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7 is the Hilbert-Chow morphism X" — X For any partition a = 19 ---n% of n, let |a| =
S h_y ak, ged(a) = ged({i : a; # 0}) and i, is the morphism X (®) = [T}_, X (@) — X x™ for
X=AorC.

pr: A — C is the projection of A = C'xC” to the first component and we use the same symbol for the
maps A — C(®) and K"~1(A) - K"~1(C). In addition, we have pr,Q4 = Qc ® Q4 [—1] ® Qc[-2].

1 local systems on A

For any o € m1(A)Y = Hom(m(A),C*), we define L4, the local system with respect to o. For any
morphism f : X — A, let Lx , denote the local system f*L, ,. Using the identity m (A4)/nmi(A) =
m0(A[n]) = A[n] due to the topological fibration A[n] < A s A, we associate o € A[n]" with the
element o € m1(A)Y such that o™ = 1.

Then we determine the sheaf (-n).C4. Since -n is a covering map, it is a locally constant sheaf with
71(A)’s representation Ind% (C) where -n : H = m(A) < m1(A) = G. It turns out that this is just the
regular representation of G/H = A[n] on @, ¢ 41, Cz by 9(Cs) = Cgs. Since A[n] is an Abelian group,
the representation splits into all its 1-dim representations. This is to say, (-n).C4 = @aeA[n}v Lag.
Here, x € m1(A) acting on Ly , is by multiplying o(z).

Now we consider the cup product on A. Recall Leray spectral sequence HP(B,RI1f.Cx) =
HPT4(X, C) for a fibration F < X LB Itis equipped with a cup product structure RYf,Cx X
RY f,Cx — R f,Cx coming from H?(F,C) x HY (F,C) — H9¢(F,C). In our case, (-n),C4 =
R°(-n).C4 and the cup product is

Phc.xPc.-Pc

z€A[n] z€A[n] z€A[n]
(Cy,Cy) — 64,Cy

Under the identification @ C,= €& L,, we find the above map is (Las,Lar)— Laor.

z€A[n] ocA[n]v
Example. Assume the group G = Z/nZ, then the identification @ Co = @ cqv Lo is kY =
0<z<n—1
S (TR, where kY (z) = ¢F*, ¢ ids the n-th root of unity. Thus

0<zx<n—1

()= > ey = Y R = (kDY

0<z,y<n—1 0<z<n—1

On the other hand, since x € m(A) acting on L4, is by multiplying o(z), « € m1(A4) acting on
Laos ® Ly, is by multiplying o(x)7(z) = (07)(z). Thus we have La o ® Lar = L 51



Now we study the cohomology behavior of such local systems.
Let T be a complex torus, o € 1 (T)V,n = ord(7) < co. Then we have H (T, Ly,) #0 < 7=1
<= L is trivial.

Proof. According to the previous discussion, we have the morphism of ‘n : T — T and (-n).Cp =
@D, erpmv L1,o- Taking cohomology, we have HY(T,Cr) = H(T,Lt,) ® Doeringv o1 HY(T,Lr,,).
Since L7 = Cr, counting the dimensions, we get the results. O

Let g : Al*l — A(®) be the quotient map by the finite group G, = [[;_, Sa,. Let o € A[n]V, then
HY(A® Ly ) =H(A ¢*L ) ). Since Al is a complex torus, this group is non-zero if and
only if L gjal o = ¢" L g(e) , I8 trivial.

Consider the following commutative diagram

Alal L} A(a)
W
A “ged(a) A

where + : A(® — A is the map (7,1 <i<n1<j<a)—>r, m Z‘;L:l Tij.

