
genKum
Fu Haoshuo

π is the Hilbert-Chow morphism X [n] → X(n). For any partition α = 1a1 · · ·nan of n, let |α| =∑n
k=1 ak, gcd(α) = gcd({i : ai ̸= 0}) and iα is the morphism X(α) =

∏n
k=1 X

(ak) → X
(n)
α ↪→ X(n) for

X = A or C.
pr : A → C is the projection of A = C×C ′ to the first component and we use the same symbol for the

maps A(α) → C(α) and Kn−1(A) → Kn−1(C). In addition, we have pr∗QA = QC ⊕Q2
C [−1]⊕QC [−2].

1 local systems on A

For any σ ∈ π1(A)∨ = Hom(π1(A),C×), we define LA,σ the local system with respect to σ. For any
morphism f : X → A, let LX,σ denote the local system f∗LA,σ. Using the identity π1(A)/nπ1(A) =

π0(A[n]) = A[n] due to the topological fibration A[n] ↪→ A
·n−→ A, we associate σ ∈ A[n]∨ with the

element σ ∈ π1(A)∨ such that σn = 1.
Then we determine the sheaf (·n)∗CA. Since ·n is a covering map, it is a locally constant sheaf with

π1(A)’s representation IndGH(C) where ·n : H = π1(A) ↪→ π1(A) = G. It turns out that this is just the
regular representation of G/H = A[n] on

⊕
x∈A[n] Cx by g(Cx) = Cgx. Since A[n] is an Abelian group,

the representation splits into all its 1-dim representations. This is to say, (·n)∗CA =
⊕

σ∈A[n]∨ LA,σ.
Here, x ∈ π1(A) acting on LA,σ is by multiplying σ(x).

Now we consider the cup product on A. Recall Leray spectral sequence Hp(B,Rqf∗CX) ⇒
Hp+q(X,C) for a fibration F ↪→ X

f−→ B. It is equipped with a cup product structure Rqf∗CX ×
Rq′f∗CX → Rq+q′f∗CX coming from Hq(F,C) × Hq′(F,C) → Hq+q′(F,C). In our case, (·n)∗CA =
R0(·n)∗CA and the cup product is ⊕

x∈A[n]

Cx ×
⊕

x∈A[n]

Cx →
⊕

x∈A[n]

Cx

(Cx,Cy) 7→ δxyCx

Under the identification
⊕

x∈A[n]

Cx =
⊕

σ∈A[n]∨
Lσ, we find the above map is (LA,σ, LA,τ ) 7→ LA,στ .

Example. Assume the group G = Z/nZ, then the identification
⊕

0≤x≤n−1

Cx =
⊕

σ∈G∨ Lσ is k∨ =∑
0≤x≤n−1

ζ−kxx, where k∨(x) = ζkx, ζ is the n-th root of unity. Thus

(k∨, l∨) =
∑

0≤x,y≤n−1

(ζ−kxx, ζ−lyy) =
∑

0≤x≤n−1

ζ−kx−lxx = (k + l)∨.

On the other hand, since x ∈ π1(A) acting on LA,σ is by multiplying σ(x), x ∈ π1(A) acting on
LA,σ ⊗ LA,τ is by multiplying σ(x)τ(x) = (στ)(x). Thus we have LA,σ ⊗ LA,τ = LA,στ .
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Now we study the cohomology behavior of such local systems.
Let T be a complex torus, σ ∈ π1(T )

∨, n = ord(τ) < ∞. Then we have Hi(T, LT,τ ) ̸= 0 ⇐⇒ τ = 1
⇐⇒ LT,τ is trivial.

Proof. According to the previous discussion, we have the morphism of ·n : T → T and (·n)∗CT =⊕
σ∈T [n]∨ LT,σ. Taking cohomology, we have Hi(T,CT ) = Hi(T,LT,1) ⊕

⊕
σ∈T [n]∨,σ ̸=1 H

i(T,LT,σ).
Since LT,1 = CT , counting the dimensions, we get the results.

