(y) ∩ Xs, we have dim g−1(y, s) is equal to dim f−1(y) or dim f−1(y) −
1. Let Y ′i = {(y, s) ∈ Y × P∨ : dim g−1(y, s) = i = dim f−1(y)} and Y ′′i = {(y, s) ∈ Y × P∨ :
dim g−1(y, s) = i = dim f−1(y)− 1}.

As for Y ′i, note that the condition implies Xs contains a certain subvariety of dimension i, hence
contains i+1 points with general position. These sections forms a linear system of dimension at most
d− i− 1. That is dimY ′i ≤ dimY i + d− i− 1. Thus we obtain

2i+ dimY ′i − dimX ≤ 2i+ dimY i + d− i− 1− (dimX + d− 1) ≤ r(f)− i (4)

As for Y ′′i, it is obvious that dimY ′′i ≤ dimY i+1 + d. Thus

2i+ dimY ′′i − dimX ≤ 2i+ dimY i+1 + d− (dimX + d− 1) ≤ r(f)− 1

Since Yi = Y ′i∪Y ′′i, we conclude that 2i+dimYi−dimX ≤ min{r(f)−i, r(f)−1}. So r(g) ≤ r(f)
and equality satisfies only if (4) satisfies when i = 0, which suggest that r(f) = dimY 0 − dimX ≤ 0
and Y 0 ̸= ∅. In this case, r(f) = 0 and 2i+ dimYi − dimX = 0 only when i = 0, hence g is small.

2 the proof for projective case
In this section f : X → Y is a projective morphism between two projective varieties, where X is smooth.
We use induction on r(f) and dimX to prove the following list of theorems, where Hn+i+j

i (X) =
Hj(Y, pHi(f∗QX [n])), η is a general hyperplane of X and L = f∗A is the pullback of a general
hyperplane of Y .

(i) the maps ηi : pH−i(f∗QX [n])→ pHi(f∗QX [n]) are isomorphisms and pHi(f∗QX [n]) is semisimple
for all i ̸= 0.
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(ii) the maps ηi : Hj
−i(X)→ Hj+2i

i (X) and Lk : Hn+b−k
b (X)→ Hn+b+k

b (X) are isomorphisms.

(iii) the bilinear map Sjk is a polarization of the (η, L)-decomposition on Hn−j−k
−j (X).

(iv) the perverse sheaf pH0(f∗QX [n]) are direct sum of intersection complexes.

(v) every local system of the decomposition of pH0(f∗QX [n]) are semisimple.

Now suppose the above theorems are satisfied for g : X ′ → Y ′ where r(g) < r(f) or r(g) = r(f) and
dimX ′ < dimX. we will prove the result for f : X → Y .

2.1 proof of (i)
Using the results in section 1.6 with K = QX [n], we have M = QX [n+ d− 1]. Let η′ = i∗p∗η. Since
r(g) < r(f), according to the inductive hypotheses, there are isomorphisms η′i : pH−i(g∗QX [n + d −
1])→ pHi(g∗QX [n+ d− 1]) and pH0(g∗QX [n+ d− 1]) is semisimple.

Then, the morphism ηi : pH−i(f∗QX [n])→ pHi(f∗QX [n]) is the map below:

p∗[d]pH−i(f∗QX [n]) p∗[d]pHi(f∗QX [n])

pH1−i(g∗QX [n+ d− 1]) pHi−1(g∗QX [n+ d− 1])

p∗[d](ηi)

η′i−1

Then when i ≥ 2, the two vertical morphism are isomorphisms, hence the top morphism is isomorphism.
The fully faithfulness gives the result.

As for the case i = 0, we need to prove that the morphism p∗[d]η : p∗[d]pH−1(f∗QX [n])
α∗

−−→
pH0(g∗QX [n + d − 1])

α∗−−→ p∗[d]pH1(f∗QX [n]) is isomorphism, where α∗ is monomorphism and α∗ is
epimorphism.

Since α∗ ker p∗[d]η ⊆ kerα∗ and the semisimplicity of pH0(g∗QX [n+d−1]), we have decomposition:
pH0(g∗QX [n+ d− 1]) = α∗ ker p∗[d]⊕R⊕ S

where S is isomorphism to p∗[d]pH1(f∗QX [n]). But α∗ ker p∗[d]η = α∗p∗[d] ker η is also comes from Y ,
The maximal of p∗[d]pH1(f∗QX [n]) shows that α∗ ker p∗[d]η is zero, which means η is monomorphism.
For the same reason, we know that η is epimorphism and hence η is isomorphism.

