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1 notation
π is the Hilbert-Chow morphism X [n] → X(n). For any partition α = 1a1 · · ·nan of n, let |α| =∑n

k=1 ak, gcd(α) = gcd({i : ai ̸= 0}) and n = ||α|| =
∑

iai. The set of all partitions of n is denoted
by P (n). iα is the morphism X(α) =

∏n
k=1 X

(ak) → X
(n)
α ↪→ X(n).

Let p : S → C be a proper morphism from a smooth surface to a curve. We use the same symbol
for the morphism Sn → Cn and S(α) → C(α) for any partition α = 1a1 · · ·nan .

Let p∗S[2] = P−1[1]⊕ P0 ⊕ P1[−1] be the perverse cohomology decomposition.
For any rational homology manifold X of dimension 2n, its k-th cohomology has pure Hodge

structure of weight k. Let Px,y(X) denote the Hodge number polynomial of middle degree, i.e.
Px,y(X) =

∑
−n≤i,j≤n h

n+i,n+j(X)xiyj . Thus we know Px,y(X × Y ) = Px,y(X)Px,y(Y ). For any
perverse sheaf K, let Px(K) denote the Poincaré polynomial, i.e. Pt(K) =

∑
i dimHi(X,K)ti. Hence,

there is an identity Pt(CX [n]) = Pt,t(X).

2 Hilbert case
2.1 one side
The decomposition theorem shows that π∗CS[n] [2n](n) =

⊕
α∈P (n) iα∗CS(α) [2|α|](α), which implies

that Px,y(S
[n]) =

∑
α Px,y(S

(α)).
In this case, we have

∑
n≥0

Px,y(S
[n])tn =

∑
n≥0

∑
α∈P (n)

Px,y(S
(α))t||α|| =

∑
ai≥0

∏
i≥1

Px,y(S
(ai))tiai =

∏
i≥1

∑
n≥0

Px,y(S
(n))tin

 .

Recall the relation H∗(X(n),K(n)) = H∗(Xn,Kn)Sn =
⊕

i+j=n S
iHev(X,K)⊗∧jHodd(X,K). It

is obvious that this formular is capatible with the Hodge decomposition when K = CX . Hence, we
have Px,y(X

(n)) =
∑

i+j=n(S
iP ev

x,y(X))(∧jP odd
x,y (X)). Summing with n, we obtain

∑
n≥0

Px,y(X
(n))tn =

∑
i,j≥0

(SiP ev
x,y(X))(∧jP odd

x,y (X))ti+j =

∑
i≥0

SiP ev
x,y(X)ti

∑
j≥0

∧jP odd
x,y (X)tj

 .

Furthermore,∑
i≥0

SiP ev
x,y(X)ti =

∏
f∈P ev

x,y(X)

f is monomial

1

1− tf
,
∑
j≥0

∧jP odd
x,y (X)tj =

∏
f∈P odd

x,y (X)

f is monomial

(1 + tf).
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In conclusion,∑
n≥0

Px,y(S
(n))tn =

(1 + y−1t)h
1,0

(1 + x−1t)h
0,1

(1 + xt)h
2,1

(1 + yt)h
1,2

(1− x−1y−1t)h0,0(1− xy−1t)h2,0(1− t)h1,1(1− xy−1t)h0,2(1− xyt)h2,2

and∑
n≥0

Px,y(S
[n])tn =

∏
i≥1

(1 + y−1ti)h
1,0

(1 + x−1ti)h
0,1

(1 + xti)h
2,1

(1 + yti)h
1,2

(1− x−1y−1ti)h0,0(1− xy−1ti)h2,0(1− ti)h1,1(1− xy−1ti)h0,2(1− xyti)h2,2 .

2.2 another side
For the morphism p ◦ π : S[n] → C(n), let ki,jn be the dimension of Hj(C(n), pHi(p∗π∗CS[n] [2n])). We
consider the polynomial

∑
n≥0

∑
i,j k

i,j
n xiyjtn.

