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Abstract

Data assimilation has become a key technique for combining physical models
with observational data to estimate state variables. However, classical assim-
ilation algorithms often struggle with the high nonlinearity present in both
physical and observational models. To address this challenge, a novel gen-
erative model, termed the State-Observation Augmented Diffusion (SOAD)
model is proposed for data-driven assimilation. The marginal posterior as-
sociated with SOAD has been derived and then proved to match the true
posterior distribution under mild assumptions, suggesting its theoretical ad-
vantages over previous score-based approaches. Experimental results also
indicate that SOAD may offer improved performance compared to existing
data-driven methods.

1. Introduction

The advent of modern observational facilities and devices has led to an
exponential increase in the volume of data gathered from the physical world.
Consequently, data assimilation (DA), as an uncertainty quantification tech-
nique fusing observations with physical models, has attracted significant at-
tention. Over the past few decades, the DA community has developed a
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series of methods to tackle the assimilation problem under various assump-
tions and constraints. From early approaches such as the nudging method
and optimal interpolation to modern techniques including the Kalman fil-
ter (KF) [1] and its variants [2, 3], variational methods, and their hybrid
versions [4, 5], researchers have demonstrated both theoretical and practical
effectiveness. Nonetheless, the high dimensionality and intrinsic nonlinearity
of physical and observational models continue to pose substantial challenges.

In this work, we follow the four-dimensional variational data assimilation
(4D-Var) formulation, which aims to estimate the posterior distribution of
state variables over a fixed temporal window given a sequence of observations.
Mathematically, consider a dynamical system described by{

xk =Mk(xk−1,ηk), ηk ∼ DX
k ,

yk = Hk(xk) + ϵk, ϵk ∼ DY
k ,

(1)

where xk and yk denote the state and observation variables at time step k,
respectively. The observation noise ϵk ∼ DY

k captures uncertainties in the
observational data, while the term ηk ∼ DX

k accounts for possible model
errors in the physical model Mk. The goal is to estimate the posterior
distribution p(xS:T | yS:T ) for the state variables over the interval from S
to T , i.e., we use the abbreviation xS:T for {xk}Tk=S. By Bayes’ rule, the
posterior of the states given the observations can be expressed as

p(xS:T | yS:T ) =
p(yS:T | xS:T )p(xS:T )

p(yS:T )
∝ p(xS:T )p(yS:T | xS:T ). (2)

Classical variational methods [6, 7] further expand eq. (2) under indepen-
dence assumptions for the observational and model errors, yielding

p(xS:T | yS:T ) ∝ p(xS)
T−1∏
k=S

p(xk+1 | xk)
T∏

k=S

p(yk | xk) (3)

A common approach then involves maximum a posteriori (MAP) estimation
under Gaussian assumptions and solves

x∗
S:T = argmin

xS:T

{
1
2

∥∥xS − xb
S

∥∥2
B

+ 1
2

T−1∑
k=S

∥∥xk+1 −MX
k (xk)

∥∥2
Qk

+ 1
2

T∑
k=S

∥yk −Hk(xk)∥2Rk

}
(4)
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by the variational principle, where

xS ∼ N (xb
S,B), ηk ∼ N (0,Qk), ϵk ∼ N (0,Rk), (5)

and the model error ηk is assumed additive. Here, we use the notation
∥a∥2A := aTA−1a for simplicity.

Despite the success of classical variational data assimilation methods,
they still face several fundamental limitations, primarily in their treatment
of uncertainty [8, 7]. The background-error covariance is typically prescribed
and assumed to follow a static Gaussian distribution, which does not cap-
ture the evolving, nonlinear, and flow-dependent nature of real atmospheric
uncertainties. This mismatch can lead to suboptimal weighting of observa-
tions and errors in state estimation. Additionally, the iterative minimization
process requires repeated evaluations of both the forward physical model
and its adjoint, making large-scale applications computationally expensive
[9]. Moreover, deriving and maintaining tangent linear models and adjoint
models adds further complexity, restricting the flexibility and applicability
of variational methods. These challenges highlight the need for alternative
approaches that can better represent uncertainty and efficiently handle non-
linear, high-dimensional systems.

As noted by [10, 11], the rapid influx of observational data, such as
satellite observations and in-situ scientific measurements, has encouraged
researchers to explore data-driven approaches. Machine learning, and in par-
ticular deep learning (DL), has shown its remarkable capability in learning
nonlinear correlations and extracting high-dimensional features from training
data. Inspired by the success of DL in fields such as computer vision (CV)
[12, 13] and natural language processing (NLP) [14, 15, 16], scientists are in-
creasingly applying DL techniques within the earth and atmospheric sciences
community. Recent success in training large foundation models for weather
forecasting [17, 18, 19, 20, 21], have demonstrated the potential of data-driven
models in handling complex global atmospheric physics. These advancements
indicate a shift towards data-driven methodologies, which may enhance our
understanding and predictive capabilities in atmospheric sciences.

However, unlike forecasting or nowcasting tasks that can be directly han-
dled by common autoregressive models such as RNNs [22, 23, 24] and Trans-
formers [25, 26], the assimilation problem is inherently more complex. The
core of assimilation involves merging observations into the physical prior,
which necessitates a more sophisticated model to handle the intricate inter-
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actions between physical models and observations. Furthermore, the assim-
ilation problem is essentially a Bayesian inference task, which requires the
estimation of the posterior distribution of the state variables rather than just
a deterministic prediction for future states, and due to the high dimensional-
ity and nonlinearity of the physical and observational models, the posterior
distribution is often intractable.

Motivated by the success of DL, we seek to reframe the assimilation prob-
lem through the lens of deep generative models (DGMs) [27, 28], which have
demonstrated strong capabilities in capturing complex data distributions.
The connection between assimilation and DGMs is intuitive: assimilation
aims to estimate the posterior distribution of state variables by integrating
prior knowledge from physical models with observational data, while DGMs
also provide data distributions, but by training with large datasets. In as-
similation, physical models contribute to the prior, which is calibrated by the
likelihood derived from observational operators and data. Once the posterior
is obtained, key statistical quantities such as the mean field and uncertainty
estimates can be inferred. DGMs, on the other hand, rely on large datasets
sampled from the target distribution, assuming that all hidden patterns can
be extracted without explicit physical knowledge. By incorporating learned
priors from DGMs with suitable likelihood modeling, we introduce an alter-
native approach to assimilation, particularly beneficial when the underlying
physics are not fully known.

The rest of the paper is organized as follows. First, we review the related
works on data assimilation and deep generative models in section 2. Next, in
section 3, we present the mathematical formulation of the assimilation task
we focus on. Some basic concepts of conditional score-based generative mod-
els are introduced, followed by a detailed deduction of our SOAD model and
its theoretical analysis. Finally, experiments on a two-layer quasi-geostrophic
model will be exhibited in section 4 to demonstrate the effectiveness of our
SOAD model, and section 5 concludes the paper with a summary and future
work.

2. Related works and contributions

2.1. Data assimilation frameworks

Data assimilation has been studied for decades. In general, data assim-
ilation can be categorized into filtering and smoothing. Filtering aims to
estimate the current state given observations up to the current time, while
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smoothing involves estimating states using both past and future observa-
tions. The choice between the two types depends on not only the specific
application and objective of the assimilation task but also the availability of
data and computational resources.

Ensemble Kalman filter (EnKF) and its variants are representative clas-
sical methods for the filtering problem, which adopt Gaussian assumptions
and use an ensemble of samples to represent the posterior’s mean and co-
variance to seek a balance between accurate probabilistic modeling and com-
putational efficiency. In contrast, the 3D-Var method solves for the MAP
estimate for the posterior, providing a “best-fit” solution. Particle filters,
specially designed for the nonlinear problem, approximate the posterior by a
weighted sum of Dirac deltas, allowing non-Gaussian distributions. Despite
recent progress in the particle flow filter (PFF) [29, 30] and its demonstrated
potential in high-dimensional settings [31], the need for a large number of
particles remains a computational bottleneck.

To address the smoothing problem, one of the most intuitive approaches
is the Kalman smoother (KS), which includes an additional backward pass
to refine estimates using future information compared to the original KF. As
ensemble-based extensions of KS, Ensemble Kalman Smoother (EnKS) [32]
and iterative EnKS (IEnKS) [33] utilize an ensemble forward propagation
to obtain better convergence for nonlinear problems. 4D-Var formulates a
variational problem over a time window to retrieve the most likely trajectory,
making it inherently a smoothing approach as well.

All of these classical methods rely on physical knowledge and can be
prohibitively expensive in high-dimensional problems that require repeated
ensemble updates or large-scale optimizations. Despite these challenges, they
remain indispensable for reliably integrating observations with complex dy-
namical models in many scientific and engineering applications. Nowadays,
deep learning (DL)-enhanced data assimilation has gained increasing atten-
tion [34]. A pioneering example is the framework of [35], which replaces
physical models with neural networks, demonstrating the feasibility of data-
driven assimilation. Leveraging the flexibility and fast inference of neural
networks, some studies have proposed using them as fast emulators [36] or
correctors [37] for physical models in hybrid assimilation frameworks built
on classical algorithms. Another research direction focuses on addressing the
high-dimensionality challenge through latent assimilation (LA) [38], which
seeks a lower-dimensional representation of the state variables to be assim-
ilated using either linear Reduced-Order Models (ROMs) [39, 40] or neural
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networks [41, 42]. Although methods like LAINR [43] extend the flexibility
of LA, they still rely on well-established classical assimilation algorithms as
backbones to operate in the latent space.