The semisimplicity of pHi(f∗QX [n]) for i ̸= 0 comes from the morphisms with pHi±1(g∗QX [n +
d− 1]) and the fully faithfulness of p∗[d].

2.2 proof of (ii)
The isomorphism for ηi : Hj

−i(X)→ Hj+2i
i (X) is trivial from (i). We only prove the second result.

Let X1 be a smooth general hyperplane section of X. It satisfies the condition of Theorem 7 and
we know pHl−1(f∗QX [n])→ pHl(g∗QX1 [n−1]) is isomorphism for l < 0 and monomorphism for l = 0.
Since pHl(g∗QX1 [n − 1]) is semisimple, pHl−1(f∗QX [n]) is direct summand of it for l ≤ 0. Similarly,
pHl+1(f∗QX [n]) is direct summand of pHl(g∗QX1 [n−1]) for l ≥ 0. Also, such decomposition is capable
with the action of L. Hence, when b ̸= 0, the isomorphism for Lk can always be checked in the case of
X1.

Next, we consider the case when b = 0 and we need to prove Lk : Hn−k
0 (X) → Hn+k

0 (X) is
isomorphism.
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Choose a general hyperplane Y1 on Y such that X1 = f−1(Y1) is smooth, i.e. we get such diagram:

X1 X

Y1 Y

i

g � f

i

The proper base change shows that i∗[−1]pH0(f∗QX [n]) = pH0(i∗[−1]f∗Q[n]) = pH0(g∗QX1
[n − 1]).

According to the weak Lefschetz in the absolute case, we know Hn+j
0 (X) = Hj(Y, pH0(f∗QX [n])) →

Hj+1(Y1, i
∗[−1]pH0(f∗QX [n])) = Hn+j

0 (X1) is isomorphism for j ≤ −2 and similarly Hn+j−2
0 (X1) →

Hn+j
0 (X) is isomorphism for j ≥ 2. Thus from the commutative diagram below and the inductive

hypotheses for g : X1 → Y1 we know the result holds for k ≥ 2.

Hn−k
0 (X) Hn+k

0 (X)

Hn−k
0 (X1) Hn+k−2

0 (X1)

Lk

Lk−1
|X1

Now, we only need to consider the case for L : Hn−1
0 (X)→ Hn+1

0 (X). Verdier duality shows that
these two spaces have the same rank, so it suffices to prove the injectivity.

Hn−1
2 Hn+1

2 Hn+3
2

Hn−1
0 Hn+1

0

Hn−3
−2 Hn−1

−2 Hn+1
−2

L ∼

η

L

η

∼
η

∼

η

L

∼

Choose α ∈ ker(L : Hn−1
0 → Hn+1

0 ). From the η-decomposition, we can write α =
∑

j≥0 η
jαj

where αj ∈ ker(η2j+1 : Hn−1−2j
−2j → Hn+1+2j

2j+2 ). Then Lαj ∈ ker(η2j+1 : Hn+1−2j
−2j → Hn+3+2j

2j+2 ). This
means that Lα =

∑
j≥0 η

jLαj is the η-decomposition and hence Lαj = 0 for all j. Since we already
proved the injectivity of L on Hn−1−2j

−2j for j ≤ −1, we know αj = 0 for j ≤ −1, which means
α = α0 ∈ ker(η : Hn−1

0 → Hn+1
2 ).

Recall we have monomorphism i∗ : Hn−1
0 (X)→ Hn−1

0 (X1), we only need to prove i∗α is zero where
i∗α ∈ ker η ∩ kerL = P 0

0 (X1). Since all these maps are capable with the Hodge decomposition, we
can assume α is pure (p, q)-type and hence i∗α is also pure (p, q)-type. Then we have

∫
X1

i∗α ∧ i∗α =∫
X
L ∧ α ∧ α = 0. From the polarization of S00 on X1, we get i∗α = 0, which proves our result.

