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Designing a minimal Landau model to stabilize desired quasicrystals
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Interparticle interactions with multiple length scales play a pivotal role in the formation and stability of
quasicrystals. Choosing a minimal set of length scales to stabilize a given quasicrystal is a challenging problem.
To address this challenge, we propose a symmetry-preserving screening method (SPSM) to design a Landau
theory with a minimal number of length scales—referred to as the minimal Landau theory—that includes only the
essential length scales necessary to stabilize quasicrystals. Based on a generalized multiple-length-scale Landau
theory, SPSM first evaluates various spectral configurations of candidate structures under a hard constraint. It
then identifies the configuration with the lowest free energy. Using this optimal configuration, SPSM calculates
phase diagrams to explore the thermodynamic stability of desired quasicrystals. SPSM can design a minimal
Landau theory capable of stabilizing the desired quasicrystals by incrementally increasing the number of length
scales. Our application of SPSM has not only confirmed known behaviors in 10- and 12-fold quasicrystals but
also led to a significant prediction that quasicrystals with 8-, 14-, 16-, and 18-fold symmetry could be stable

within three-length-scale Landau models.
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I. INTRODUCTION

Quasicrystals (QCs) are ordered structures that exhibit
rotational symmetry but lack translational symmetry. Since
the first discovery of QCs in Al-Mn alloys [1], QCs have
attracted tremendous attention in material science and con-
densed matter physics [2-9]. In recent years, QCs have been
discovered in a variety of soft condensed matter, including
micelle-forming liquid crystals [3,8,10—12], block copoly-
mers [4,7,13-16], colloidal suspensions [17], and binary
mixtures of nanoparticles [18,19]. To date, numerous QCs
with 8-, 10-, 12-, and 18-fold rotational symmetries have been
frequently reported in both metallic alloys [2] and soft mat-
ters [3,6-9,13,15,17,19-22]. Much effort has been devoted to
studying the properties of QCs, predicting their stability, and
developing methods to control their formation [23,24].

Landau theories have been extensively employed to study
the formation, stability and phase transition of ordered phases,
including periodic crystals and QCs [25-29]. Generally, a
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Landau free-energy functional consists of a polynomial-type
bulk energy and a nonlocal pairwise interaction,

Flon)] = ][[dz<i5(r)2 +dip(r)’ + dap(r)* + .. ] dr
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where ¢(r) is an order parameter describing the particle dis-
tribution, C(r) is the pair direct correlation potential [30] that
is finite for the distance r between particles [31]. C(r) > O re-
flects an attractive interaction between particles, and C(r) < 0
indicates a repulsive interaction. f = ngfllg . i Jo and V()

is the volume of the region 2. In the case of a periodic phase,
the integral is equivalent to an integral over its unit cell. The
power series in the first term of Eq. (1) is typically truncated
to the fourth order [32—-34]. The quadratic term contributes to
the growth of instability, while the quartic term establishes a
lower bound for the free energy. The cubic term breaks the
¢ — —¢ symmetry.

An understanding of how to stabilize an ordered structure
comes from representing the second term of (1) in reciprocal
space,

1[4 R
5][0<k)|¢<k)|2dk, k= Ikl.

where k is the reciprocal lattice vector (RLV), dk) =
fexp(—ik -r)¢(r)dr is the Fourier transform of ¢(r), and
C(k) is the Fourier transform of C(r). The Fourier coeffi-
cients qS(k) with wave numbers at the minima of C(k) are
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energetically favored. Given the N-fold rotational symmetry,
the correlation potential can be approximated by a polynomial
with roots dy, ds, . . .,

Chy~c(k> —d})(k* —d3)---, c>0. 2)
When C(k) is truncated to second order, i.e., c(k* —d?),
which has the minima at k = 0, the model can be used to
simulate the solidification process of binary mixtures, such as
phase-field models [35].