To better capture non-Gaussian posteriors, recent work has explored the
Score-based Filter (SF) [44] and its variants, such as the Ensemble Score-
based Filter (EnSF) [45] and Latent-EnSF [46], which rely on diffusion prob-
abilistic models (DPMs) for posterior estimation. These methods have shown
promise for nonlinear assimilation tasks but typically assume availability of a
physical model. More recently, Score-based Data Assimilation (SDA) [47, 48]
has been introduced to integrate physical models into the learning of back-
ground priors within a variational assimilation framework, producing promis-
ing results for subsampled observations even without any explicit knowledge
of physical models. However, as demonstrated in our experiments, SDA still
struggles with nonlinear observations.

In the modern numerical weather prediction pipeline, increasing atten-
tion has been given to smoothing-based methods, particularly 4D-Var and
its variants [49, 50, 51, 52], due to their ability to incorporate time-evolving
observations and improve the dynamical consistency of the atmospheric state
[53, 54]. These advances highlight a growing need for learning-based smooth-
ing algorithms that can effectively assimilate observations over a time win-
dow and handle the non-Gaussianity arising from nonlinear dynamics and
observation operators. Motivated by this, our proposed method adopts a
smoothing perspective and seeks to estimate latent trajectories conditioned
on both past and future observations, with a focus on addressing challenges
related to nonlinearity and posterior complexity. Table 1 summarizes key fea-
tures of some typical data assimilation approaches. Bolded entries highlight
capabilities that surpass those of other methods in the same category.

2.2. Deep generative models

Deep generative models (DGMs) have been consistently studied in the
field of deep learning. As one of the earliest DGMs, variational AutoEncoders
(VAEs) [55, 56] learn the target data distribution by maximizing the evidence
lower bound (ELBO). Generative Adversarial Networks (GANs) [57, 58] are
another kind of DGMs, which learn the distribution through a zero-sum game
between generators and discriminators. Alternatively, Normalizing Flows
(NFs) [59, 60, 61] are employed not only for generating samples but also
for explicitly evaluating probability densities by ensuring each layer to be
invertible at the expense of flexibility of network architectures.
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Method physical model posterior modeling comput. cost

KF[1], EnKF[2], LETKF[3] required mean & covariance high
PF, PFF[29, 30, 31] required weighted Dirac sum very high
SF[44] required generative model high
EnSF[45], Latent-EnSF[46] required generative model low

4D-Var required MAP high
KS, EnKS[32], IEnKS[33] required mean & covariance high
SDA[47, 48], SOAD (ours) data-driven generative model low

Table 1: Comparison of some typical filtering and smoothing approaches.

Inspired by [62], the most recent diffusion probabilistic models (DPMs)
[63, 64, 65] have achieved impressive performances across numerous data gen-
eration and restoration tasks, particularly in computer vision and natural
language processing domains. Specifically, DPMs have shown state-of-the-
art performances in image generation and restoration tasks such as denoising,
inpainting, and super-resolution [66, 67, 68], as well as in text-to-image and
video generation [69]. These tasks often involve linear measurement oper-
ators (e.g., masking, blurring, or downsampling), and thus the associated
inverse problems are typically linear, enabling efficient deployment of diffu-
sion models through techniques like iterative reconstruction guided by the
learned score function or posterior sampling [70].

More recently, diffusion models have been adapted to tackle complex in-
verse problems in scientific computing. Unlike many standard image restora-
tion scenarios, scientific computing tasks such as phase retrieval [71, 72], seis-
mic inversion [73, 74, 75], and topology optimization [76, 77, 78] generally
involve nonlinear, high-dimensional, and often ill-posed inverse problems. In
these contexts, DPMs are leveraged to model the prior distribution of states
efficiently and sample from complex posterior distributions conditioned on
nonlinear observations.

2.3. Main contributions

In this study, we propose a novel data-driven deep learning (DL) ap-
proach specifically designed for posterior estimation to handle the assimila-
tion problem. To address the challenges of nonlinearity, we introduce our
State-Observation Augmented Diffusion (SOAD) model, which relaxes the
linear constraints typically imposed on physical and observational models in
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most existing assimilation frameworks. Similar to previous DL-based assim-
ilation methods, our SOAD model is fully data-driven and does not require
any prior knowledge of the physical models. Importantly, while our network
training still relies on observational data that implicitly reflects the obser-
vation process, our model does not require an explicit physical formulation
of the observational operator. That is, as long as paired state-observation
samples are available, SOAD can be trained and subsequently perform as-
similation with observations from multiple heterogeneous sources without
requiring any knowledge of how these observations are physically related to
the state variables. The flexibility and adaptability make our approach suit-
able for the real-world applications. Our main contributions are as follows:

• We propose a novel state-observation augmented diffusion model spe-
cially designed for nonlinear assimilation tasks. By introducing the
state-observation augmented structure, we establish an equivalent lin-
ear form of the original assimilation problem, relaxing the linearity
assumptions for both the physical and observational models.

• We derive the marginal posterior distribution of the state variables
associated with our SOAD model and show that it matches the real
posterior under mild assumptions, indicating the theoretical superiority
of our SOAD model over previous score-based assimilation approaches.

• A procedure named forward-diffusion corrector is introduced to stabi-
lize the reverse-time generation process of the diffusion model, provid-
ing corrections matching the real distribution especially under Gaussian
noise.

• Experiments with a two-layer quasi-geostrophic model involving various
observational operators are conducted to demonstrate the effectiveness
of our SOAD model compared to previous works.

3. Methodology

3.1. Problem settings and assumptions

Recall that we consider a discrete dynamical system with an observational
model formulated as{

xk =MX
k (xk−1,ηk), ηk ∼ DX

k ,

yk = Hk(xk) + ϵk, ϵk ∼ DY
k ,

(6)
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where the additional superscript “X” indicates that the model MX
k acts in

the physical space for xk. We follow the setup described in [47, 79], assuming
access to a sufficiently large dataset of physical states corresponding to an
unknown physical modelMX

k . The noise distributions DY
k associated with all

observational operators are assumed to be known as well. Given a sequence
of observations yS:T , our objective is to effectively estimate the posterior
distribution of the state variables xS:T , denoted by p (xS:T | yS:T ).

To keep our approach general, we impose only the following assumptions:

• Time-independence or periodicity: The physical model MX
k is

either constant over time or exhibits periodic behavior.

• Decomposable observational operators: Although the observa-
tional operatorHk may vary with time, there exists a time-independent
operatorH such thatHk = Sk◦H for some time-varying linear operator
Sk with orthogonal rows.

These assumptions are pragmatic in many practical contexts. For instance,
numerical weather prediction frequently exhibits daily or seasonal period-
icity in the underlying physical model MX

k . The first assumption ensures
the continued applicability and effectiveness of data-driven methods trained
on historical data, a standard practice in deep learning-based assimilation
methodologies [47, 36, 41, 39, 43]. The observational operator Hk typically
varies over time due to observational constraints or infrastructure limitations
[80], but the range of possible observational configurations usually remains
fixed. Therefore, we may set

H(xk) =


H(1)(xk)
H(2)(xk)

...
H(K)(xk)

 (7)

as a concatenation of all possible observational outputs, where each H(i)

corresponds to one type of observation measured on full domain for i =
1, 2, · · · , K. This suggests that the variation in observational operators for
different time steps can be adequately captured by a “subsampling matrix”
Sk acting on H(xk). Here, a subsampling matrix is a binary matrix that
selects a subset of elements (or locations) from the full state vector. While
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traditional assimilation often presume Gaussian noise distributions DX and
DY , we will demonstrate later that these assumptions can be relaxed as well.

3.2. Score-based data assimilation

Score-based data assimilation is inspired by score-based generative mod-
els [79], a widely studied class of diffusion probabilistic models (DPMs) in
machine learning. These models offer an alternative perspective by leverag-
ing stochastic differential equations for data generation. In this section, we
briefly review the fundamental concepts underlying score-based generative
models and how they can be applied to the data assimilation problem.