Let q : A|α| → A(α) be the quotient map by the finite group Sα =
∏n

k=1 Sak
. Let σ ∈ A[n]∨, then

Hi(A(α), LA(α),σ) = Hi(A|α|, q∗LA(α),σ)
Sα . Since A|α| is a complex torus, this group is non-zero if and

only if LA|α|,σ = q∗LA(α),σ is trivial.
Consider the following commutative diagram

A|α| A(α)

A A

q

u +u

· gcd(α)

where u : A(α) → A is the map (xij , 1 ≤ i ≤ n, 1 ≤ j ≤ ai) 7→
∑n

i=1
i

gcd(α)

∑ai

j=1 xij .
We claim that the map u induce the surjective map π1(A

|α|) → π1(A). In fact, accroding to the
definition of greatest common divisor, there exist intergers bi such that

∑n
i=1 ibi = gcd(α). Thus if

f : I → A is a loop, we have f̃ : I → A|α| defined by f̃ = (fij , 1 ≤ i ≤ n, 1 ≤ j ≤ ai) where

xij =

{
f 1 ≤ j ≤ ai − 1
(·(bi − ai + 1)) ◦ f j = ai

Thus the composition of f̃ and u is just
∑n

i=1
i

gcd(α) (·bi) ◦ f = f .
Hence, if the local system (· gcd(α))∗LA,σ = LA,gcd(α)σ is not trivial, the pull back to A|α| is also

not trivial. In conclusion, LA|α|,σ is trivial if and only if gcd(α)σ = 1, i.e. ord(σ)| gcd(α). In this case,
LA(α),σ is also trivial.

2 perverse filtration

Kn−1(A) A×Kn−1(A) A[n]

A A

Kn−1(C) C ×Kn−1(C) C [n] = C(n)

C C

i0

pr

r

p pr×pr � +
pr◦π·n

i0 r

p � +
·n

pr pr

Our aim is to determine the perverse decomposition for A×Kn−1(A) → C(n). After that, according
to r is finite, we know the perverse number of the element in H∗(A ×Kn−1(A)) is the same for the
two morphisms A×Kn−1(A) → C ×Kn−1(C) and A×Kn−1(A) → C(n).

Using decomposition theorem, we have the result that π∗QA[n] [2n] =
⊕

α iα∗QA(α) [2|α|].
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According to proper base change, the Cartesian diagram shows that r∗CA×Kn−1(A) = r∗p
∗QA =

(+)∗(·n)∗QA =
⊕

σ∈A[n]∨ LA[n],σ. The same method as the previous section for the topological fibra-
tion A[n] ↪→ A × Kn−1(A)

r−→ A[n] shows that the image of (LA[n],σ, LA[n],τ ) under the cup product
morphism r∗CX × r∗CX → r∗CX is their tensor product LA[n],στ where X = A×Kn−1(A).

Now we can calculate π∗r∗CA×Kn−1(A) as follows:

π∗r∗CA×Kn−1(A)

=π∗

 ⊕
σ∈A[n]∨

LA[n],σ


=

⊕
σ∈A[n]∨

π∗π
∗LA(n),σ

=
⊕

σ∈A[n]∨

π∗QA[n] ⊗ LA(n),σ

=
⊕

σ∈A[n]∨

⊕
α

iα∗QA(α) [2|α| − 2n]⊗ LA(n),σ

=
⊕

σ∈A[n]∨

⊕
α

iα∗LA(α),σ[2|α| − 2n]

Note that H∗(A(α), LA(α),σ) ̸= 0 ⇐⇒ LA(α),σ is trivial ⇐⇒ ord(σ)| gcd(α). Hence the only
components that contribute to the cohomology of A×Kn−1(A) are

⊕
α

⊕
σ∈A[gcd(α)]∨

iα∗LA(α),σ[2|α|−2n].