According to the decomposition theorem, we have

p∗π∗QS[n] [2n] =
⊕

α∈P (n)

p∗iα∗QS(α) [2|α|] =
⊕

α∈P (n)
α−1+α0+α1=α

iα∗q∗((P−1[1])
(α−1) � (P0)

(α0) � (P1[−1])(α1)),

where q : C(α0) × C(α1) × C(α2) → C(α) is a finite map and every summand is a shift of perverse
sheaves. Hence, we have

pHi(p∗π∗QS[n] [2n]) =
⊕

α∈P (n)
α−1+α0+α1=α
|α1|−|α−1|=i

iα∗q∗((P−1)
{α−1} � (P0)

(α0) � (P1)
{α1}),

which implies∑
j

ki,jn yj = Py(
pHi(p∗π∗CS[n] [2n])) =

∑
α∈P (n)

α−1+α0+α1=α
|α1|−|α−1|=i

Py((P−1)
{α−1} � (P0)

(α0) � (P1)
{α1}).

Summing with i and furthermore with n, we obtain∑
i,j

ki,jn xiyj =
∑

α∈P (n)
α−1+α0+α1=α

Py((P−1)
{α−1})Py((P0)

(α0))Py((P1)
{α1})x|α1|−|α−1|

and∑
n≥0

∑
i,j

ki,jn xiyjtn =
∑

α−1,α0,α1

Py((P−1)
{α−1})Py((P0)

(α0))Py((P1)
{α1})x|α1|−|α−1|t||α−1||+||α0||+||α1||,

which is equal to(∑
α

Py((P−1)
{α})x−|α|t||α||

)(∑
α

Py((P0)
(α))t||α||

)(∑
α

Py((P1)
{α})x|α|t||α||

)

=
∏
i≥1

∑
n≥0

Py((P−1)
{n})x−ntin

∑
n≥0

Py((P0)
(n))tin

∑
n≥0

Py((P1)
{n})xntin

 .
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Recall H∗(X(n),K{n}) =
⊕

i+j=n ∧iHev(X,K)⊗ SjHodd(X,K). We have

Pt(K
{n}) =

∑
i+j=n

(∧iP ev
t (K))(SjP odd

t (K)).

Summing with n, we obtain

∑
n≥0

Py(K
{n})tn =

∑
i≥0

∧iP ev
y (K)ti

∑
j≥0

SjP odd
y (K)tj

 .

In conclusion, this case implies

∑
n≥0

Py((P−1)
{n})tn =

(1 + t)k
−1,0
1

(1− y−1t)k
−1,−1
1 (1− yt)k

−1,1
1

,

∑
n≥0

Py((P0)
(n))tn =

(1 + y−1t)k
0,−1
1 (1 + yt)k

0,1
1

(1− t)k
0,0
1

,

∑
n≥0

Py((P1)
{n})tn =

(1 + t)k
1,0
1

(1− y−1t)k
1,−1
1 (1− yt)k

1,1
1

and finally

∑
n≥0
i,j

ki,jn xiyjtn =
∏
i≥1

(1 + x−1ti)k
−1,0
1 (1 + y−1ti)k

0,−1
1 (1 + yti)k

0,1
1 (1 + xti)k

1,0
1

(1− x−1y−1ti)k
−1,−1
1 (1− x−1yti)k

−1,1
1 (1− ti)k

0,0
1 (1− xy−1ti)k

1,−1
1 (1− xyti)k

1,1
1

.

2.3 conclusion
For a proper morphism X → Y form a smooth variety of dimension 2n to a variety of dimension n,
we say the two diamonds are equal if the Hodge number is equal to the decomposition number, i.e.
hn+i,n+j = ki,j .

Example. The elliptic fibration of a K3 surface S → P1.

Example. The surjective map from an Abelian surface to an elliptic curve A → E.

Theorem 1. If the morphism S → C satisfies that the two diamonds are equal, then the morphism
S[n] → C(n) satisfies that the two diamonds are equal.

Proof. Comparing the two polynomials, since h1+i,1+j = ki,j1 , they are equal. Hence every coeffcients
are equal, which means that hn+i,n+j(S[n]) = ki,jn . This is the result.

In fact, from the calculation, we see easily the following theorem.

Theorem 2. If the morphism S → C satisfies that the two diamonds are equal, then the morphism
S(n) → C(n) satisfies that the two diamonds are equal.