3.2.1. Score-based generative models

Let x ∼ pdata(x) denote the data distribution we aim to learn. By pro-
gressively adding Gaussian noise, the distribution undergoes an approximate
transformation into a standard normal distribution, and the whole process
can be modeled as a forward-time diffusion process. Mathematically, follow-
ing the notation in [79], we describe the diffusion process as a linear stochastic
differential equation (SDE) formulated as

dxt = f(t)xtdt+ g(t)dwt, t ∈ [0, 1], x0 ∼ pdata(x0), (8)

where f(t) and g(t) represent the drift term and diffusion coefficient, respec-
tively, and wt denotes the standard Wiener process. The transition kernel
from x0 to xt is then given by

pt|0(xt | x0) = N
(
xt;µtx0, σ

2
t I
)

(9)

with the mean µt and the variance σ2
t explicitly [81] given by

µt = exp

(∫ t

0

f(s)ds

)
, σ2

t =

∫ t

0

exp

(
2

∫ t

s

f(u)du

)
g(s)2ds. (10)

Define the marginal distribution for time t as pt(x). With appropriate choices
of f(t) and g(t) so that µ1 = σ0 = 0 and µ0 = σ1 = 1, the forward diffusion
process eq. (8) transforms the data distribution into a standard Gaussian
marginal p1(x) = N (0, I). Under such circumstances, the reverse-time evo-
lution, characterized by

dxt =
[
f(t)− g(t)2∇xt log pt(xt)

]
dt+ g(t)dwt, (11)
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is also a diffusion process [82], where the gradient term ∇xt log pt(xt), known
as the score function, plays a crucial role in guiding the reverse diffusion.
With a slight abuse of notation, we still let wt denote the reverse-time Wiener
process. Consequently, as long as a good estimation of the score function is
obtained for all t, we may first sample an initial state x1 ∼ N (0, I) and then
simulate the reverse-time process starting from x1 to generate a sample x0

that approximately follow the distribution pdata(x).
To develop an effective score-based generative model, intuitively one may

minimize the Fisher information distance ([83], Definition 2.5)

d(θ, t) = Ext∼pt ∥sθ(xt, t)−∇xt log pt(xt)∥2 , (12)

where

pt(x) =

∫
pt|0(x | x0)pdata(x0)dx0 (13)

is the marginal density and sθ(xt, t) is a surrogate model for the score func-
tion implemented by a neural network with parameters θ. By assuming some
weak regularity conditions [84], we have

d(θ, t) = Ext∼pt ∥sθ(xt, t)−∇xt log pt(xt)∥2

=
1

2
Ext∼pt

[
∥sθ(xt, t)∥2 + Tr∇xtsθ(xt, t)

]
=

1

2
Ex0∼p0 Ext∼pt|0(·|x0)

[
∥sθ(xt, t)∥2 + Tr∇xtsθ(xt, t)

]
=

1

2
Ex0∼p0 Ext∼pt|0(·|x0)

∥∥sθ(xt, t)−∇xt log pt|0(xt | x0)
∥∥2

=
1

2
Ex0∼p0 Eε∼N (0,I)

∥∥sθ(µtx0 + σtε, t) + σ−1
t ε
∥∥2

(14)

as discussed in [85]. In practice, sθ(xt, t) is usually reparameterized as

εθ(xt, t) = −σtsθ(xt, t), (15)

and we consider minimizing

L(θ) = Et∼U[0,1]
σ2
t d(θ, t) =

1

2
E t∼U[0,1]

ε∼N (0,I)
x0∼p0(x)

∥εθ(µtx0 + σtε, t)− ε∥2 . (16)

Once a good estimator for the score funtion is obtained, it suffices to
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evolve the backward diffusion process by discretizing the time steps. Clas-
sical numerical solvers for general SDEs, such as the Euler-Maruyama and
stochastic Runge-Kutta methods, as well as ancestral sampling [66, 79], are
applicable. Recently, to improve sampling efficiency, the exponential inte-
grator (EI) discretization scheme [86]

xt− ←
µt−

µt

xt +

(
σt−
σt
− µt−

µt

)
σtεθ(xt, t) (17)

has also been proposed, where the subscript “t−” denotes the next time step.
These schemes often work together with the predictor-corrector sampling
strategy by performing a few steps of Langevin Monte Carlo (LMC) sampling
[79]

xt ← xt +
δ

2
sθ(xt, t) +

√
δz, z ∼ N (0, I) (18)

for better performances, where we let δ denote the time step.

3.2.2. Conditional score models

While score-based generative models we have introduced above can be
directly used for unconditional sampling with well-trained denoising mod-
els, assimilation tasks require estimating the posterior distribution p(x | y),
where we omit the subscript “S : T” for simplicity. Analogous to the un-
conditional case, the posterior distribution can be approximated with the
reverse-time diffusion process defined as

dxt =
[
f(t)− g(t)2∇xt log pt(xt | y)

]
dt+ g(t)dwt, x1 ∼ N (0, I), (19)

where the conditional score function ∇xt log pt(xt | y) corresponding to the
marginal posterior

pt(xt | y) =

∫
pt|0(xt | x)p(x | y)dx (20)
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needs to be learned. Note that the conditional score function can be decom-
posed as

∇xt log pt(xt | y) = ∇xt log

∫
pt|0(xt | x)p(x | y)dx

= ∇xt log

∫
pt|0(xt | x)p(y | x)p(x)

p(y)
dx

= ∇xt log

∫
p0|t(x | xt)p(y | x)pt(xt)

p(y)
dx

= ∇xt log pt(xt) +∇xt log

∫
p(y | x)p0|t(x | xt)dx

(21)

by Bayes’ formula, where the additional term

∇xt log pt(y | xt) = ∇xt log

∫
p(y | x)p0|t(x | xt)dx (22)

is usually called the adversarial gradient.
To incorporate conditional information, one may introduce a separate

network for the adversarial gradient alongside the original denoising net-
work as suggested in [87, 88]. Alternatively, a conditional denoising network
εθ(xt, t;y) can be trained directly to approximate −σt∇xt log pt(xt | y), and
such an idea has been widely used in many class-conditional generation and
text-to-image/video generation tasks [68, 69].

Instead of training a different denoising network, we focus on estimating
the reverse-time transition kernel p0|t in eq. (22) to compute the term pt(y |
xt) explicitly. By Tweedie’s formula, DPS [71] proposes a delta-function
approximation for the kernel p0|t centered at

x̂0(xt, t) = E[x0 | xt] = µ−1
t [xt + σ2

t∇xt log pt(xt)]. (23)

Based on the uninformative-prior assumption, DMPS [89] replaces the kernel
p0|t with a Gaussian distribution, but it is only suitable for linear observa-
tional models. SDA [47, 48] suggests a balance between flexibility and ac-
curacy by introducing an auxiliary hyperparameter γ in the modeling of the
kernel p0|t. Nonetheless, such an approximation is still based on the linearity
assumption for the observational operator, which has shown limitations in
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Table 2: Comparison of various existing estimators for the adversarial gradient.

Method p0|t(x0 | xt) pt(y | xt)

DPS [71] δ(x0 − x̂0(xt, t)) N (y;A(x̂0(xt, t)),R)

DMPS [89] N
(
x0;µ

−1
t xt,

σ2
t

µ2
t
I
)
N
(
y;µ−1

t A(xt),R +
σ2
t

µ2
t
AAT

)
SDA [47, 48] N/A N

(
y;A(x̂0(xt, t)),R +

σ2
t

µ2
t
γI
)

our experiments. Take a nonlinear observational model

p(y | x) = N (y;A(x),R) (24)

as an example. The DPS, DMPS, and SDA estimators for the term p(y | xt)
are summarized in table 2, where we use A to denote the linearization of the
observational operator A.

3.3. State-observation augmented diffusion model

In this section, we introduce our State-Observation Augmented Diffu-
sion (SOAD) model, which is designed to handle the assimilation problem
with nonlinear physical and observational models. We first present the state-
observation augmented dynamical system as an equivalent but linear form of
the original assimilation problem to alleviate the nonlinearity issue. Then, we
derive an estimator for the marginal posterior pt(xt | y) defined in eq. (20),
which has been shown to match the real posterior under mild assumptions.
Figure 1 depicts the general idea of our SOAD model, where we aim to as-
similate on a time window from S to T with K types of observations. Finally,
we introduce a forward-diffusion corrector to stabilize the reverse-time gen-
eration process of the diffusion model, followed by an overall implementation
of the SOAD model.

3.3.1. Augmented dynamical system

To handle the potential nonlinearity of the observational model, we pro-
pose to consider an augmented version of eq. (6). Let zk denote the concate-
nation of the state variables xk and all possible observation variables H(xk),
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Figure 1: Illustration of assimilation with our State-Observation Augmented Diffusion
model.

then we have

zk =

(
xk

H(xk)

)
=

(
MX

k (xk−1,ηk)
H
(
MX

k (xk−1,ηk)
)) =:MZ

k (zk−1,ηk) , ηk ∼ DX ,

(25)
where the superscript “Z” emphasizes the augmented space where zk lies.
By the assumptions in section 3.1, for the observations at the k-th time step,
there exists a linear mapping Tk linked to Hk such that

yk = Hk(xk) + ϵk = SkH(xk) + ϵk = Tkzk + ϵk, ϵk ∼ DY . (26)

Therefore, we have essentially established an equivalent augmented system{
zk =MZ

k (zk−1,ηk) , ηk ∼ DX ,

yk = Tkzk + ϵk, ϵk ∼ DY .
(27)

Clearly, the forward propagation operator MZ
k inherits the periodicity of

MX
k . The observational operator Tk acting on zk is now a time-dependent

subsampling matrix, which simplifies the assimilation process. By concate-
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nating z and y over consecutive time steps as zS:T and yS:T , respectively,
the assimilation problem we focus on becomes a posterior estimation for
p (zS:T | yS:T ). The prior p (zS:T ) implicitly encodes the physical dynamics
as well as the model error, and the observational model

yS:T = TS:TzS:T + ϵS:T , ϵS:T ∼ DY
S:T (28)

becomes linear and Gaussian, where we use the subscripts “S : T” to denote
the concatenation of the corresponding variables, mappings, and distribu-
tions over the time interval from S to T .