We claim that the map 4 induce the surjective map 1 (Al®l) — 7, (A). In fact, accroding to the
definition of greatest common divisor, there exist intergers b; such that Y . ib; = gcd(cr). Thus if
f:1— Ais aloop, we have f : I — Alel defined by f = (fij, 1 <i<n,1<j<a;) where

- f 1<j<a; -1
IV a1y =
Thus the composition of f and -+ is just Dy ﬁ@('bi) of =f.
Hence, if the local system (-gcd(a))*La,c = Laged(a)o i not trivial, the pull back to Alel is also
not trivial. In conclusion, L 4| , is trivial if and only if ged(a)o = 1, i.e. ord(o)|ged(ar). In this case,
LA@J is also trivial.

2 perverse filtration

K"l A) e Ax K" 1(A) - Al
/ %prxpr O /
pr A n A prom

Our aim is to determine the perverse decomposition for Ax K"~1(A) — C(™). After that, according
to r is finite, we know the perverse number of the element in H*(A x K" 1(A)) is the same for the
two morphisms A x K" 1(A) = C x K" 1(C) and A x K" 1(A) — C™),

Using decomposition theorem, we have the result that m,Q 4 [2n] = @D, 1axQ 4 [2]a]].



According to proper base change, the Cartesian diagram shows that r.Caygn-14) = 7:p*Qa =
(+)*(n)«Qa = ®UGA[n]V L gim) - The same method as the previous section for the topological fibra-

tion A[n] — A x K" 1(A) 5 A shows that the image of (L At 55 L a1 ;) under the cup product
morphism 7.Cx x r.Cx — 7,Cx is their tensor product L 4 ,, where X = A x Kn1(A).
Now we can calculate F*T*CAXKn—l(A) as follows:

W*T*CAXKn—l(A)

=Tx @ Lgim o

oc€A[n]Y

= @ 7T*7T*LA(7L)7O-

oc€An]v

@ TQpm ® LA(7L)70-

oc€An]Y

@ EBia*Qmm 2la] = 2n] ® Lsm)

c€AN]Y «

B PiosLaw o 2lal—20]

oc€A[n]Y «

Note that H*(A), L @ ,) # 0 <= L , is trivial <= ord(c)|ged(e). Hence the only

components that contribute to the cohomology of Ax K"~!(A) are b iaxLace) 5[2]0] —2n].
a oeAlged(@)]V

Applying pr, we find pr.m.r.Caxgn-10)20] =@ @ iaxprlaw o[2]af].
a geAln]v

When ord(c)|ged(a), L ac) » = C 4@, we have

pr.Chmr = (pr,Ca)@ = P ¢(CE R(C)* RCE?)[~|ay| - 2|as]]

aptartas=a

where ¢ : C(@0) x C(@1) x 0(@2) 5 C(®) 5 a finite map.
In conclusion, there is a decomposition:

prorrCacoall = (D @ i @ @CEVRECH I RCE)2a0l + o] | 0K

a ogeA[ged(a)]V aptaitoas=a

where K’ has no contribution to the cohomology of A x K"~!(A) and every direct component on
the left is the shift of a perverse sheaf and hence is direct summand of perverse cohomologies of
pr*ﬁ*r*(CAxanl(A) [271]

3 semismall morphism
Let f : X — Y denote a semismall morphism from a smooth variety with relative strata Y, such

that f : X4 = f~1(Ya) — Y, is smooth. Let A be the set of those strata o such that 2dim X, =
dimX +dimY,.



To make things simpler, we assume every fiber of y, € Y, is irreducible. Let iy : Zo — Y, be a
small resolution of Y, C Y such that Z, is the quotient of a smooth variety by a finite group. Thus
i0xQz, [dimY,] = IC+.

