multiplicity

Fu Haoshuo

the simple one 1

Recall the definition of cup product:

$$\cup: \mathsf{H}^{l}(X,\mathbb{Q}) \times \mathsf{H}^{m}(X,\mathbb{Q}) \to \mathsf{H}^{l+m}(X \times X,\mathbb{Q} \otimes \mathbb{Q}) \xrightarrow{\Delta^{*}} \mathsf{H}^{l+m}(X,\mathbb{Q}).$$

For the proper morphism between algebraic varieties $f: X \to Y$ where X is smooth projective of dimension n. Decomposition theorem gives the filtration of $\mathsf{H}^{l}(X,\mathbb{Q}) = \mathbb{H}^{l}(Y, f_{*}\mathbb{Q}_{X})$ into perverse cohomology: ,

$$\mathsf{H}_{\leq a}^{n+l}(X) = \mathsf{im}(\mathbb{H}^{l}(Y, {}^{\mathfrak{p}}\tau_{\leq a}(f_{*}\mathbb{Q}_{X}[n])) \to \mathbb{H}^{l}(Y, f_{*}\mathbb{Q}_{X}[n]))$$

by $\mathfrak{p}_{\tau \leq a} \to \mathfrak{p}_{\tau \leq a+1}$.

Besides, we have natural morphism

$$\mathbb{H}^{l}(Y, {}^{\mathfrak{p}}\tau_{\leq a}(f_{*}\mathbb{Q}_{X}[n])) \times \mathbb{H}^{m}(Y, {}^{\mathfrak{p}}\tau_{\leq b}(f_{*}\mathbb{Q}_{X}[n]))$$

$$= \operatorname{Hom}_{\mathsf{D}(Y)}(\mathbb{Q}_{Y}, {}^{\mathfrak{p}}\tau_{\leq a}(f_{*}\mathbb{Q}_{X}[n])[l]) \times \operatorname{Hom}_{\mathsf{D}(Y)}(\mathbb{Q}_{Y}, {}^{\mathfrak{p}}\tau_{\leq b}(f_{*}\mathbb{Q}_{X}[n])[m])$$

$$\rightarrow \operatorname{Hom}_{\mathsf{D}(Y \times Y)}(\mathbb{Q}_{Y} \boxtimes \mathbb{Q}_{Y}, {}^{\mathfrak{p}}\tau_{\leq a}(f_{*}\mathbb{Q}_{X}[n])[l] \boxtimes {}^{\mathfrak{p}}\tau_{\leq b}(f_{*}\mathbb{Q}_{X}[n])[m])$$

$$= \operatorname{Hom}_{\mathsf{D}(Y \times Y)}(\mathbb{Q}_{Y \times Y}, {}^{\mathfrak{p}}\tau_{\leq a}(f_{*}\mathbb{Q}_{X}[n]) \boxtimes {}^{\mathfrak{p}}\tau_{\leq b}(f_{*}\mathbb{Q}_{X}[n])[l+m])$$

From $\boxtimes : {}^{\mathfrak{p}}\mathsf{D}^{\leq a}(Y) \times {}^{\mathfrak{p}}\mathsf{D}^{\leq b}(Y) \to {}^{\mathfrak{p}}\mathsf{D}^{\leq a+b}(Y \times Y)$, we obtain the morphism

$${}^{\mathfrak{p}}\tau_{\leq a}(f_*\mathbb{Q}_X[n])\boxtimes {}^{\mathfrak{p}}\tau_{\leq b}(f_*\mathbb{Q}_X[n]) \to f_*\mathbb{Q}_X[n]\boxtimes f_*\mathbb{Q}_X[n]$$

passes through ${}^{\mathfrak{p}}\tau_{\leq a+b}(f_*\mathbb{Q}_X[n]\boxtimes f_*\mathbb{Q}_X[n])$. Note that f is proper, we have $f_*\mathbb{Q}_X[n]\boxtimes f_*\mathbb{Q}_X[n] = (f \times f)_*\mathbb{Q}_{X \times X}[2n]$ and hece a commutative diagram