3.3.2. Estimation for the marginal posterior

In general, our State-Observation Augmented Diffusion (SOAD) model
builds on the principles of score-based generative models outlined in sec-
tion 3.2.1. Specifically, we construct a score-based generative model for zS:T

instead of x. For simplicity, we omit the subscript “S : T” hereafter, and
thus zS:T becomes z = z0 in the context of diffusion process. We need to
stress that the following derivations are all applied to concatenated versions
of states, observations, and noise (distributions) over the time interval from
S to T .

To estimate the marginal posterior pt(zt | y), we continue from the Bayes’
rule

∇zt log pt(zt | y) = ∇zt log pt(zt) +∇zt log pt(y | zt) (29)

adapted from eqs. (21) and (22) in the current context, where we still use
the notation

∇zt log pt(y | zt) = ∇zt log

∫
p(y | z)p0|t(z | zt)dz. (30)

On one hand, our SOAD model directly trains a neural network

εθ(zt, t) = −σtsθ(zt, t) ≈ −σt∇zt log pt(zt) (31)

according to eq. (16) to estimate the joint unconditional distribution for z.
On the other hand, to estimate the adversarial gradient ∇zt log pt(y | zt),
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by applying Bayes’ rule again, we have

∇z log p0|t(z | zt) = ∇z log pt|0(zt | z) +∇z log p(z)

= σ−2
t ∇z ∥zt − µtz∥2 +∇z log p(z)

= µ2
tσ

−2
t

(
z − µ−1

t zt

)
+∇z log p(z).

(32)

If we make Gaussian assumptions for the prior p(z) with a covariance matrix
Σ0, then p0|t(· | zt) is also Gaussian by eq. (32), whose covariance matrix has
a closed form

Σ0|t =
(
Σ−1

0 + (σ2
t /µ

2
t )

−1I
)−1

. (33)

Similar to [71], the mean of p0|t(· | zt) may be provided by Tweedie’s formula
as

ẑ0(zt, t) = E[z0 | zt] = µ−1
t

(
zt + σ2

t∇zt log pt(zt)
)
. (34)

Therefore, we use the following estimation for the reverse-time transition
kernel

pSOAD
0|t (z | zt) = N

(
z; ẑ0(zt, t),Σ0|t

)
= N

(
z;µ−1

t (zt − σtεθ(zt, t)) ,
(
Σ−1

0 + (σ2
t /µ

2
t )

−1I
)−1
)
.

(35)

It follows that the term pt(y | zt) can be computed analytically once the
observational likelihood p(y | z0) is provided explicitly by eq. (30). For
instance, when the observational noise is Gaussian with covariance matrix
ΣY , we may assume

p(y | z) = N
(
y;Tz,ΣY

)
, (36)

and then the time-dependent marginal likelihood becomes

pSOAD(y | zt) = N
(
y;T ẑ0(zt, t),Σ

Y + TΣ0|tT
T
)
. (37)

Note that despite the possible nonlinearity of the observational operator H,
the augmentation as described in eq. (27) allows us to handle the assimilation
problem with a linear observational model.

To sum up, we have the following theorem.

Theorem 3.1. Under Gaussian assumption for the prior p(z) with covari-
ance Σ0, our estimator given by eq. (37) matches the marginal posterior
pt(y | zt) defined in eq. (22) when the observation noise DY is Gaussian in
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eq. (26), or equivalently, the assumption in eq. (36) holds. Furthermore, for
any scalar prior covariance Σ0 = σ2

zI, our estimator becomes

pSOAD(y | zt) = N
(
y;T ẑ0(zt, t),Σ

Y +
σ2
zr

2
t

σ2
z + r2t

I

)
, (38)

where we define rt = σt/µt.

Proof. The first part is evident from the previous deduction. To show the
second part, we may notice that Σ0|t is scalar as long as Σ0 is scalar according
to eq. (33), so it follows that

TΣ0|tT
T =

σ2
zr

2
t

σ2
z + r2t

TT T =
σ2
zr

2
t

σ2
z + r2t

I, (39)

where we use the fact that T is a subsampling matrix and thus has orthonor-
mal rows.

Remark. We need to clarify that one should not confuse our SOAD estimator
with the SDA estimator listed in table 2. First, we only apply our estimator to
the augmented model (27), where the operator T is guaranteed to be linear.
Under mild assumptions in Theorem 3.1, the linearity ensures that the time-
dependent marginal likelihood pt(y | zt) remains Gaussian. In contrast, the
SDA estimator employs a Gaussian approximation of the true pt(y | zt), and
the linearization of H may introduce significant errors if the observational
operator H is highly nonlinear. Furthermore, the approximation term r2t γI
in SDA does not prevent the covariance from exploding as the diffusion step
t approaches 1, resulting in a prior for p(y) with an unbounded covariance.

3.3.3. Forward-diffusion corrector

In our augmented model (27), the observation y is a linear transforma-
tion of z, or more specifically, a subsampled version of z with observational
noise as described in eq. (26). To stabilize the reverse-time diffusion process,
we propose directly replacing part of the denoised results with a perturbed
version of y. The correction is based on an auxiliary forward diffusion of the
observational data, which is then used to guide or adjust the denoising states
where observations are available. Consequently, we refer to such a corrector
as the “forward-diffusion corrector”.

18



posterior standard
Gaussian

diffusion
time step

observation

Figure 2: Illustration of the forward-diffusion corrector.

More precisely, let zt be the diffusion state at time t with an initial state
z0 = z, then

Tzt = T (µtz0 + σtε) ∼ N
(
µtTz, σ2

t I
)

(40)

with a standard Gaussian noise ε according to eq. (9). To calibrate the
diffusion state zt, we propose substituting Tzt at time t with (µty + ε′t)
assuming that eq. (36) holds, where ε′t ∼ D ′

t is a random noise term. Since
eq. (36) implies

µty ∼ N
(
µtTz, µ2

tΣ
Y
)
, (41)

we ensure that Tzt and (µty + ε′t) share the same means and covariances by
setting

D ′
t = N

(
0, σ2

t I − µ2
tΣ

Y
)

(42)

whenever the matrix
(
σ2
t I − µ2

tΣ
Y
)

is positive semidefinite.
It is important to note that this condition generally holds except for

small t, particularly when the observation noise is not excessively large. This
follows from the fact that, under typical diffusion schedulers, limt→1− rt =
+∞ ensuring that our correction provides reliable estimation of Tzt most of
the time. The overall procedure is illustrated in fig. 2, where we define T2 as
the compensated1 subsampling matrix associated with T .

1The term “compensated” refers to the following construction. Given a high-
dimensional row vector x ∈ Rn and a subsampling matrix T acting on Rn, we can always
decompose x as x = (Tx,x2), up to a permutation of the coordinate axes. The mapping
x 7→ x2 is then called the compensated version of T , representing the complement of the
subsampling process.
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3.3.4. Implementation

We describe the detailed denoising procedure in this subsection, where
we set DY = N (0, (σo)2I) for simplicity. Similar deduction can be applied
to other more complex settings.

Let rσ = σt−/σt and rµ = µt−/µt be the ratios of the diffusion parameters
at adjoint time step t− and t, respectively. We choose the EI discretization
scheme

zt− = rµzt + (rσ − rµ)πθ(zt, t) (43)

as in eq. (17) for the reverse-time stepper, where we define πθ(zt, t) =
−σ2

t∇zt log pt(zt | y). By plugging eqs. (29), (31) and (38) into the defi-
nition of πθ, we have

πθ(zt, t) = −σ2
t∇zt log pt(zt | y)

= −σ2
t∇zt log pt(zt)− σ2

t∇zt log pt(y | zt)

= σtεθ(zt, t) +
σ2
t /2

(σo)2 +
σ2
zr

2
t

σ2
z+r2t

∇zt ∥y − T ẑ0(zt, t)∥2

= σtεθ(zt, t) +
r2t /2

(σo)2 +
σ2
zr

2
t

σ2
z+r2t

∇zt ∥µty − T (zt − σtεθ(zt, t))∥2

= σtεθ(zt, t) + ct∇zt ∥µty − Tzt + Tσtεθ(zt, t)∥2
(44)

In practice, we treat σz as a hyperparameter to be tuned as it is hard to eval-
uate explicitly for a trained generative model. Meanwhile, a certain clipping
mechanism for the coefficient ct is required to stabilize the generation pro-
cess when the diffusion step t is near 1. Fortunately, the model performances
are not sensitive to the choice of σz as well as the clipping mechanism. See
algorithm 1 for the complete implementation.

4. Experiments

To show the advantages of our proposed SOAD model, we conduct ex-
periments on the two-layer quasi-geostrophic model following the settings
proposed in the Score-based Data Assimilation (SDA) [47, 48], and we treat
it as the baseline due to its effectiveness shown for linear observations.