Proof. There generating polynomial is just the product component for i = 1.
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3 Kummer case
3.1 one side
For n ≥ 1, we have the finite map r : A×Kn−1(A) → A[n]. Furthermore, the following formular holds:

hn+p,n+q(A×Kn−1(A)) =
∑

σ∈A[n]∨

hn+p,n+q(A[n], Lσ) =
∑

σ∈A[n]∨

∑
α∈P (n)

h|α|+p,|α|+q(A(α), Lσ)

=
∑

α∈P (n)

∑
σ∈A[gcd(α)]∨

h|α|+p,|α|+q(A(α), Lσ) =
∑

α∈P (n)

gcd(α)4h|α|+p,|α|+q(A(α))

This is to say, Px,y(A×Kn−1(A)) =
∑

α∈P (n) gcd(α)
4Px,y(A

(α)). Summing with n, we have∑
n≥1

Px,y(A×Kn−1(A))tn =
∑
α ̸=0

gcd(α)4Px,y(A
(α))t||α||.

3.2 another side
Recall the diagram where r are finite morphism:

A×Kn−1(A) A[n] A(n)

E ×Kn−1(E) E(n)

r

p×p

π

p

r

Thus hj(E ×Kn−1(E), pHi((p× p)∗CA×Kn−1(A)[2n])) = hj(E(n), pHi(r∗(p× p)∗CA×Kn−1(A)[2n])).
Recall the decomposition

pr∗π∗r∗CA×Kn−1(A)[2n] = K ′ ⊕
⊕

α∈P (n)
α−1+α0+α1=α

⊕
σ∈A[gcd(α)]∨

iα∗q∗(P{α−1}
−1 � P(α0)

0 � P{α1}
1 )[|α−1| − |α1|]

where K ′ has no contribution to the cohomology of A×Kn−1(A) and every direct component on the
right is the shift of a perverse sheaf.

Hence if we let ki,jn denote the similar number for the morphism A ×Kn−1(A) → R ×Kn−1(E),
we have

ki,jn =
∑

α∈P (n)
α0+α1+α2=α
|α1|−|α−1|=i

gcd(α)4hj(E(α−1) × E(α0) × E(α1),P{α−1}
−1 � P(α0)

0 � P{α1}
1 )

and summing with i, j,∑
i,j

ki,jn xiyj =
∑

α∈P (n)
α−1+α0+α1=α

gcd(α)4Py((P−1)
{α−1})Py((P0)

(α0))Py((P1)
{α1})x|α1|−|α−1|.

4



3.3 conclusion
Theorem 3. Let A → E be a surjective morphism from an Abelian surface to an elliptic curve, then
the morphism A×Kn−1(A) → E ×Kn−1(E) satisfies that the two diamonds are equal.

Proof. From theorem 2, we know that A(α) → E(α) satisfies that the two diamonds are equal, which
means

Px,y(A
(α)) =

∑
α−1+α0+α1=α

Py((P−1)
{α−1})Py((P0)

(α0))Py((P1)
{α1})x|α1|−|α−1|.

Adding them after multiplied by gcd(α)4, we get the desired result.

Theorem 4. Let A → E be a surjective morphism from an Abelian surface to an elliptic curve, then
the morphism Kn−1(A) → Kn−1(E) satisfies that the two diamonds are equal.

Proof. On the one hand, Px,y(A×Kn−1(A)) = Px,y(A)Px,y(K
n−1(A)). On the other hand,

ki,jn = hj(E ×Kn−1(E),
⊕

i1+i2=i

pHi1(p∗CA[2])� pHi2(p∗CKn−1(A)[2n− 2]))

=
∑

i1+i2=i
j1+j2=j

hj1(E, pHi1(p∗CA[2]))h
j2(Kn−1(E), pHi2(p∗CKn−1(A)[2n− 2])).

After summing with i, j, it decomposes into a product. One component is the polynomial associated
with A → E, while the other one is the polynomial associated with Kn−1(A) → Kn−1(E).

The first is precisely Px,y(A). Hence the remaining parts are equal.

Problem. I could not find a beautiful expression for
∑

n≥1 Px,y(A×Kn−1(A))tn.
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