More complex phase behaviors related to multiple length
scales can be investigated by the correlation potential with
multiple roots [32-34,36-38]. For a single length scale, the
potential (2) should be truncated to fourth order and rewrit-
ten as c(k? — 1)* by scaling k in units of ,/(d? + d?)/2 and
omitting constant terms. This potential discourages RLVs
with wave numbers deviating from the length scale 1. The
single-length-scale potential has been extensively utilized to
explain phase behaviors in periodic systems, such as Landau-
Brazovskii model [32] and Swift-Hohenberg model [33]. To
achieve two length scales, C(k) must be truncated to eighth
order and rewritten as c[(k* — cﬁ)(lc2 — q%)]z, which fea-
tures two equal-depth minima at k = g; and k = ¢,. This
two-length-scale potential was first proposed by Lifshitz and
Petrich (LP) to describe quasiperiodic pattern-forming dy-
namics [34] and to find stable 12-fold QCs by setting g»/q; =
2 cos(/12). Over the years, this two-length-scale type po-
tential has been widely used to study the thermodynamic
stability of QCs and found stable 10-, 12-fold QCs and three-
dimensional icosahedral QCs [5,36-43,55].

However, many QCs are metastable or unstable in two-
length-scale models, such as 8- and 18-fold QCs. This raises
the question: Could these QCs be stabilized by introducing
more length scales? Lifshitz and Petrich speculated that corre-
lation potentials with three or four length scales could stabilize
higher-order symmetric QCs, such as 18- or 24-fold QCs [34].
Savitz et al. have demonstrated that this conjecture might be
correct and found stable 8- and 18-fold QCs in four-length-
scale Landau models [37]. However, increasing the number
of length scales introduces greater complexity in interparticle
interactions within physical systems and poses a significant
challenge for theoretical analysis [3,13,15,44,45]. Therefore,
it is crucial to design a Landau theory with the minimal
number of length scales, i.e., the minimal Landau model to
stabilize desired QCs.

Designing a minimal Landau theory requires a general
Landau model with multiple length scales. To incorporate m
length scales, we could truncate Eq. (2) to the 4mth order
and adjust parameters to achieve equal-depth minima at k =
qi, - - -, qm, thereby rewriting the correlation potential in the
form,

2

Cay=c|[[@=q})|. c>o0. 3)
j=1

This pair potential favors the RLVs with wave numbers close
to the length scales ¢, . . ., g, but suppresses the other RLVs.
Substituting Eq. (3) into Eq. (1) and truncating the poly-
nomial to fourth order lead to a generalized m-length-scale

free-energy functional [37,45]
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where the parameter € is temperature-related, « measures the
intensity of three-body interaction, ¢ > 0 is a penalty factor,
and ¢y, ..., q, are length scales. The function ¢(r) satisfies
the mean-zero constraint, fd)(r) dr = 0, corresponding to a
mass-conserved system.

We organize the rest of this paper as follows. In Sec. II, we
propose an symmetry-preserving screening method to design
a minimal Landau theory for desired QCs. In Sec. III, we ap-
ply this method to design minimal Landau theories for 2n-fold
QCs(n=4,5,...,9). We find that three-length-scale Landau
models can stabilize 8-, 14-, 16-, and 18-fold QCs. Finally, we
summarize this paper in Sec. IV.

II. SYMMETRY-PRESERVING SCREENING
METHOD (SPSM)

Designing a minimal Landau theory to stabilize desired
QCs requires considering various candidate structures. For a
candidate phase, there are numerous possible configurations
of RLVs describing its spectral distribution. To identify the
optimal configuration with the lowest free energy, it is crucial
to analyze the contributions of RLVs.

RLVs could be categorized into primary and nonprimary
RLVs. The primary RLVs exhibit strong intensities and have
wave numbers equal to the length scales. The remaining RLVs
are the nonprimary RLVs. Numerous studies indicate that the
primary RLVs determine the main characteristics of ordered
structures and the nonprimary RLVs influence local details
[36,37,46,55]. The contributions of primary and nonprimary
RLVs can be studied from two perspectives: hard constraint
(HC) with ¢ — oo, and soft constraint (SC) with a finite c.
Under the HC, C,, (k) is zero if the wave number k belongs to
the set {q1, ..., gm}, and otherwise it is infinite. This implies
that all nonprimary RLVs are forbidden under this constraint.
The SC relaxes the restriction on wave numbers, permitting
the emergence of nonprimary RLVs, which may be favored
by a realistic system.