We start by outlining the dataset and the network training procedures
for the experiments. Next, we detail the observation operators as well as
the assimilation settings we used for testing. A comparative analysis of our
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Algorithm 1 Assimilation with the SOAD model for Gaussian noise

1: Input: The subsampling matrix T , the observation data y, the noise distribution

DY = N
(
0, (σo)2I

)
, a trained noise estimator εθ(zt, t), and the denoising diffusion

time step δt;

2: Hyperparameters: σz = 1.0, δ = 0.25, Nc = 5.

3: function AssimilationWithSOAD(T , y, σo, εθ, δt)

4: t← 1; zt ∼ N (0, I);

5: while t > 0 do

6: t− ← t− δt; rσ ← σt−/σt; rµ ← µt−/µt;

7: ct ← r2t /2

(σo)2+
σ2
zr2t

σ2
z+r2t

;

8: Qt ← ∇zt
∥µty − Tzt + Tσtεθ(zt, t)∥2;

9: ĉt ← max (1, 1/∥Qt∥∞); ▷ clipping mechanism

10: πθ(zt, t)← σtεθ(zt, t) + ĉtQt; ▷ by eq. (44)

11: zt− ← rµzt + (rσ − rµ)πθ(zt, t); ▷ reverse-time evolution

12: zt− ← FDC(zt− , t−);

13: st− ← σ−1
t− πθ(zt− , t); ▷ cache the conditional score function

14: for i = 1 to Nc do

15: zt− ← zt− + δ
2st− +

√
δε′′, ε′′ ∼ N (0, I); ▷ LMC sampling as in eq. (18)

16: zt− ← FDC(zt− , t−);

17: end for

18: t← t−;

19: end while

20: end function

21: function FDC(zt, t) ▷ the forward-diffusion corrector

22: rt ← σt/µt;

23: if σo ≤ rt then

24: Tzt ← µt

(
y +

√
r2t − (σo)2ε′t

)
, ε′t ∼ N (0, I);

25: end if

26: return zt

27: end function
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SOAD model and the SDA baseline with various observational operators is
presented. Besides, we also try to explore the long-term behavior of our
model and its capability of handling multiple observations simultaneously.
Our experimental results indicate that our SOAD model is more suitable for
dealing with highly nonlinear observations.

4.1. Dataset

Consider the two-layer quasi-geostrophic (QG) evolution equation

∂tq1 + J(ψ1, q1) + β1ψ1x = ssd,

∂tq2 + J(ψ2, q2) + β2ψ2x = −rek∇2ψ2 + ssd
(45)

with the potential vorticity

q1 = ∇2ψ1 + F1(ψ2 − ψ1), q2 = ∇2ψ2 + F2(ψ1 − ψ2) (46)

and the mean potential vorticity gradients

β1 = β + F1(U1 − U2), β2 = β − F2(U1 − U2). (47)

The horizontal Jacobian is defined as

J(ψ, q) = ψxqy − ψyqx, (48)

and “ssd” indicates the small-scale dissipation. To accelerate the preparation
process, the dataset has been generated by a Python package pyqg-jax2 as
a Jax [90] implementation of the original pyqg [91] library, and all the other
equation parameters follow the default configurations (See appendix Ap-
pendix A for completeness).

To create our dataset, we set the solution domain as 512× 512 with 15-
minute time steps. The QG equation is evolved from 10 different random
initial states separately. After a warm-up period of 5 years, the reference
states are downsampled from the trajectories to a spatial resolution of 256×
256 with a temporal resolution of ∆t = 24 hours for 100,000 model days,
which leads to a dataset of size 10× 100000× 2× 256× 256 in total. Owing
to the chaotic nature of the QG model, the 5-year warm-up stage ensures
that the trajectories evolve into statistically independent states, making it

2https://github.com/karlotness/pyqg-jax
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Figure 3: Visualization of the vorticity for the two-layer quasi-geostrophic model.

reasonable to directly split them into training and testing datasets. This
setup allows the performance on the testing dataset to reflect the model’s
ability to generalize to unseen states, thereby assessing its generalization
ability.

Since the evolution of the two-layer QG model does not depend on time,
we assume that the vorticity snapshots (q1, q2)

T of shape (2, 256, 256) within a
fixed time range follow the same data distribution. Consequently, we divide
each trajectory into 1,000 windows and retain only the first 32 snapshots
from every 100 snapshots to avoid temporal correlations. Such a process
transforms the dataset into 10 × 1000 windows of size 32 × 2 × 256 × 256.
fig. 3 visualizes the generated data for a single time step.

4.2. Network structures and training procedures

To ensure a fair comparison with the SDA baseline, we adopt the same
network structure for the denoising network εθ(xt, t), which utilizes a U-Net
structure mixed with temporal convolutions and embeddings for diffusion
time steps t. We have included the detailed architecture in appendix Ap-
pendix B for completeness. The only difference between our network and
the SDA baseline lies in the input channels. SDA learns a generative model
for the state xS:T , while our SOAD learns for the augmented state zS:T , which
means that the corresponding observations yS:T is fed into the network for
training as well. Since each augmented state includes a clean observation
H(x)S:T , training SOAD requires additional calls of the observation operator
H.

We use the first 8× 1000 windows for training and reserve the remaining
2 × 1000 windows for validation and testing. During training, a chunk of

23



length 9 from each window z
(j)
0:31 of length 32 is selected randomly to create

a mini-batch for the networks, which gives rise to the following minimization
problem

min
θ
L(θ) = min

θ

1

2J

J∑
j=1

∥∥∥εθ (µtjz
(j)
Sj :Sj+8 + σtjεj, tj

)
− εj

∥∥∥2 (49)

as an empirical estimation of eq. (16), where

εj ∼ N (0, I), tj ∼ U[0,1], Sj ∼ U{0,1,··· ,23} (50)

are all independent random variables for each j. Here, J = 8× 1000 denotes
the number of total training windows. All networks are trained with the
Adam optimizer [92], employing a learning rate of 2 × 10−4 and a weight
decay of 1 × 10−5. To stabilize the training process, all the network inputs
are normalized using the empirical mean and variance of the entire training
dataset.

4.3. Observations

We consider the following Gaussian observational model

yk = Sk ◦ H(xk) + ϵk, ϵk ∼ N
(
0, 0.12I

)
, (51)

where k denotes the time step index. xk consists of the two-layer vorticity
at time step k, and yk stands for the associated noisy observations. There
are three different observation operators used in our experiments to evaluate
the performance of our SOAD model under various observational settings,
namely,

• an easy nonlinear “arctan” operator

He : x 7→ arctan 3x, (52)

• a hard nonlinear sinusoidal operator

Hh : x 7→ 3

2
sin 3x, and (53)
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• a vorticity-to-velocity mapping

Hv2v : x = (q1, q2)
T 7→ C ⊙ (u1, v1, u2, v2)

T. (54)

The first two operators are element-wise, and we refer to He as the “easy”
case since it is injective and monotonic, while Hh is termed the “hard” case
due to its highly nonlinear behavior. Besides, to explore the potential of
our model for real applications, we also consider the non-local vorticity-to-
velocity mapping Hv2v, where (ui, vi) are the velocity components for the
i-th layer and C⊙ denotes a multiplication with component-wise scalars so
that the outputs approximately have zero means and unit deviations. Such
a choice is inspired by the fact that velocity components are often directly
observed rather than the related vorticity in the real world. To computeHv2v,
eq. (46) is solved for the stream function (ψ1, ψ2)

T in the spectral space, and
then the velocity components are calculated by the stream functions. Note
that we cannot conclude whether Hv2v is easier or harder, as the operator is
linear, but the mapping rule is much more complex.

Next, we need to specify the subsampling matrix Sk to determine the
observational operator Hk = Sk ◦H for each k. The observational frequency
plays a crucial role, as different data sources, such as radar or satellite im-
agery, operate at varying time intervals. In our experiments, we denote by N
the number of time steps between consecutive observations and vary it across
different settings. We also investigate the impact of different observational
ratios for partial observations, considering two masking strategies:

(i) random sampling from the grid with a ratio p, and

(ii) uniform sampling with a stride s, corresponding to an observational
ratio3 of (1/s)2.

Readers may refer to fig. 4 for detailed illustrations, where we only visualize
the first-layer vorticity (q1) for simplicity. Throughout our experiments, we
evaluate random ratios p ∈ {1.0, 0.25, 0.625, 0.01} and strides s ∈ {1, 2, 4, 10}
for partial observations under varying time intervals N ∈ {1, 2, 4, 8}.