2.3 proof of (iii)
Set P−k

−j = ker(ηj+1 : Hn−j−k
−j → Hn+j+2−k

j+2 ) ∩ ker(Lk+1 : Hn−j−k
−j → Hn−j+k+2

−j ). From (ii), we have
the (η, L)-decomposition Hn−j−k

−j = ⊕l,m≥0η
lLmP−k−2m

−j−2l .
Because Sjk restricting to ηlLmP−k−2m

−j−2l is just Sj+2l,k+2m restricting to P−k−2m
−j−2l . We only need

to check every polarization of Sjk on these P−k
−j .
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When j > 0, choose a general hyperplane X1 on X. We already know i∗ : Hn−j−k
−j (X) →

Hn−j−k
−j+1 (X1) is injective for all j. Since i∗ is commutative with η and L, we have i∗P−k

−j (X) ⊆
P−k
−j+1(X1) and Sjk restricting to P−k

−j is Sj−1,k restricting to i∗P−k
−j (X) and is polarized according to

the induction hypotheses.
When j = 0 and k > 0, choose a general hyperplane Y1 on Y and X1 = f−1(Y1) is smooth. We

already know i∗ : Hn−k
0 (X)→ Hn−k

0 (X1) is injective for k ≥ 1. Since i∗ is commutative with η and L,
we have i∗P−k

0 (X) ⊆ P−k+1
0 (X1) and similarly, the result holds according to the induction hypotheses.

Finally, we prove the polarization of S0 on P 0
0 . We can pass to the real coefficient.

Let Λε = ker(εη + L) ⊆ Hn(X). When ε is sufficient small, η +
1

ε
L is ample and the classical

Hodge-Lefschetz theorem holds. In particular, dimΛε = bn − bn−2, where bm is the Betti number of
X. Let Λ = lim

ε→0
Λε where the limit is taken in the subspace of Hn(X), then dimΛ = bn − bn−2.

For any u ∈ Λ, assume u = lim
ε→0

uε, where Luε = −εηuε, we have Lu = lim
ε→0

εηuε = 0, so Λ ⊆ kerL.

Hn−2
2 Hn

2 Hn+2
2 Hn+4

2

Hn−4
0 Hn−2

0 Hn
0 Hn+2

0

Hn−6
−2 Hn−4

−2 Hn−2
−2 Hn

−2 Hn+2
−2

L L

∼
L

η

L

η

L

∼
η

L

η

η

L

∼

η

L

∼

∼

η

L

η

L

∼

Lemma. Let Lk
r denote the morphism Lk : Hn−r(X)→ Hn−r+2k(X). We have the equality

η kerL1
2 ∩ (η kerL1

2)
⊥ ∩ (η2 kerL2

4)
⊥ ∩ · · · ∩ (ηi kerLi

2i)
⊥ = η kerL1

2 ∩Hn
≤−i(X).

Proof. From (ii), we know kerLi
2i ⊆ Hn−2i

≤−i−1(X) and hence η kerL1
2 ⊆ Hn

≤0(X). This is the result for
i = 0. Now we use induction on i, which means we need to prove for all i ≥ 0

η kerL1
2 ∩Hn

≤−i(X) ∩ (ηi+1 kerLi+1
2i+2)

⊥ = η kerL1
2 ∩Hn

≤−i−1(X).

Let α = ηλ ∈ η kerL1
2 ∩ Hn

≤−i(X) where Lλ = 0. Then λ ∈ Hn−2
≤−2(X). The injectivity of

η : Hn−2
−j−2 → Hn

−j for j ≥ 0 shows that λ ∈ Hn−2
≤−i−2. The isomorphism for Lj : Hn−2j−2

−j−2 → Hn−2
−j−2

shows that we can write λ = Liλ′ where λ′ ∈ Hn−2i−2
≤−i−2 .

So we can write α = ηLiλ′ where Li+1λ′ = 0. Then α ∈ (ηi+1 kerLi+1
2i+2)

⊥ shows that S(α, ηi+1β) =

0 for all β ∈ kerLi+1
2i+2. This is just Si+2,i restricting to Hn−2i−2

≤−i−2 . The polarization of Si+2,i on Hn−2i−2
−i−2

implies that the component of λ′ in Hn−2i−2
−i−2 is zero, i.e. λ′ ∈ Hn−2i−2

≤−i−3 . Thus α ∈ Hn
≤−i−1.