$$\begin{split} \mathbb{H}^{l}(Y, \mathfrak{p}_{\tau \leq a}(f_{*}\mathbb{Q}_{X}[n])) \times \mathbb{H}^{m}(Y, \mathfrak{p}_{\tau \leq b}(f_{*}\mathbb{Q}_{X}[n])) & \longrightarrow \mathsf{Hom}_{\mathsf{D}(Y \times Y)}(\mathbb{Q}_{Y \times Y}, \mathfrak{p}_{\tau \leq a}(f_{*}\mathbb{Q}_{X}[n]) \boxtimes \mathfrak{p}_{\tau \leq b}(f_{*}\mathbb{Q}_{X}[n])[l+m]) \\ \downarrow & \downarrow \\ \mathbb{H}^{l}(Y, f_{*}\mathbb{Q}_{X}[n]) \times \mathbb{H}^{m}(Y, f_{*}\mathbb{Q}_{X}[n]) & \qquad \mathsf{Hom}_{\mathsf{D}(Y \times Y)}(\mathbb{Q}_{Y \times Y}, \mathfrak{p}_{\tau \leq a+b}((f \times f)_{*}\mathbb{Q}_{X \times X}[2n])[l+m]) \\ \downarrow & \qquad \downarrow \\ \mathbb{H}^{l+m}(Y \times Y, (f \times f)_{*}\mathbb{Q}_{X \times X}[2n]) = \operatorname{Hom}_{\mathsf{D}(Y \times Y)}(\mathbb{Q}_{Y \times Y}, (f \times f)_{*}\mathbb{Q}_{X \times X}[2n][l+m]) \end{split}$$

i.e., there is a morphism $\mathsf{H}^{n+l}_{\leq a}(X)\times\mathsf{H}^{n+m}_{\leq b}(X)\to\mathsf{H}^{2n+l+m}_{\leq a+b}(X\times X).$

Let Δ_X and Δ_Y denote the diagonal map $X \to X \times X$ and $Y \to Y \times Y$, respectively. Then the cup product given by $\mathbb{Q}_{X \times X} \to \Delta_{X*} \Delta_X^* \mathbb{Q}_{X \times X} = \mathbb{Q}_X$ gives the morphism:

$$\mathbb{H}^{l+m}(Y \times Y, \mathfrak{p}_{\tau \leq a+b}(f \times f)_* \mathbb{Q}_{X \times X}[2n])$$

$$\rightarrow \mathbb{H}^{l+m}(Y \times Y, \mathfrak{p}_{\tau \leq a+b}(f \times f)_* \Delta_{X*} \mathbb{Q}_X[2n])$$

$$= \mathbb{H}^{l+m}(Y \times Y, \mathfrak{p}_{\tau \leq a+b} \Delta_{Y*} f_* \mathbb{Q}_X[2n])$$

$$= \mathbb{H}^{l+m}(Y \times Y, \Delta_{Y*} \mathfrak{p}_{\tau \leq a+b}(f_* \mathbb{Q}[n][n]))$$

$$= \mathbb{H}^{l+m}(Y, \mathfrak{p}_{\tau \leq a+b+n}(f_* \mathbb{Q}[n])[n])$$

$$= \mathbb{H}^{n+l+m}(Y, \mathfrak{p}_{\tau \leq a+b+n} f_* \mathbb{Q}[n])$$

which gives $\mathsf{H}^{2n+l+m}_{\leq a+b}(X \times X) \to \mathsf{H}^{2n+l+m}_{\leq a+b+n}(X)$. In conclusion, we obtain the cup product $\mathsf{H}^{n+l}_{\leq a}(X) \times \mathsf{H}^{n+m}_{\leq b}(X) \to \mathsf{H}^{2n+l+m}_{\leq a+b+n}(X)$.

Now consider an example when f is the map $X = Bl_{\mathsf{pt}}\mathbb{P}^3 \to \mathbb{P}^3 = Y$ with $E = f^{-1}(\mathsf{pt}) = \mathbb{P}^2$. Then

$${}^{\mathfrak{p}}\mathcal{H}^{-1}(f_*\mathbb{Q}_X[3]) = (\mathsf{H}_4(E))_{\mathsf{pt}}, \quad {}^{\mathfrak{p}}\mathcal{H}^0(f_*\mathbb{Q}_X[3]) = \mathbb{Q}_Y[3], \quad {}^{\mathfrak{p}}\mathcal{H}^1(f_*\mathbb{Q}_X[3]) = (\mathsf{H}^4(E))_{\mathsf{pt}}$$

and

$$\begin{split} \mathsf{H}_0^0 &= \mathsf{H}^0(Y) = \mathbb{Q} \xrightarrow{L} \mathsf{H}_0^2 = \mathsf{H}^2(Y) = \mathbb{Q} \xrightarrow{\eta} \xrightarrow{L} \mathsf{H}_0^4 = \mathsf{H}^4(Y) = \mathbb{Q} \xrightarrow{L} \mathsf{H}_0^6 = \mathsf{H}^6(Y) = \mathbb{Q} \\ & \mathsf{H}_{-1}^2(X) = \mathsf{H}_4(E) = \mathbb{Q} \end{split}$$

where L is a hyperplane in Y and η is a hyperplane in X.

In this case, we have the cup product of $H^2_{-1}(X)$ and itself lies in $H^4_1(X)$.

This is the case when a = b = -1 and n = 3, which shows in general this bound is tight.