Applying pr, we find pr∗π∗r∗CA×Kn−1(A)[2n] =
⊕
α

⊕
σ∈A[n]∨

iα∗pr∗LA(α),σ[2|α|].

When ord(σ)| gcd(α), LA(α),σ = CA(α) , we have

pr∗CA(α) = (pr∗CA)
(α) =

⊕
α0+α1+α2=α

q∗(C(α0)
C � (C2

C)
{α1} � C(α2)

C )[−|α1| − 2|α2|]

where q : C(α0) × C(α1) × C(α2) → C(α) is a finite map.
In conclusion, there is a decomposition:

pr∗π∗r∗CA×Kn−1(A)[2n] =

⊕
α

⊕
σ∈A[gcd(α)]∨

iα∗
⊕

α0+α1+α2=α

q∗(C(α0)
C � (C2

C)
{α1} � C(α2)

C )[2|α0|+ |α1|]

⊕K ′

where K ′ has no contribution to the cohomology of A × Kn−1(A) and every direct component on
the left is the shift of a perverse sheaf and hence is direct summand of perverse cohomologies of
pr∗π∗r∗CA×Kn−1(A)[2n].

3 semismall morphism
Let f : X → Y denote a semismall morphism from a smooth variety with relative strata Yα such
that f : Xα = f−1(Yα) → Yα is smooth. Let Λ be the set of those strata α such that 2 dimXα =
dimX + dimYα.
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To make things simpler, we assume every fiber of yα ∈ Yα is irreducible. Let iα : Zα → Yα be a
small resolution of Yα ⊆ Y such that Zα is the quotient of a smooth variety by a finite group. Thus
iα∗QZα [dimYα] = ICYα

.
The decomposition shows that we have f∗QX [dimX] = f∗ICX =

⊕
α∈Λ

ICYα
=

⊕
α∈Λ

iα∗QZα
[dimYα].

Zα ×Y X Xα X

Zα Yα Y

f f f

iα

The direct summand gives the morphism of sheaves iα∗QZα
[dimYα] → f∗QX [dimX]. On the other

hand, we have

Hom(iα∗QZα
[dimYα], f∗QX [dimX])

=Hom(iα∗QZα
[dimYα], f∗ωX [− dimX])

=Hom(QZα
[dimYα], i

!
αf∗ωX [− dimX])

=Hom(QZα
[dimYα], f∗i

!
αωX [− dimX])

=Hom(f∗QZα
[dimYα], ωZα×Y X [− dimX])

=Hom(QZα×Y X , ωZα×Y X [− dimX − dimYα])

=HBM
dimX+dimYα

(Zα ×Y X,Q)

However, dimX + dimYα = 2 dimXα, which is the dimension of Zα ×Y X. Hence the above group
is just AdimZα×Y X(Zα ×Y X). In the case of our assumption, Zα ×Y X only has one irreducible
component which is itself.

In conclusion, the above morphism is induced by [Zα ×Y X] ∈ A∗(Zα ×X). Such correspondence
induces the morphism H∗(Zα,Q) → H∗+dimX−dimZα(X,Q). Here, I give a explicit description of such
morphism. For x ∈ H∗(Zα,Q), we have the pull-back f∗x ∈ H∗(Zα ×Y X,Q). Then the cap product
with HBM

2 dimZα×Y X(Zα ×Y X,Q) gives HBM
2 dimZα×Y X−∗(Zα ×Y X,Q) by Q ⊗ ω = ω. Next the push-

forward of Zα ×Y X → X gives the resulting element iα∗(f
∗x ∩ [Zα ×Y X]) ∈ HBM

2 dimZα×Y X−∗(X,Q).
Finally, the Poincaré duality gives the corresponding element in H∗+2 dimX−2 dimZα×Y X(X,Q) =
H∗+dimX−dimYα(X,Q).