Lemma. Λ = kerL1
0 ∩

(∩
i≥1(η

i kerLi
2i)

⊥
)

and kerL1
0 = Λ⊕ η kerL1

2 is orthogonal decomposition.

Proof. First, we prove Λε ⊆ (ηi kerLi
2i)

⊥ for all i ≥ 1. In fact, for any uε ∈ Λε and λ ∈ kerLi
2i, we have

ηuε = −
1

ε
Luε and hence

∫
uε ∧ ηiλ =

∫
(−1

ε
)iLiuε ∧λ = 0. This shows that Λ ⊆

(∩
i≥1(η

i kerLi
2i)

⊥
)

.
As for the second statement, we note from the previous lemma that Λ∩η kerL1

2 = 0. Then we have
a inclusion Λ⊕ η kerL1

2 ⊆ kerL1
0. Now, we count the dimension of them.
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From the injectivity and surjectivity of L, we have:

dim kerL1
0 =

∑
i≤0

dimHn
i − dimHn+2

i

dim kerL1
2 =

∑
i≤−2

dimHn−2
i − dimHn

i

Then use the isomorphisms and Hn−1
−1

∼−→ Hn+1
−1 , we obtain

dim kerL1
0 − dim η kerL1

2 =

∑
i≥0

dimHn
i − dimHn−2

i

−
∑

i≤−2

dimHn−2
i − dimHn

i


=

∑
dimHn

i −
∑

dimHn−2
i = bn − bn−2 = dimΛ

This proves the second equality. As for the first one, we only need to note that Λ ⊕ η kerL1
2 ⊆

(kerL1
0 ∩

(∩
i≥1(η

i kerLi
2i)

⊥
)
)⊕ η kerL1

2 ⊆ kerL1
0 and the equality has to be hold.

Consider the integral restricting to kerL1
0, for any b ∈ Hn

≤−1, we can find a b′ ∈ Hn−2
≤−1 such that b =

Lb′, then
∫
a∧b = 0 for all a ∈ kerL1

0. So kerL1
0∩Hn

≤−1 is in the radical of S restricting to kerL1
0. Thus

we have the orthogonal decomposition kerL1
0/(kerL

1
0∩Hn

≤−1) = Λ/(Λ∩Hn
≤1)⊕η kerL1

2/(η kerL
1
2∩Hn

−1).
Since P 0

0 ⊆ ker η, we have P 0
0 ⊆ (η kerL1

2)
⊥/((η kerL1

2)
⊥∩Hn

≤−1) = Λ/(Λ∩Hn
≤1). From the classical

Hodge theory shows that S00 is polarized on every Λε and hence is semipositive on Λ. On the another
hand, we know S00 is nondegenerate on the summand P 0

0 of the (η, L)-decomposition, so it has to be
positive, i.e. it is a polarization on P 0

0 .

2.4 proof of (iv)

Let Ss denote the stratum of Y of dimension s and Ss
αs−→ Us

βs←− Us+1 denote the corresponding
inclusions.

We would like to prove the splitting
pH0(f∗QX [n])|Us = βs!∗(

pH0(f∗QX [n])|Us+1)⊕H−s(pH0(f∗QX [n])|Us)[s],

then we can get the decomposition:
pH0(f∗QX [n]) =

⊕
s

ICSs
(H−s(pH0(f∗QX [n]))|ss).

When s = dim f(X), Us+1 = ∅, there is nothing to prove.
When 0 < s < dim f(X), choose s general hyperplanes on Y such they intersect transversally and

Xs = f−1(Ys) is smooth and Ys denotes the intersection of them which intersects Ss the isolated
finite points T . Apply the inductive hypotheses to fs : Xs → Ys, we know pH0(f∗QX [n])|Ys

[−s] =
pH0(fs∗QXs

[n−s]) is semisimple. Then the splitting criteria for pH0(fs∗QXs
[n−s]) is satisfied for the

points in T . Since every point y ∈ Ss has neighborhood in Y homeomorphic to Cs ×N , the splitting
criteria for pH0(f∗QX [n])|Us is satisfied for the points in Ss.