3For a spatial stride of s = 10, the actual observational ratio slightly exceeds 1% since
the snapshot size is not divisible by 10, but we omit this minor discrepancy for simplicity.
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Figure 4: Illustration of different assimilation settings. (zoom-in for better visualization)

4.4. Metric

To make quantitative comparisons, we use the rooted mean-square error
(RMSE)

RMSE(xr,xa) =

(
1

2HresWres

2∑
i=1

Hres∑
j=1

Wres∑
k=1

[q̄ri(j, k)− q̄ai (j, k)]2
)1/2

(55)

to evaluate the assimilated state xa. Recall that x consists of vorticity
(q1, q2)

T on two levels, and here we use (q̄1, q̄2)
T for their normalized ver-

sions. xr is the reference solution, and (Hres,Wres) stands for the spatial
resolution. Since all the data have been normalized in advance, the RMSEs
result from different models and various assimilation settings are compara-
ble. To decrease randomness, all the following experiments have been run for
5 times with different random seeds, and the averaged RMSEs are reported
unless specified otherwise.
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4.5. Assimilation experiments

In the assimilation experiments, we fix our assimilation window to 9 time
steps, which means we have observations from at most 9 consecutive steps.
Our goal is to assimilate all state variables within this window, as illustrated
in fig. 4.

We have set the Score-based Data Assimilation (SDA) method as our
baseline, which is a state-of-the-art method for data assimilation with data-
driven physical models independent of any classical assimilation algorithms.
Both the SOAD model and the SDA baseline are pre-trained with the same
dataset and network structures, and no additional training is performed dur-
ing the assimilation process. Besides, it is worth noting that knowledge of
physical dynamics have been implicitly embedded into the SDA or our SOAD
model through the training process, and only the observational models are
used during the assimilation.

We consider the following four assimilation settings.

(I) Assimilation with a background prior at the first step, which
aligns with practical real-world applications.

(II) Assimilation without any background prior, where no back-
ground estimation is available at any step, and all physical prior knowl-
edge is inferred from our trained SOAD model. This setting is more
challenging and indicates the long-term performance of our model to
some extent.

(III) Multi-modal assimilation as an extension of setting (II), where ob-
servations coming from multiple observational operators are available
simultaneously.

(IV) Assimilation with non-Gaussian distributions as an extension
of setting (I) and (II), where we set the background prior and the
observational noise as non-Gaussian to study the robustness of our
model.

4.5.1. Assimilation with background prior

In practical applications, assimilation is usually performed sequentially
once new observations become available, so we start with the classical assim-
ilation settings that additionally provide the models with a background prior

27



for the first step. We choose the background prior as an ideal Gaussian per-
turbation with a known covariance (σb)2 = 0.12. Formally, the observational
model for the first step is modified as

y0 = x0 + ϵ0, ϵ0 ∼ N
(
0, (σb)2I

)
, (56)

where y0 is the background prior with noise variance 0.12. See fig. 4 (3rd
and 4th rows) for visualization.

Our experiments start with the element-wise observations He and Hh.
Besides, to explore the potential of our SOAD model in real applications,
we also test it with the vorticity-to-velocity mapping Hv2v. The averaged
RMSEs over all the 9 time steps for the assimilated states are summarized
in fig. 5. Our SOAD model performs slightly worse as the time interval N
increases and the observational ratio p or (1/s)2 decreases, which aligns with
our intuition that the assimilation task becomes more difficult with fewer ob-
servations. In the most challenging case, where the observations are available
only every 8 time steps with a ratio of 1%, the RMSEs are around 0.2 and
0.3 for the easy and hard observations, respectively. This indicates that our
method is still able to extract the physical features from rare observations
to some extent. Another interesting observation is that the RMSEs for the
hard observation Hh are lower than those for He and Hv2v. One possible
explanation is that when the observational data is sufficient for the model
to capture the dynamics, observations from a harder operator Hh may pro-
vide more detailed information since Hh is much more sensitive to the input.
In contrast, the SDA baseline (figs. 5c, 5f and 5i) shows a significant perfor-
mance drop even when the observations are available everywhere for each
time step. The inferior performance is likely due to the linearity assumption
for the observation operator in the SDA formulations, which is unsuitable for
highly nonlinear observations.

Meanwhile, fig. 5 includes an ablation study of our forward-diffusion cor-
rector, abbreviated as “f.d.c.” in the captions, as well. To study the effec-
tiveness of our forward-diffusion corrector, we have kept all the experimental
settings the same as those for the SOAD and the SDA methods, but re-
moved all the updates by the forward-diffusion corrector (line 12 and 16 in
algorithm 1). By comparing figs. 5a, 5d and 5g with figs. 5b, 5e and 5h re-
spectively we can conclude that the forward-diffusion corrector has played
an important role in improving the assimilation performance. For the ob-
servations He and Hv2v, our SOAD model without the forward-diffusion cor-
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(f) SDA (baseline) for Hh

N
=

1

N
=

2

N
=

4

N
=

8

p = 0.01

p = 0.0625

p = 0.25

s = p = 1

s = 2

s = 4

s = 10

0.168 0.174 0.179 0.185

0.141 0.152 0.160 0.166

0.121 0.131 0.139 0.147

0.103 0.113 0.122 0.128

0.120 0.131 0.141 0.148

0.139 0.152 0.163 0.168

0.167 0.175 0.183 0.186

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

R
M

S
E

(g) SOAD (ours) for Hv2v

N
=

1

N
=

2

N
=

4

N
=

8

p = 0.01

p = 0.0625

p = 0.25

s = p = 1

s = 2

s = 4

s = 10

0.535 0.593 0.651 0.712

0.294 0.341 0.392 0.437

0.194 0.224 0.258 0.290

0.135 0.155 0.176 0.197

0.191 0.222 0.255 0.288

0.283 0.333 0.385 0.431

0.492 0.556 0.618 0.673

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

R
M

S
E

(h) SOAD (no f.d.c.) for Hv2v

N
=

1

N
=

2

N
=

4

N
=

8

p = 0.01

p = 0.0625

p = 0.25

s = p = 1

s = 2

s = 4

s = 10

2.984 1.659 1.279 1.215

14.866 7.348 6.858 6.525

15.079 7.409 7.056 6.712

15.220 7.717 7.072 6.761

15.166 7.548 7.039 6.698

14.720 7.242 6.973 6.723

3.142 1.554 1.344 1.227

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

R
M

S
E

(i) SDA (baseline) for Hv2v

Figure 5: Averaged RMSEs for the assimilated states by using background prior.
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rector has shown a similar pattern as the normal SOAD, which is to say,
the denser and the more frequent observations we have for assimilation, the
higher accuracy we can obtain. For the much harder observation Hh, the
forward-diffusion corrector has prevented divergence and thus exhibited its
great potential to stablize the generative process.

Additionally, the step-wise RMSEs for our SOAD model over the assimi-
lation window are exhibited in fig. 6. Note that we start from a background
prior as an initial estimate, which introduces much more physical information
than the subsequent observational data. Although observations are available
for some of the subsequent time steps, the physical information encoded in
the observations may not be sufficiently informative to fully correct the tra-
jectory as it evolves, particularly in the early stages of assimilation. This
can result in increasing deviation from the ground truth at later time steps,
especially if the dynamical system exhibits sensitivity to initial conditions or
chaotic behavior. In both observation cases, The increments of RMSEs at
observational ratios of 100% and 25% are mild, and no significant changes
in RMSEs are observed when the easier He is replaced with the harder Hh.
Moreover, relatively lower assimilation errors are obtained whenever observa-
tional data are available, supporting the idea that more observations enhance
the assimilation process. By comparing results with the same observational
ratios (p = (1/s)2), we may conclude that regular (uniform) observations are
more beneficial for the assimilation process than irregular (random) ones. In
addition, although the step-wise RMSEs increase along with the time steps,
and the uncertainty of Hv2v (figs. 6e and 6f) is slightly higher compared with
He (figs. 8a and 8b) and Hh (figs. 8c and 8d), the subsequent experiments
may offer some evidences that the assimilation process is unlikely to diverge.

4.5.2. Assimilation without background prior

To explore the assimilation performance in the absence of any background
prior, we remove the modification (56) and conduct the assimilation process
solely from observational data. See the last two rows of fig. 4. Even if starting
with a background prior, any assimilation method will gradually forget the
initial state information as more observations are assimilated. Therefore, the
results shown in this section are likely to reveal the long-term behaviors of
the assimilation methods.

All assimilation results are recorded as heatmaps of RMSEs in fig. 7. In
general, our SOAD model performs well for both the He and Hv2v observa-
tional operators, with slightly higher accuracy for the latter. The observation
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(c) the hard observation Hh
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(d) the hard observation Hh
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(e) the vorticity-to-velocity Hv2v
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(f) the vorticity-to-velocity Hv2v

Figure 6: Step-wise RMSEs of SOAD for assimilation with prior.
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Hh appears to be the most challenging across all the testing observational
operators. More specifically, as also discussed in section 4.5.1, when obser-
vations are densely available, a condition that is uncommon in practice, the
observation Hh appears to be more informative and helpful than He and
Hv2v. However, under more typical conditions with partial observations, our
SOAD model achieves the best performance with Hv2v, followed He, This
may be attribute to the linearity of Hv2v, despite its non-local nature and
greater computational complexity.