The decomposition shows that we have f.Qx[dim X] = f.ICx = @ [Cy- = @ iaxQz,[dimY,].

aEN aEA

Zoxy X — X, — X

AN

Z, Lo Y

The direct summand gives the morphism of sheaves i,.Qz_ [dimY,] — f.Qx[dim X]. On the other
hand, we have

Hom(ia.Qz, [dimY,], f.Qx[dim X])
=Hom(iqxQz, [dimY,], fawx[— dim X])
=Hom(Qz, [dim Y,], &, fewx [~ dim X])
=Hom(Qz, [dim Y,], f.it,wx [~ dim X])
=Hom(f*Qz,_[dimY,],wz, xyx[— dim X])
=Hom(Qz, xyx, Wz, xyx[—dimX —dimY,))

=H3n'x \ dim v, (Za xy X,Q)

However, dim X + dimY,, = 2dim X, which is the dimension of Z, Xy X. Hence the above group
is just Adimz.xyx(Za Xy X). In the case of our assumption, Z, Xy X only has one irreducible
component which is itself.

In conclusion, the above morphism is induced by [Z, Xy X] € A.(Z, x X). Such correspondence
induces the morphism H*(Z,, Q) — H**+dimX—dimZa (X Q). Here, I give a explicit description of such
morphism. For € H*(Z,,Q), we have the pull-back f*x € H*(Z, Xy X,Q). Then the cap product
with H2M Zoxyx(Za Xy X,Q) gives HBM ZuxyX—+(Za Xy X,Q) by Q ® w = w. Next the push-
forward of Z, xy X — X gives the resulting element i, (f*z N [Zo xy X]) € HE , (X, Q).
Finally, the Poincaré duality gives the corresponding element in H**+2dimX—=2dimZxy X (¥ Q) =
H*—i—dim X —dimY, (X, Q)

Similarly, Z, is the quotient of a manifold by a finite group, we have ICz = Qgz_[dim Z,] and
hence wz, = DQgz, = D(ICz [-dimZ,]) = (DICz,)[dim Z,] = Qz_[2dim Z,]. The same formula
shows Hom(f.Qx [dim X],i0.Qz, [dimY,]) = HEMN Gy, (Zo Xy X, Q). This implies the projection
f+Qx[dim X] — i,.Qz_ [dimY,] is also induced by the correspondence [Z, Xy X| € Ax(Zy X X).

According to the above discussion, the decomposition H*(X,Q) = @, cp H*(Za,Q)[dim Z, —
dim X] is canonical, while the morphisms are given as above.

4 cohomology ring structure

For a given 2 € H*(A®,C) c H**t?"—2lel(Al"] C), if ord(c) fged(a), write x, = 0; if ord(c)| ged(a),
write x, the corresponding element in H*(A(®), L y() ,) C H* 2 =2lel(Al [ ) € H*F2n=2lel(Ax
K" 1(A),C) under the trivialization L o =Cho-

Similarly, for 0 # z, € H*(A®), L@ ), we write o the corresponding element in H*(A) . C)
H*+2n72|o¢\(A[n]’(C)'



Theorem 1. If z, € H*(A("‘),LAM)J) and y, € H*(A(ﬁ),LA(mJ), their product x, Uy, € H*(A x
K" 1(A),C) is 2)_, where 27 € H*(A") C) is non-zero such that x Uy = >, 2

vy ToT?

Proof. Using the result in the previous section, where X = A" Y = A A is the partition of n
and Z, = A, we find z is actually coming from HEM(A®) x 4., A", C), and hence comes from

HBM(AM ©).

A x oy Al Al Al
Ale) te A p()

Since we have the cup product in A

U HPM(ART ©) x HPM (AR, ©) —» BPY (AR 0 Al o)

we have U y must be in the image of HPM(ATJ] N AT;], C) — HBEM(AM C). Thus v must satisfy

Al c Al Al

Now we give a explicit description of z)_ by showing that the construction in the previous section
is also valid for L,-coefficients.