It remains to prove the case s = 0. That means, H0(α0!α
!
0
pH0(f∗QX [n]))→ H0(pH0(f∗QX [n])) is

isomorphism. The support of them are isolated points, so we can check it at every point y ∈ S0, i.e.
the induced map HBM

n,0 (f
−1(y))→ Hn

0 (f
−1(y)).
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Lemma. Let U be an affine variety, K ∈ pD≤0(U), α : T → U be the inclusion of suppH0(K). Then
the map H0(U,K)→ H0(U,α∗α

∗K) is surjective.

Proof. Consider the two spectral sequences

Ipq2 = Hp(U,Hq(K))⇒ Hp+q(U,K)

IIpq2 = Hp(U,Hq(α∗α
∗K))⇒ Hp+q(U,α∗α

∗K).

We know dim suppHq(K) ≤ −q, Artin vanishing theorem shows that Hp(U,Hq(K)) = 0 if p ≥ −q.
This implies Ipq2 = Ipq∞ since all d00r : I00r → Ir,−r+1

r are zero.
On the other hand, dim suppHq(α∗α

∗K) = 0 for all q ≤ 0, which means IIpq2 = 0 if p ̸= 0.
From the fact that H0(K) = H0(α∗α

∗K) we know the morphism H0(U,K)→ I00∞ = I002 = II002 =
H0(U,α∗α

∗K) is surjective.

Corollary 9. Let K denote pH0(f∗QX [n]) and α : T → Y is the inclusion of suppK. Then the map
Hn

0 (X) = H0(Y,K)→ H0(Y, α∗α
∗K) =

⊕
y∈T Hn

0 (f
−1(y)) is surjective.

Proof. Choose an affine open subset U of Y such that it covers T and U ′ = f−1(U) is smooth. Hodge
III Proposition 8.2.6 shows that Hn(X) and Hn(U ′) have same image in Hn(f−1(y)). Apply to the
perverse filtration, we get Hn

0 (X) and Hn
0 (U

′) have same image in Hn
0 (f

−1(y)). The previous lemma
shows the latter one is surjective, so the former one is also surjective.

Apply to the dual case, we obtain HBM
n,0 (f

−1(y))→ Hn
0 (X) is injective.

Return to the problem, we need to show the morphism

HBM
n,0 (f

−1(y)) H0(α!α
!pH0(f∗ωX [−n]))y H0(α∗α

∗pH0(f∗QX [n]))y Hn
0 (f

−1(y))

H0(pH0(f∗ωX [−n]))y H0(pH0(f∗QX [n]))y
∼

is isomorphism. This comes from the fact that S00 is a polarization of Hn
0 (X) and Hn

0 (f
−1(y)) is a

Hodge substructure of it, which implies S00 is nondegenerate on Hn
0 (f

−1(y)).

2.5 proof of (v)
We need to prove the local system H−s(pH0(f∗QX [n]))|Ss is semisimple.

Lemma. Let
X Y

T

Φ

F
π θ

be projective maps of quasi-projective varieties such that

(i) X is nonsingular of dimension n, T is nonsingular of dimension s;

(ii) F = π ◦ Φ is surjective of relative dimension n− s;

(iii) every strata of Y map smoothly and surjectively onto T ;
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(iv) θ is a section of π, i.e. π ◦ θ = id.

(v) there is an isomorphism Φ∗QX [n] =
∑

l
pHl(Φ∗QX [n])[−l].

Then there is a surjective map of local systems on T :

Rn−sF∗QX → H−s(θ∗pH0(Φ∗QX [n])).

Furthermore, the local system Rn−sF∗QX being semisimple indicates that the latter is also semisimple.

Proof. The map is induced by π∗ → π∗θ∗θ
∗ acting to Φ∗QX [n] and taking the cohomology. The result

is local on T , so we can check it at every point t ∈ T , for which we have a commutative diagram:

Xt Yt {t}

X Y T

Φt
πt

j

θt

i

Φ π

θ

Then we find (Rn−sF∗QX )y = Hn−s(Xt). On the other hand, the embedding j : Yt → Y is
transversal to all the strata of Y and hence j∗[−s] is t-exact. Then we have H−s(θ∗pH0(Φ∗QX [n]))y =
H−s(i∗θ∗pH0(Φ∗QX [n])) = H−s(θ∗t

pH0(Φt∗QXt
[n−s])[s]) = H0(pH0(Φt∗QXt

[n−s]))θt(t), which is just
Hn−s

0 (Φ−1
t (θt(t))). so the induced map at t is just Hn−s(Xt)→ Hn−s

0 (Φ−1
t (θt(t))), which is surjective

in the sense of the corollary in the previous subsection.