As before, we present the step-wise RMSEs of our SOAD model in fig. 8.
Compared to the results in fig. 6, the performance degrades when assimilat-
ing without a background prior–an expected outcome given the absence of an
initial estimate at the first time step. Notably, the RMSE remains relatively
stable across time, with only slight increases observed at the beginning and
end of the assimilation window. This pattern is consistent with the behavior
of smoothing methods, which have limited observational support near the
temporal boundaries. Furthermore, the individual RMSE profiles across dif-
ferent experimental settings demonstrate that the SOAD model maintains
consistent accuracy over time, providing strong evidence of its long-term
stability and resistance to divergence.

To visualize the assimilated states, we have plotted the assimilated vor-
ticity with random observational ratios p ∈ {0.25, 0.0625, 0.01} in figs. 9
to 11 for He, Hh and Hv2v, respectively. For clarity, we only include the
vorticity and the associated observations for the first layer, as they contain
more small-scale details. For the He observation, our SOAD is capable of
recovering most of the physical features until p reaches 1%, in which case the
assimilated states still share much similarity with the ground truth. With the
harder Hh, the SOAD model fails to reconstruct the real system states when
p ≤ 0.0625 = (1/4)2, consistent with the previous results shown in fig. 7b.
Surprisingly, the assimilated states with rare observations do not collapse
and still follow certain dynamics, suggesting that the lack of observational
data, rather than incapacity of learning the dynamics, leads to the failure.
Finally, when the observation is the vorticity-to-velocity mapping Hv2v, the
assimilated states are closer to the ground truth even when observations are
available at only 1% of the grids. We believe that the success may result from
the linearity of Hv2v. The results indicate that our SOAD approach is stable
when handling highly nonlinear observations in the long term performs well
on non-element-wise observations such as the vorticity-to-velocity mapping
Hv2v, which is a promising sign for real applications.
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Figure 7: Averaged RMSEs of our SOAD without background prior.

4.5.3. Assimilation with multiple observations

In this subsection, we discuss another important feature of our SOAD
approach: the ability to handle observations from different modalities. Such
a capability is crucial for real applications since the observations are usually
collected from various sources like satellites, weather radars, and in-situ ob-
servations. Each source may provide different physical variables in different
formats. We have tested our SOAD approach with various combinations of
the three observations He, Hh and Hv2v. Same as the previous subsection,
we do not add any background prior for the first step in order to study the
long-term behaviors. The results are displayed in fig. 12.

As the collection of observations expands, the uncertainties of the assim-
ilation errors shrink, and the averaged RMSEs decrease as well due to the
additional information inferred from the observations. This phenomenon im-
plies that our SOAD approach also follows the intuitive principle that more
observations are beneficial for the assimilation process. Figure 12d gath-
ers the best performances for each observation collections when s = p = 1,
and the overlapping areas are marked with the corresponding observation
combinations.

4.5.4. Model robustness beyond Gaussian assumptions

All the previous experiments have employed Gaussian assumptions for
both the background estimate (when available) and the observational noise.
However, this idealization rarely holds in realistic applications. Commonly,
during online deployment, the background uncertainty is either unknown or
poorly characterized, and the observational noise may exhibit heavy tails
or other non-Gaussian features due to sensor limitations and dynamic en-
vironmental factors. To assess the robustness of our proposed model under
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(c) the hard observation Hh
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(d) the hard observation Hh
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(e) the vorticity-to-velocity Hv2v
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Figure 8: Step-wise RMSEs of SOAD for assimilation without prior.
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Figure 9: Visualization of the assimilated vorticities by our SOAD model with He.
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Figure 10: Visualization of the assimilated vorticities by our SOAD model with Hh.
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Figure 11: Visualization of the assimilated vorticities by our SOAD model with Hv2v.

these more challenging but realistic conditions, we conduct additional exper-
iments in which the Gaussian assumptions are deliberately violated. These
experiments serve to evaluate the model’s adaptability and reliability in the
presence of distributional uncertainty.

In practice, we cannot always expect the availability of the exact proba-
bility distribution for background prior. Background errors may result from
many aspects, such as unresolved sub-scale features, temporal interpolations
and physical parameterizations. To explore the impact of potential mismatch
between our assumed background prior model (56) and the true underlying
distribution, we design an experiment under the same settings as before, but
replace the background prior with a sample generated from an unknown noise
process

y′
0 =MQG(x−1 + η), η ∼ N

(
0, 0.012I

)
(57)

into the model instead of y0. Here, MQG is the forward propagation model
of the QG equations, and x−1 stands for the state at the previous time step.
Comparisons between the step-wise RMSEs are displayed in fig. 13, where
we fix N = 1 and p = 0.25. Despite the discrepancy in the background
prior, our SOAD model demonstrates a capacity for self-correction within a
few assimilation steps, exhibiting its robustness and relative insensitivity to
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Figure 12: RMSEs for multi-modal assimilation with our SOAD model. The error uncer-
tainty introduced by different random seeds is marked on the top of each bar. Duplicate
results may appear in multiple subplots for illustration purposes.
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Figure 13: Step-wise RMSEs for SOAD with different data for background prior.

inaccuracies in the background prior distribution.
Another important source of uncertainty in data assimilation arises from

the nature of observational noise, which is often assumed to be Gaussian
for analytical convenience. However, in reality, observational errors can ex-
hibit non-Gaussian characteristics due to factors such as unknown nonlinear
sensor transformations, mixed error sources, or limitations in the statistical
characterization of measurement systems. To evaluate the robustness of our
assimilation algorithm under such conditions, we perform experiments using
a non-Gaussian noise model for the observations. In particular, compared to
eq. (51), we set

yk = Sk ◦ H(xk) + ϵk, ϵk ∼ D , (58)

where the Gaussian noise assumption is replaced by a distribution D , drawn
from three types of element-wise noise models: Laplace distribution, Uni-
form distribution, and LogNormal distribution, whose density functions are
visualized in fig. 14. Note that we have fixed appropriate parameters for each
distribution so that all the distributions share the same mean and variance
with our Gaussian assumption (51). The detailed parameters are listed in
appendix Appendix C for reference.

The quantitative results for assimilation under different observational
noise distributions are summarized in tables 3 and 4. Each table reports
the step-wise RMSE (scaled by 10−2) under various observation operators
(He, Hh, and Hv2v), with and without the use of a background prior. The
first table corresponds to the setting N = 1, p = 1, representing full spatio-
temporal coverage, while the second table uses N = 2, p = 0.25, introduc-
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Figure 14: The probabilistic density functions for various observational noise.

assimilation w/ prior assimilation w/o prior

dist. ⧹ obs. He Hh Hv2v He Hh Hv2v

Laplace 8.455±0.46 6.441±0.36 10.31±0.49 13.82±0.53 14.44±1.2 11.85±0.76

Uniform 8.449±0.46 6.441±0.36 10.30±0.49 13.84±0.53 15.91±5.6 11.85±0.76

LogNormal-0.1 8.456±0.47 6.444±0.36 10.30±0.49 13.82±0.53 10.14±3.5 11.85±0.75

LogNormal-0.2 8.457±0.47 6.444±0.36 10.31±0.49 13.82±0.53 13.02±5.0 11.85±0.75

LogNormal-0.5 8.460±0.47 6.445±0.36 10.31±0.49 13.83±0.53 12.07±6.1 11.85±0.75

LogNormal-1.0 8.529±0.48 6.527±0.37 10.36±0.49 14.20±0.65 14.07±1.6 12.01±0.78

Gaussian 8.457±0.47 6.444±0.36 10.30±0.49 13.82±0.53 12.93±3.2 11.85±0.75

Table 3: RMSE (×10−2) with various observational noise distributions, N = 1, p = 1.

ing a more difficult case. Across both settings, we observe that the perfor-
mance of the SOAD model remains stable regardless of the specific noise
distribution. In particular, the RMSE values under Laplace, Uniform, and
moderately skewed LogNormal noise (e.g., LogNormal-0.1 to LogNormal-
0.5) closely match those obtained under Gaussian noise, indicating that the
model is robust to deviations from the Gaussian assumption. Only when the
LogNormal noise becomes significantly skewed (LogNormal-1.0) do we see a
slight degradation in performance, especially in the absence of a background
prior. These results collectively suggest that SOAD is largely insensitive
to the choice of noise distribution and maintains high assimilation accuracy
even under non-Gaussian observational errors.
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assimilation w/ prior assimilation w/o prior

dist. ⧹ obs. He Hh Hv2v He Hh Hv2v

Laplace 11.96±1.1 12.33±1.3 13.05±1.2 27.50±1.0 72.34±9.3 18.99±0.80

Uniform 11.96±1.1 12.33±1.3 13.05±1.2 27.51±1.0 72.41±9.4 18.99±0.80

LogNormal-0.1 11.96±1.1 12.34±1.3 13.05±1.2 27.50±1.0 71.99±9.2 18.98±0.80

LogNormal-0.2 11.96±1.1 12.34±1.3 13.05±1.2 27.50±1.0 71.45±8.4 18.98±0.81

LogNormal-0.5 11.96±1.1 12.34±1.3 13.05±1.2 27.51±1.0 72.38±9.0 18.98±0.81

LogNormal-1.0 12.03±1.1 12.44±1.3 13.09±1.2 27.67±1.0 72.93±7.4 19.12±0.84

Gaussian 11.96±1.2 12.34±1.3 13.05±1.2 27.49±0.53 72.14±9.2 18.98±0.80

Table 4: RMSE (×10−2) with various observational noise distributions, N = 2, p = 0.25.