Based on the two constraints, we propose SPSM to design a
minimal Landau theory to stabilize the desired QCs, as shown
in Fig. 1. Given a target QC and the number of length scales,
there might be many configurations of primary RLVs. Let
us consider HC first. For a specific configuration, HC only
allows a finite number of primary RLVs, thus the free-energy
functional can be written as a polynomial function. The poly-
nomial function can be easily minimized by computer-assisted
symbolic calculation to obtain the free energy of the configu-
ration. Among all configurations, SPSM selects the optimal
one with the lowest free energy by directly comparing the
free energies. Using the optimal configuration, we can study
the thermodynamic stability of the target QC by constructing
phase diagrams under HC. If the target QC is metastable or
unstable, we increase the number of length scales to obtain
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FIG. 1. Flowchart of SPSM. The number of length scales increases gradually from 1.

more configurations. The optimal configuration among these
may lead to the formation of a stable QC. The free-energy
functional F,,, with these length scales is called a HC minimal
Landau model. Based on the optimal configuration and the
HC minimal Landau model, we further design a minimal
Landau model under SC. Since SC permits the emergence
of nonprimary RLVs, we use numerical methods to calculate
SC phase diagrams to study the stability of the target QC.
We obtain the SC minimal Landau model if the target QC
is stable, otherwise, we repeat the above process with more
length scales. We can always obtain a minimal Landau theory
to stabilize target QC since more length scales have more
primary RLVs that may form more triplets to lower the free
energy.

In order to obtain the possible configurations of primary
RLVs, we first analyze the elements of primary RLVs. For
a candidate phase, its primary RLVs are determined by the
length scales and the relative positions. As an example, we
consider two-length-scale eightfold QCs, as demonstrated in
Fig. 2. The length scales are consistent with the radii of the
circles ¢g; and g,. The relative positions depend on the offset

FIG. 2. Primary RLVs of the eightfold QC with two length scales
g1 and g,. Magenta (royal blue) dots and the origin form the primary
RLVs. 0, and 6, are offset angles.

angles 6 and 6,. The offset angle of each circle is defined as
the minimal angle at which the primary RLV rotates clockwise
in the horizontal direction. Note that the primary RLVs on
each circle are equivalent due to rotational symmetry. Without
loss of generality, we set 8; = 0 and the rest is 6, — 6;. For an
m-length-scale N-fold candidate phase, we have

qgj =cos(w;jm/N), j=1,...,m, 5)

91:0, Oj/:sj/n/N, j’:2,...,m. (6)

The primary RLVs given by (5) and (6) can form more triplets,
which could lower the free energy. w; € [0, N/2) owing to
the periodicity of the cosine function, and s € [0, 2) because
of rotational symmetry. We obtain various possible configura-
tions of primary RLVs by discretizing w; and s in the valid
ranges.

Under HC, the free-energy functional F,, can be written as
a polynomial function. Since C,,(k) should be zero to ensure
finite free energy, F,, preserves bulk energy part

R f(5e

where €* = €/a?. Note that Eq. (7) has scaled the cubic co-
efficient « to unity by measuring the field ¢ in units of « and
the energy in units of *. Using the Fourier transformation of
¢(r), Eq. (7) becomes

%&+%¢)w, (7

Flbgrs ooy Bg) =

Z b, i,

k1+k2—0

1 PO
3 Z 1, Dr, i

ki+ky+k;=0

1
+Z Z

ky+ky+k3+ky=0

O, o Py rs (8)

where all k; = |k;| belong to the set {gqi,...,qm}, i =
1,2,3,4, and ¢, denotes the Fourier coefficient with wave
number ¢;. In Eq. (8), the three-RLV interaction in the third
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row is beneficial to lower the free energy, but the four-RLV
interaction in the fourth row increases the free energy. Since
the primary RLVs are finite for a specific configuration, we
can calculate the summations in Eq. (8) by symbolic com-
putation. We then minimize the polynomial function with
respective to ¢q, y .- ¢qm to obtain the free energy of this con-
figuration. Among all possible configurations, we select the
optimal configuration with the lowest free energy. Using the
optimal configuration, we study the thermodynamic stability
of desired QCs by constructing a phase diagram under HC.