As for the local system on Ss, we only need to prove it is semisimple on a Zariski-dense open subset
T of it.

Let Y ↪→ P and Π = (P∨)s which means s hyperplanes of P. So we can set Y = {(y,H1, · · · ,Hs) :
y ∈ ∩si=1Hi} ⊆ Y ×Π. Then for any inclusion T → Y , there is a Cartesian diagram:

XT X X ×Π X

YT Y Y ×Π Y

T Y

p

f

p

From the condition, we know there is a Zariski-dense open subset Π0 ⊆ Π such that

(i) the surjective map X → Π is smooth over Π0;

(ii) the complete intersection Ys of s hyperplanes that associated with the points of Π0 meet all strata
of Y transversally;

(iii) the restriction of Y → Π over Π0 is stratified so that every stratum maps surjectively and
smoothly to Π0.

Since general s hyperplanes intersect with S = Ss a non-empty and finite set, the map b : YS → Π is
dominant, so b−1(Π0) is Zariski-dense open in YS .
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Since YS → S is Zariski-locally trivial, there exists a Zariski-dense open subset T ⊆ S such that
YT → T admits a section µ : T → YT with the property that µ(T ) ⊆ b−1Π0. By shrinking T , we may
assume the map b ◦ µ : T → Π0 is smooth.

The map b ◦ µ : T → Π and the inclusion T → Y inherit a morphism T → Y, which gives the
morphism θ from T to the fiber product YT . It gives the commutative diagram:

X X

Y Y

T

Φ

p

f

p

π α

θ

For p is the composition of a normal inclusion and a projection, we know p∗ is t-exact and hence
Φ∗QXT

[n] splits together with the isomorphism p∗pH0(f∗QX [n]) = pH0(Φ∗QXT
[n]). Apply the lemma,

we deduce the semisimplicity of

H−s(θ∗pH0(Φ∗QXT
[n])) = H−s(θ∗p∗pH0(f∗QX [n])) = H−s(α∗pH0(f∗QX [n])).

This is what we need.

3 the algebraic case
Lemma. The decomposition theorem remains true when f is a projective morphism between two
quasi-projective varieties and QX [n] is replaced by ICX .

Proof. Take a projective compactification of f to be f̄ : X̄ → Ȳ .
Choose a projective resolution of singularities of X̄, which is a morphism p : X ′ → X̄ such that X ′ is

smooth. According to the theorem, we know ICX̄ is a direct summand of p∗QX′ . and ICX̄ |X = ICX .
Then applying the theorem to the map f ◦ p : X ′ → Y , we get pHi(f∗p∗QX′) is semisimple and
f∗p∗QX′ = ⊕pHi(f∗p∗QX′). This shows that pHi(f∗ICX̄) is semisimple and f∗ICX̄ = ⊕pHi(f∗ICX̄)
since direct sum commutes with perverse cohomology. Hence the restriction to Y , which is pHi(f∗ICX)
is semisimple and f∗ICX = ⊕pHi(f∗ICX).

Theorem 10. The decomposition theorem remains true when f is a proper morphism between two
varieties and QX [n] is replaced by ICX .

Proof. Since the results for sheaves on Y hold if they hold when restricted to Zariski open covers of
Y , we can assume Y is quasi-projective.

Applying Chow lemma, there is a projective morphism p : X ′ → X such that X ′ is quasi-projective
and p is birational. Using the same method as the lemma above, since f ◦ p is also projective, we get
pHi(f∗ICX) is semisimple.

Theorem 11. The relative hard Lefschetz theorem remains true when f is a projective morphism and
η is an f -ample line bundle.

Proof. Since the results for sheaves on Y hold if they hold when restricted to Zariski open covers of Y ,
we can assume Y is quasi-projective. Thus f is a projective morphism between two quasi-projective
varieties. Now the prove of (i) remains true thanks to (3) when QX [n] and QX [n+ d− 1] are replaced
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by ICX and ICX , where the semisimplicity holds a priori due to the lemma. This shows the hard
Lefschetz theorem holds.
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