Similarly, Zα is the quotient of a manifold by a finite group, we have ICZα
= QZα

[dimZα] and
hence ωZα = DQZα = D(ICZα [− dimZα]) = (DICZα)[dimZα] = QZα [2 dimZα]. The same formula
shows Hom(f∗QX [dimX], iα∗QZα [dimYα]) = HBM

dimX+dimYα
(Zα ×Y X,Q). This implies the projection

f∗QX [dimX] → iα∗QZα
[dimYα] is also induced by the correspondence [Zα ×Y X] ∈ A∗(Zα ×X).

According to the above discussion, the decomposition H∗(X,Q) =
⊕

α∈Λ H∗(Zα,Q)[dimZα −
dimX] is canonical, while the morphisms are given as above.

4 cohomology ring structure
For a given x ∈ H∗(A(α),C) ⊂ H∗+2n−2|α|(A[n],C), if ord(σ) ̸ | gcd(α), write xσ = 0; if ord(σ)| gcd(α),
write xσ the corresponding element in H∗(A(α), LA(α),σ) ⊂ H∗+2n−2|α|(A[n], LA[n],σ) ⊂ H∗+2n−2|α|(A×
Kn−1(A),C) under the trivialization LA(α),σ = CA(α) .

Similarly, for 0 ̸= xσ ∈ H∗(A(α), LA(α),σ), we write x the corresponding element in H∗(A(α),C) ⊂
H∗+2n−2|α|(A[n],C).
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Theorem 1. If xσ ∈ H∗(A(α), LA(α),σ) and yτ ∈ H∗(A(β), LA(β),τ ), their product xσ ∪ yτ ∈ H∗(A ×
Kn−1(A),C) is

∑
γ z

γ
στ , where zγ ∈ H∗(A(γ),C) is non-zero such that x ∪ y =

∑
γ z

γ .

Proof. Using the result in the previous section, where X = A[n], Y = A(n), Λ is the partition of n
and Zα = A(α), we find x is actually coming from HBM

∗ (A(α) ×A(n) A[n],C), and hence comes from
HBM

∗ (A
[n]
α ,C).

A(α) ×A(n) A[n] A
[n]
α A[n]

A(α) A
(n)
α A(n)iα

Since we have the cup product in A[n]:

∪ : HBM
i (A

[n]
α ,C)×HBM

j (A
[n]
β ,C) → HBM

i+j−2 dimA[n](A
[n]
α ∩A

[n]
β ,C)

we have x ∪ y must be in the image of HBM
∗ (A

[n]
α ∩ A

[n]
β ,C) → HBM

∗ (A[n],C). Thus γ must satisfy

A
[n]
γ ⊆ A

[n]
α ∩A

[n]
β .

Now we give a explicit description of zγστ by showing that the construction in the previous section
is also valid for Lσ-coefficients.

In fact, the decomposition comes from the changing-of-coefficient formula π∗LA[n],σ = π∗(π
∗LA(n),σ⊗

CA[n]) = LA(n) ⊗ π∗CA[n] and iα∗LA(α),σ = i∗α∗CA(α) ⊗ LA(n),σ similarily. As a result, the correspon-
dence works the same for Lσ-coefficients. That is, the element in H∗(A(α), Lσ) gives the pull-back
in H∗(A(α) ×A(n) A[n], Lσ). Cupping with [A(α) ×A(n) A[n]] ∈ H−2(n+|α|)(A(α) ×A(n) A[n], ω) gives
H∗−2(n+|α|)(A(α)×A(n) A[n], ω⊗Lσ). According to iα∗(ω⊗Lσ) = (iα∗ω)⊗Lσ The push-forward gives
the element in H∗+2n−2|α|(A[n], Lσ). It is clear that this procedure and its inverse are all independent
of Lσ. This is to say, applying the cup product and the projection, H∗(A(α), Lσ) × H∗(A(β), Lτ ) →
H∗(A(γ), Lστ ) is independent of σ and τ .