5. Conclusion and future work

In this study, we have proposed the State-Observation Augmented Dif-
fusion (SOAD) model, a novel data-driven data assimilation method that
operates independently of classical algorithms. Unlike many existing ap-
proaches, SOAD does not assume linearity in the physical or observational
models, yet it can still recover the posterior distribution under mild con-
ditions, suggesting a theoretical advantage. Experiments on the two-layer
quasi-geostrophic model with various settings have demonstrated its good
performance and potential for real-world applications.

A key feature of SOAD is its use of augmented dynamical models. Al-
though the original assimilation problem may be highly nonlinear, we work
with a linearized equivalent by augmenting the system, allowing us to fo-
cus on linear observational models. By leveraging a score-based generative
framework, SOAD learns the prior distribution of physical states without ex-
plicit knowledge of the physical model, embedding relevant physics implicitly.
We also propose a deterministic approach to estimate the adversarial gradi-
ent and introduce a forward-diffusion corrector to stabilize the assimilation
process.

Further improvements and extensions of our approach are also necessary.
First, analyzing convergence rates and conditions in the presence of training
errors would be beneficial. Robustness and stability are particularly impor-
tant in real-world applications, and broader testing on both idealized and
real-world models is needed to fully assess performance. While our current
framework assumes additive observational noise, extending it to handle non-
additive or more complex noise structures would be a valuable direction for
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future work, as such cases may arise in certain practical scenarios. Besides,
adapting our SOAD approach to more complex tasks beyond data assimila-
tion could also be an exciting avenue for future research.

Data availability

All the codes for data generation, network training and assimilation ex-
periments are available at https://github.com/zylipku/SOAD.
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Appendix A. Configurations of the QG model

We list the parameters (as defaults in pyqg-jax4) we have used to gen-
erate the QG dataset.

• Domain size: 106 × 106;

• Linear drag in lower layer: rek = 5.767× 10−7;

• Gravity: g = 9.81;

• Gradient of Coriolis parameter: β = 1.5× 10−11;

• Deformation radius: rd = 1.5× 104;

4https://pyqg-jax.readthedocs.io/en/latest/reference.models.qg model.html
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• Layer thickness: H1 = 500, H2 = 2000;

• Upper/Lower layer flow: U1 = 0.025, U2 = 0;

• F1 = r−2
d /(1 + δ) and F2 = δF1, where the layer thickness ratio δ =

H1/H2 = 0.25.

To obtain the small-scale dissipation “ssd” mentioned in eq. (45), a highly-
selective exponential filter

Ef =

{
exp [−23.6(κ⋆ − κc)4] , κ ≥ κc

1, κ < κc

is employed as a multipler on the spectral domain. The term κ⋆ stands
for the non-dimensional wavenumber, and the cutoff κc is set as 65% of the
Nyquist scale κ⋆ny = π. Readers may refer to pyqg5 for the detailed numerical
scheme.

Appendix B. Network architecture

The denoising network εθ(zt, t) is implemented using a U-Net architecture
proposed in [48], and we reproduce it in fig. B.15 for completeness, where we
have attached the channel numbers for each module.

Appendix C. Various observational noise distributions

Let p(x) denote the probabilistic density function. To ensure all the
observational noise distributions share the same mean and variance of our
Gaussian assumptions N (0, (σo)2) defined in eq. (51), we employ the follow-
ing settings.

• Laplace:

pLaplace(x) =
1

2b
exp

(
−|x− µ|

b

)
,

where µ = 0, b = σo/
√

2;

5https://pyqg.readthedocs.io/en/latest/equations/notation twolayer model.html
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Figure B.15: The U-Net architecture for the denoising network εθ(zt, t).

• Uniform:

pUniform(x) =

{
1
2d
, |x| < d,

0, |x| ≥ d,

where d =
√

3σo;

• LogNormal: Let Z ∼ N (µ, s2), then the distribution of expZ is defined
to follow the LogNormal distribution with parameter µ and s. To make
the random variable unbiased, we introduce an additional shift term c,
which means we use (expZ + c) to generate our observational noise.
For any fixed s, we define

c = −σo
(
exp(s2)− 1

)−1/2
, µ = −s

2

2
+ log(−c).

The value of s is appended to the distribution name in the main text.
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[77] F. Mazé, F. Ahmed, Diffusion models beat GANs on topology optimiza-
tion, in: Proceedings of the AAAI conference on artificial intelligence,
Vol. 37, 2023, pp. 9108–9116.

[78] G. Giannone, A. Srivastava, O. Winther, F. Ahmed, Aligning optimiza-
tion trajectories with diffusion models for constrained design generation,
Advances in Neural Information Processing Systems 36 (2023) 51830–
51861.

[79] Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon,
B. Poole, Score-based generative modeling through stochastic differen-
tial equations, in: International Conference on Learning Representa-
tions, 2021.
URL https://openreview.net/forum?id=PxTIG12RRHS

[80] B. K. W. Lahoz, R. Menard, Data assimilation, Springer, 2010.

[81] S. Särkkä, A. Solin, Applied Stochastic Differential Equations, Insti-
tute of Mathematical Statistics Textbooks, Cambridge University Press,
2019. doi:10.1017/9781108186735.

52

https://doi.org/10.1029/2024JH000153
https://doi.org/10.1029/2024JH000153
https://doi.org/10.1109/TGRS.2023.3337014
https://doi.org/10.1109/TGRS.2023.3337014
https://doi.org/10.1038/s42256-023-00762-x
https://doi.org/10.1038/s42256-023-00762-x
https://openreview.net/forum?id=PxTIG12RRHS
https://openreview.net/forum?id=PxTIG12RRHS
https://openreview.net/forum?id=PxTIG12RRHS
https://doi.org/10.1017/9781108186735


[82] B. D. Anderson, Reverse-time diffusion equation models, Stochastic
Process. Appl. 12 (3) (1982) 313–326. doi:10.1016/0304-4149(82)

90051-5.

[83] A. DasGupta, Asymptotic theory of statistics and probability, Vol. 180,
Springer, 2008.

[84] A. Hyvärinen, P. Dayan, Estimation of non-normalized statistical mod-
els by score matching., Journal of Machine Learning Research 6 (4)
(2005).

[85] P. Vincent, A connection between score matching and denoising autoen-
coders, Neural Comput. 23 (7) (2011) 1661–1674. doi:10.1162/NECO_

a_00142.

[86] Q. Zhang, Y. Chen, Fast sampling of diffusion models with exponential
integrator, arXiv preprint arXiv:2204.13902 (2022).

[87] P. Dhariwal, A. Nichol, Diffusion models beat gans on image synthesis,
in: Advances in Neural Information Processing Systems, Vol. 34, 2021,
pp. 8780–8794.

[88] J. Ho, T. Salimans, Classifier-free diffusion guidance, in: NeurIPS 2021
Workshop on Deep Generative Models and Downstream Applications,
2021.

[89] X. Meng, Y. Kabashima, Diffusion model based posterior sampling for
noisy linear inverse problems, arXiv preprint arXiv:2211.12343 (2022).

[90] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary,
D. Maclaurin, G. Necula, A. Paszke, J. VanderPlas, S. Wanderman-
Milne, Q. Zhang, JAX: composable transformations of Python+NumPy
programs (2018).
URL http://github.com/google/jax

[91] R. Abernathey, rochanotes, A. Ross, M. Jansen, Z. Li, F. J. Poulin,
N. C. Constantinou, A. Sinha, D. Balwada, SalahKouhen, S. Jones,
C. B. Rocha, C. L. P. Wolfe, C. Meng, H. van Kemenade, J. Bourbeau,
J. Penn, J. Busecke, M. Bueti, Tobias, pyqg/pyqg: v0.7.2 (may 2022).
doi:10.5281/zenodo.6563667.

53

https://doi.org/10.1016/0304-4149(82)90051-5
https://doi.org/10.1016/0304-4149(82)90051-5
https://doi.org/10.1162/NECO_a_00142
https://doi.org/10.1162/NECO_a_00142
http://github.com/google/jax
http://github.com/google/jax
http://github.com/google/jax
https://doi.org/10.5281/zenodo.6563667


[92] D. P. Kingma, J. Ba, Adam: A method for stochastic optimization, in:
International Conference on Learning Representations, 2015.

54


	Introduction
	Related works and contributions
	Data assimilation frameworks
	Deep generative models
	Main contributions

	Methodology
	Problem settings and assumptions
	Score-based data assimilation
	Score-based generative models
	Conditional score models

	State-observation augmented diffusion model
	Augmented dynamical system
	Estimation for the marginal posterior
	Forward-diffusion corrector
	Implementation


	Experiments
	Dataset
	Network structures and training procedures
	Observations
	Metric
	Assimilation experiments
	Assimilation with background prior
	Assimilation without background prior
	Assimilation with multiple observations
	Model robustness beyond Gaussian assumptions


	Conclusion and future work
	Configurations of the QG model
	Network architecture
	Various observational noise distributions