In fact, the decomposition comes from the changing-of-coefficient formula 7, L g1 , = Tu(7* L g(n) ,®
Cumi) = L gy @ mC 4y and ia*LA(a),g = 1, a%xC 40) ® LAW,(7 similarily. As a result, the correspon-
dence works the same for L,-coefficients. That is, the element in H*(A() L) gives the pull-back
in H*(A(a) X A(n) A["],Lo). Cupping with [A(a) X A(n) A[”]] € Hfz(”H”‘D(A(“) X A(n) A["],w) gives
H**Q(”HO")(A(O‘) X a4 A w® L,). According t0 in«(w® Ly) = (iasw) ® L, The push-forward gives
the element in H**27=2lel(AlM L)), Tt is clear that this procedure and its inverse are all independent
of Ly. This is to say, applying the cup product and the projection, H*(A(®) L,) x H*(A®) L.) —
H*(A™) | L,,) is independent of o and 7.

Finally, the trivialization of L 4in

7U|A£:"] ~ (CAE:”]’ LA[T,,],T|A£;,] ~ CA%’/] and LA[W,]7UT‘AL/n] ~ (CAEYH] 1S

capatible with the tensor product L g , ® L o) - =L Al o leading to the disired result. O

5 perverse multiplicativity

For a morphism f : X — Y, we use the notation P<,H*(X,C) to mean the perverse filtration of
H*(X,C) by im(H*(Y,?7<, f:Cx[dim X — r(f)]) = H*(Y, f.Cx[dim X — r(f)])). For x € H*(X,C),
let P(z) denote the number p such that x € P<,H*(X,C) and = ¢ P<,_1H*(X,C). In the case that
f is the morphism pro 7 : A"l — C(™ . Then dim X — (f) = n, and P(z) ranges from 0 to 2n.

In [zzl], he already shows that Al") — C(™) has perverse multiplicativity, i.e. we have P(z Uy) <
P(x) + P(y) for all z,y € H*(A" C). This is to say, If 2 € H*(A® C),y € H* (AP C) and we
write z Uy = 3 27 where 27 € H*((),C), then P(z) < P(z) + P(y).

For x € H*(Ax K" 1(A),C), we write P(x) for the number associated with the morphism promor :
A x K" 1(A) = C™. According to the calculation in section 2, we know that P(z,) is independent
of o € A[n]Y. Since when 7 =1, L sn , = C4pu, we have P(z,) = P(x1) = P(z).

Thus, Theorem 1 shows that P(z, Uy,) = max, P(2),) = max, P(27) = P(zUy) < P(z)+P(y) =
P(25) + P(y,). In another word, the morphism A x K"~ '(A) — C(™ has perverse multiplicativity.



Now, we consider the morphism pr x pr: A x K""1(A) — K"~!(C). Write pr,Crn-1(4)[n — 1] =
Sonc? PH'(pr,Cxn-1(a)y[n — 1])[—4]. Then we have

7 (pr X pr)«Cax gn-1(a)[n]
=r, (pr*(CA[l] X pr,Crn-1(a)[n — 1])

=r, @pHi(pr*CA[l})[—i] X 6_9 PHI (pr,Cgen-1(ay[n — 1])[—]
i=0 =0

2n
=7, @ @ PH (pr,Ca[1]) ®PH (pr,Cren-1(a)[n — 1])[—F]
k=0 i+j—k

=P P r. (PH (pr.Call]) BPH (pr,Cren-r(a)[n — 1])) K]

k=0 i+j=Fk

Since r is a finite morphism, 7, is t-exact, hence every summand in the above is indeed the shift
of a perverse sheaf. As a result, this gives another description of the perverse decomposition for
ro(prXxpr)=promor.

Ifx € H*(K" 1(A),C), we write P(z) for the number associated with the morphism pr : K"~1(A) —
K"~ 1(C). Then according to the above description, we have P(1 ® z) = P(1) + P(z) = P(x).

In conclusion, if z,y € H*(K" 1(A),C) we have P(zUy) = P(1® (zUy)) = P(1®z)U(1®y)) >
P(1®2z)+ P(1®y) = P(x)+ P(y). This shows that the morphism K"~(A4) — K" 1(C) has perverse
multiplicativity.