Finally, the trivialization of LA[n],σ|A[n]
α

≃ C
A

[n]
α

, LA[n],τ |A[n]
β

≃ C
A

[n]
β

and LA[n],στ |A[n]
γ

≃ C
A

[n]
γ

is

capatible with the tensor product LA[n],σ ⊗ LA[n],τ
∼−→ LA[n],στ leading to the disired result.

5 perverse multiplicativity
For a morphism f : X → Y , we use the notation P≤pH

∗(X,C) to mean the perverse filtration of
H∗(X,C) by im(H∗(Y, pτ≤pf∗CX [dimX − r(f)]) → H∗(Y, f∗CX [dimX − r(f)])). For x ∈ H∗(X,C),
let P (x) denote the number p such that x ∈ P≤pH

∗(X,C) and x ̸∈ P≤p−1H
∗(X,C). In the case that

f is the morphism pr ◦ π : A[n] → C(n). Then dimX − r(f) = n, and P (x) ranges from 0 to 2n.
In [zzl], he already shows that A[n] → C(n) has perverse multiplicativity, i.e. we have P (x ∪ y) ≤

P (x) + P (y) for all x, y ∈ H∗(A[n],C). This is to say, If x ∈ H∗(A(α),C), y ∈ H∗(A(β),C) and we
write x ∪ y =

∑
zγ where zγ ∈ H∗((γ),C), then P (z) ≤ P (x) + P (y).

For x ∈ H∗(A×Kn−1(A),C), we write P (x) for the number associated with the morphism pr◦π◦r :
A×Kn−1(A) → C(n). According to the calculation in section 2, we know that P (xσ) is independent
of σ ∈ A[n]∨. Since when τ = 1, LA[n],τ = CA[n] , we have P (xσ) = P (x1) = P (x).

Thus, Theorem 1 shows that P (xσ∪yτ ) = maxγ P (zγστ ) = maxγ P (zγ) = P (x∪y) ≤ P (x)+P (y) =
P (xσ) + P (yτ ). In another word, the morphism A×Kn−1(A) → C(n) has perverse multiplicativity.
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Now, we consider the morphism pr × pr : A ×Kn−1(A) → Kn−1(C). Write pr∗CKn−1(A)[n − 1] =∑2n−2
i=0

pHi(pr∗CKn−1(A)[n− 1])[−i]. Then we have

r∗(pr × pr)∗CA×Kn−1(A)[n]

=r∗
(
pr∗CA[1]� pr∗CKn−1(A)[n− 1]

)
=r∗

 2⊕
i=0

pHi(pr∗CA[1])[−i]�
2n−2⊕
j=0

pHj(pr∗CKn−1(A)[n− 1])[−j]


=r∗

 2n⊕
k=0

⊕
i+j=k

pHi(pr∗CA[1])� pHj(pr∗CKn−1(A)[n− 1])[−k]


=

2n⊕
k=0

⊕
i+j=k

r∗
(
pHi(pr∗CA[1])� pHj(pr∗CKn−1(A)[n− 1])

)
[−k]

Since r is a finite morphism, r∗ is t-exact, hence every summand in the above is indeed the shift
of a perverse sheaf. As a result, this gives another description of the perverse decomposition for
r ◦ (pr × pr) = pr ◦ π ◦ r.

If x ∈ H∗(Kn−1(A),C), we write P (x) for the number associated with the morphism pr : Kn−1(A) →
Kn−1(C). Then according to the above description, we have P (1⊗ x) = P (1) + P (x) = P (x).

In conclusion, if x, y ∈ H∗(Kn−1(A),C) we have P (x∪y) = P (1⊗ (x∪y)) = P ((1⊗x)∪ (1⊗y)) ≥
P (1⊗x)+P (1⊗y) = P (x)+P (y). This shows that the morphism Kn−1(A) → Kn−1(C) has perverse
multiplicativity.
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