In the case when $f : X \to Y$ is smooth morphism between two smooth varieties, we have ${}^{\mathfrak{p}}\tau_{\leq 0}f_*\mathbb{Q}_X = \tau_{\leq -\dim Y}f_*\mathbb{Q}_X$ and then

$$\begin{split} & \mathbb{H}^{l}(Y, {}^{\mathfrak{p}}\tau_{\leq a}(f_{*}\mathbb{Q}_{X}[\dim Y])) \times \mathbb{H}^{m}(Y, {}^{\mathfrak{p}}\tau_{\leq b}(f_{*}\mathbb{Q}_{X}[\dim Y])) \\ & \rightarrow \mathbb{H}^{l+m}(Y \times Y, {}^{\mathfrak{p}}\tau_{\leq a}(f_{*}\mathbb{Q}_{X}[\dim Y]) \boxtimes {}^{\mathfrak{p}}\tau_{\leq b}(f_{*}\mathbb{Q}_{X}[\dim Y])) \\ & = \mathbb{H}^{l+m}(Y \times Y, \tau_{\leq a-\dim Y}(f_{*}\mathbb{Q}_{X}[\dim Y]) \boxtimes \tau_{\leq b-\dim Y}(f_{*}\mathbb{Q}_{X}[\dim Y])) \\ & = \mathbb{H}^{l+m}(Y \times Y, \tau_{\leq a}(f_{*}\mathbb{Q}_{X})[\dim Y] \boxtimes \tau_{\leq b}(f_{*}\mathbb{Q}_{X})[\dim Y]) \\ & \rightarrow \mathbb{H}^{l+m}(Y \times Y, (\tau_{\leq a+b}(f \times f)_{*}\mathbb{Q}_{X \times X})[2 \dim Y]) \\ & \rightarrow \mathbb{H}^{l+m+\dim Y}(Y \times Y, (\tau_{\leq a+b}(f \times f)_{*}\Delta_{X*}\mathbb{Q}_{X})[\dim Y]) \\ & = \mathbb{H}^{l+m+\dim Y}(Y \times Y, \Delta_{Y*}(\tau_{\leq a+b}f_{*}\mathbb{Q}_{X})[\dim Y]) \\ & = \mathbb{H}^{l+m+\dim Y}(Y, {}^{\mathfrak{p}}\tau_{\leq a+b}(f_{*}\mathbb{Q}_{X}[\dim Y])) \end{split}$$

This is stronger than previous result.

$\mathbf{2}$ the complicate one

We use another way to calculate the cup product.

We have the cup product on Y at first, which gives

$$\mathbb{H}^{l}(Y, \mathfrak{p}_{\tau \leq a}(f_{\ast}\mathbb{Q}_{X}[n])) \times \mathbb{H}^{m}(Y, \mathfrak{p}_{\tau \leq b}(f_{\ast}\mathbb{Q}_{X}[n])) \to \mathbb{H}^{l+m}(Y, \mathfrak{p}_{\tau \leq a}(f_{\ast}\mathbb{Q}_{X}[n])) \otimes \mathfrak{p}_{\tau \leq b}(f_{\ast}\mathbb{Q}_{X}[n]))$$

In fact, we know $f_*\mathbb{Q}_X \otimes f_*\mathbb{Q}_X = \Delta_Y^*(f_*\mathbb{Q}_X \boxtimes f_*\mathbb{Q}_X) = \Delta_Y^*(f \times f)_*\mathbb{Q}_{X \times X} = g_*\mathbb{Q}_{X \times_Y X}$. However, the map $\otimes : {}^{\mathfrak{p}}\mathsf{D}^{\leq a} \times {}^{\mathfrak{p}}\mathsf{D}^{\leq a} \to {}^{\mathfrak{p}}\mathsf{D}^{\leq a+b}$ gives the map

$${}^{\mathfrak{p}}\tau_{\leq a}(f_*\mathbb{Q}_X[n]) \otimes {}^{\mathfrak{p}}\tau_{\leq b}(f_*\mathbb{Q}_X[n]) \to {}^{\mathfrak{p}}\tau_{\leq a+b}(g_*\mathbb{Q}_{X\times_Y X}[2n]) = {}^{\mathfrak{p}}\tau_{\leq a+b+n-r(f)}(g_*\mathbb{Q}_{X\times_Y X}[\dim X\times_Y X])[n-r(f)].$$

This gives the morphism $\mathsf{H}_{\leq a}^{n+l}(X) \times \mathsf{H}_{\leq b}^{n+m}(X) \to \mathsf{H}_{\leq a+b+n-r(f)}^{2n+l+m}(X \times_Y X)$. Then we use the diagonal morphism $\Delta_f : X \to X \times_Y X$ and $\mathbb{Q}_{X \times_Y X} \to \Delta_{f*} \mathbb{Q}_X$ to obtain the morphism $\mathsf{H}_{\leq a+b+n-r(f)}^{2n+l+m}(X \times_Y X) \to \mathsf{H}_{\leq a+b+n}^{2n+l+m}(X)$ and the composition gives the cup product on X.