Under SC, SPSM can also examine the thermodynamic sta-
bility of desired QCs by combining with numerical methods.
An accurate and efficient numerical approach to study QCs is
the projection method [47,48]. The projection method embeds
the QC into a high-dimensional periodic system, which can be
efficiently calculated by fast Fourier transformation, and then
obtains the QC by projecting it back to the original space. The
specific formula of the projection method is

¢y =Y PPN,

heZ"h

reR® dy<d;, (9

where P is a dy x dj-order projection matrix. dy is the di-
mension of the original space, and d; is the dimension of
the high-dimensional space dependent on the symmetry of
the QC. A special case of dy = d; implies that the projection
method is the common Fourier pseudospectral approach for
periodic crystals. Moreover, the m-length-scale model under
SC can be rescaled to reduce the number of model parameters.
Let g, be any element of the set {g;}’_,. c is rescaled to unit

by measuring the field ¢ in units of \/cq>™, and consequently

the energy is measured in units of ¢>¢®", thus Eq. (4) becomes

€ 0 o
Fmlo@)] =][<—§¢ 3

_¢3 + Z¢4> dr
2

][ [1(V+4/2)e@) | dr.  (10)
j=1

where € and « are measured in units of cg*" and /cg>", re-
spectively. In this paper, g takes the minimal value of {¢;}"",
Its stationary solutions can be quickly and robustly obtained
by recently developed optimization methods [49-51]. And its
phase diagram can be automatically and efficiently generated
by our developed open-source software [52].

III. RESULTS AND DISCUSSIONS

Applying the SPSM, we design minimal Landau theories
for two-dimensional 2n-fold QCs (n =4,5,...,9). These
QCs are named as octagonal (O), decagonal (D), dodecagonal
(DD), tetradecagonal (TD), hexadecagonal (HD), and oc-
tadecagonal (OD) QCs, respectively. Note that the primary
RLVs with a single length scale could not generate sufficient
three-RLV interactions to stabilize QCs in the Landau free-
energy functionals [34,46]. We present the numerical results
of two, three and four length scales in Supplemental Mate-
rial (SM) [53]. The results include optimal configurations of
primary RLVs, HC free energy, HC phase diagrams, and the
SC phase diagrams of minimal Landau models. The results
demonstrate that 10- and 12-fold QCs can be stabilized in

OIO©

(a) HEX! (b) SQU!

) HEX?

(c) LAM!

(e) SQU?

FIG. 3. Optimal primary RLVs of (a)—(c) single-length-scale and
(d), (e) two-length-scale competing crystals. Superscripts denote the
number of valid length scales. The radius of inner (royal blue) circle
is ¢ and the radius of outer (magenta) circle is g». g2 /¢ is equal to
(d) 2 cos(ir /6) and (e) 2 cos(m /4).

the Landau model with at least two length scales, which is
consistent with previous findings [34,36,40,41,55], implying
the effectiveness of SPSM. The results of 8-, 14-, 16- and
18-fold QCs give some exciting predictions, which will be
introduced in this section.

In what follows, we consider three competing crystals, in-
cluding lamellar (LAM), square (SQU), and hexagonal (HEX)
crystals to study the thermodynamic stability of an m-length-
scale QC. The competing crystals have the length scales
consistent with the length scales of the QC. The offset angles
follow Eq. (6), where N = 2 for LAM, N = 4 for SQU, and
N = 6 for HEX. Under HC, the free-energy functional can be
written as a polynomial function, thus we can easily obtain
the optimal primary RLVs of these crystals. It should be noted
that if the Fourier coefficients at some primary RLVs are
very weak or even vanished, i.e., these primary RLVs become
nonprimary RLVs, the number of valid length scales of the
crystals denoted by superscripts is less than m. Numerical
simulations demonstrate the optimal configuration of primary
RLVs has one or two valid length scales for HEX and SQU
but only one valid length scale for LAM, as shown in Fig. 3.
For the case of one valid length scale, the HC free energies are

Fupxt (bj, €)= =3¢*¢7 —4d3 + £d1, (1D
Fsou (). €*) = —2¢*$7 + 9¢%, (12)
Fiam (), €)= —€*¢7 + 347, (13)

For the case of two valid length scales, the length scales
satisfy a special ratio to form more three-RLV interactions:
g2/q1 = 2cos( /6) for HEX? and ¢»/q; = 2 cos(rr/4) for
SQU?. Their HC free energies are given by

fHExz({éjﬁ:l’ E*)

= =3¢" (¢ + 83) — 1267
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—4¢] — 4¢3 + L (1 + b3) + 3667 + 90913,
(14)
Fsqu:(1$))j=1s €) = =2€*(} + ¢3) — 87
+9(d] +46743 +43).  (15)

A. Octagonal (O) QCs

Two-dimensional OQCs have been frequently observed
in materials since the first discovery in V-Ni-Si and Cr-Ni-
Si alloys [54]. Their electron-diffraction patterns reveal that
0OQCs have multiple length scales [54]. Theoretical studies
have pointed out that the formation of OQCs may require
correlation potentials with multiple length scales. Concretely,
the two-length-scale Landau model, such as the LP model,
could obtain a metastable OQC [55], and the four-length-scale
model could stabilize OQC [37]. In this section, we apply the
SPSM and design a minimal Landau theory to stabilize OQC.