Now if we assume dim $Y \geq 2$ and every perverse cohomology of $f_*\mathbb{Q}_X$ has support Y, i.e. has the form $IC_Y(L_U)$ for an open subset of Y and the local system L_U on U, the result can be strengthened as follows. Since $IC_Y(L_U) \otimes IC_Y(L'_V) \in {}^{\mathfrak{p}}\mathsf{D}^{\leq -2}(Y)$, we have the image of $\mathsf{H}^{n+l}_{\leq a}(X) \times \mathsf{H}^{n+m}_{\leq b}(X) \to \mathsf{H}^{2n+l+m}_{\leq a+b+n-r(f)}(X \times_Y X)$ actually lies in $\mathsf{H}^{2n+l+m}_{\leq a+b+n-r(f)-2}(X \times_Y X)$ and hence the cup product lies in $\mathsf{H}^{2n+l+m}_{\leq a+b+n-2}(X)$.

Another special case is when f has pure relative dimension d. Goresky-MacPherson inequality ([LF théorème 7.3.1) tells that $\operatorname{codim}(Z) \leq d$ for all support of intersection complex in the decomposition of $f_*\mathbb{Q}_X$. So we get the bound of dimensions of supports for every perverse cohomology of $f_*\mathbb{Q}_X$:

$$\dim \mathcal{H}^{i}({}^{\mathfrak{p}}\mathcal{H}^{*}(f_{*}\mathbb{Q}_{X})) \leq \begin{cases} -i-1 & i > d - \dim Y \\ -i & i \leq d - \dim Y \end{cases}$$

This is to say, choose a suitable stratification S_s such that dim $S_s = s$, we have

$$\mathcal{H}^{i}(^{\mathfrak{p}}\mathcal{H}^{*}(f_{*}\mathbb{Q}_{X})|_{S_{s}}) = 0, i > \begin{cases} -s-1 & s < \dim Y - d \\ -s & s \ge \dim Y - d \end{cases}$$

Thus for any a, b, we have

$$\mathcal{H}^{i}(^{\mathfrak{p}}\mathcal{H}^{a}(f_{*}\mathbb{Q}_{X}) \otimes ^{\mathfrak{p}}\mathcal{H}^{b}(f_{*}\mathbb{Q}_{X})|_{S_{s}}) = 0, i > \begin{cases} -2s-2 & s < \dim Y - d \\ -2s & s \ge \dim Y - d \end{cases}$$

This implies when dim $Y - d \ge 2$, such as dim X = 4 and dim Y = 3, we have $-2s \le -s - 2$, so ${}^{\mathfrak{p}}\mathcal{H}^{a}(f_{*}\mathbb{Q}_{X}) \otimes {}^{\mathfrak{p}}\mathcal{H}^{b}(f_{*}\mathbb{Q}_{X}) \in {}^{\mathfrak{p}}\overline{\mathsf{D}^{\leq -2}}$. Hence we obtain the same result as previous one.

3 addition

Although the case when dim X = 2 and dim Y = 1 is always true, the case when dim X = 3 and dim Y = 1 could be false. Here is the reason:

Let $f: X \to Y, Y = U \sqcup \mathsf{pt}$.

As long as $\mathcal{H}^0({}^{\mathfrak{p}}\mathcal{H}^1(f_*\mathbb{Q}_X[1])) \neq 0$ and the square of it is non-zero, the image must lies in $\Gamma(Y, \mathcal{H}^4)$. In this case, the multiplicity is false.

For example, when f is $\mathrm{Bl}_{(0,0)}\mathbb{P}^1 \times \mathbb{P}^2 \to \mathbb{P}^1 \times \mathbb{P}^2 \to \mathbb{P}^1$, the value in the circle is the exceptional divisor [E]. The self intersection is non-zero and hence lies in $\mathcal{H}^0({}^{\mathfrak{p}}\mathcal{H}^3(f_*\mathbb{Q}_X[1]))$.

We can also consider the case $f : \operatorname{Bl}_C \mathbb{P}^3 \xrightarrow{g} \mathbb{P}^3 \xrightarrow{p} \mathbb{P}^1$ where $C \subset p^{-1}(0)$ is a smooth curve. Then $g_* \mathbb{Q}_X = \mathbb{Q}_{\mathbb{P}^3} \oplus \mathbb{Q}_C[-2]$ so that we can see the mechanism better.

Note in these two case, the morphism f are all flat.