SPSM firstly finds the optimal configuration of primary
RLVs of m-length-scale OQC. The length scales and offset
angles are

qgj =cos(w;m/8), w;€[0,4), j=1,...,m,

9120, Gj/:ij]T/S, ijE[O,Z), j’:2,...,m.
For a specific configuration involving variables
wi, ..., Wy, 85, ...,5,, the Landau model is written as a

polynomial with the minimal value F! (x). The configuration
yielding the lowest F! () is considered optimal. Taking
m = 3 as an example, Fig. 4(a) plots ]-","n(*) against w; and
w, when fixing ws =3, s, =1, and s3 = 0. The energy
surface is almost flat except for a few peaks. This implies
that only a few configurations can significantly lower free
energies. The lowest peak whose energy is denoted as F.s
occurs at (wy, wy) = (1, 2). The corresponding primary RLV's
have length scales of cos(w/8), cos(w/4), and cos(37/8).
We have confirmed that this configuration remains optimal
as ws, sp and s3 change. In this optimal configuration, there
are two different ways to form the three-RLV interaction.
One involves two RLVs with equal wave numbers and

FIG. 4. (a) Free energies of OQC® as a function of w; and w,.
w3y =3,5 =1,55 =0. .7-",",,(*) is the minimal value of the HC model
with €* = 0. (w, wy) = (1, 2) is the peak point with free energy
Fres = —3.7285 x 1073, At the peak point, the primary RLVs with
length scales cos(w/8), cos(m/4), cos(3w/8) have two types of
three-RLV interactions, as shown in (b) and (c).

another RLV with a different wave number, as illustrated in
Fig. 4(b). Another way involves three RLVs with different
wave numbers, as shown in Fig. 4(c). The HC free energy of
the optimal configuration has the following expression:

Foqcs ({</3}3=1, 6*)

3
= —4e" ) ¢ — 1662 + h3)°

j=1

3
+ 42 Zéj + 192¢1$7¢3 + 48¢143(h7 + b3)

j=1
+ 144($7 43 + $13 + $363). (16)

Moreover, for m = 2, the optimal primary RLVs of OQC
have length scales of 1 and cos(x /4), which are depicted in
the embedded pattern of Fig. 5(a), with the HC free energy
expressed as

2
Foqc ({‘5}321’ E*) = —4¢* ZQSJZ - 16([’1‘1;%

J=1

2
+42) L+ 1208743 (17)
j=1

To study the thermodynamic stability of OQCs under HC,
Fig. 5(a) plots the HC free energy of candidate structures as a
function of €* for a Landau model with two length scales 1 and
cos(r /4). We find that SQU? is favorable when €* < 0.7688,
HEX' for 0.7688 < €* < 1.9159, and LAM' when €* >
1.9159. Thus the two-length-scale OQC is metastable. For a
Landau model with three length scales cos(m/8), cos(m /4),
and cos(37/8), we find stable OQCs when €* < 0.0300, as
shown in Fig. 5(b). The reason could be attributed that the
primary RLVs in the three-length-scale OQC form more three-
RLV interactions than those in the two-length-scale OQC,
thereby reducing the HC free energy. Furthermore, the HC
phase diagram in the e-o plane is plotted in Fig. 5(c). Here,
the three-length-scale OQC is expected to be thermodynamic
stable when —0.1021 < €* < 0.0300. Therefore, this three-
length-scale Landau model is the minimal model to stabilize
OQC under HC.

Based on the HC minimal Landau model, we further
study the thermodynamic stability of OQC under SC to de-
sign a SC minimal Landau theory. We apply the projection
method to evaluate OQCs and their free energies accurately.
Fig. 6(a,) depicts the coordinates of the optimal primary RLVs
of OQCs in two-dimensional space. To be consistent with the
rescaling model (10), the length scales are measured in units
of g3. We set the four vectors (1,0), («/5/2, \/5/2), 0,1),
(—+/2/2,+/2/2) as basis vectors, allowing the primary RLVs
to be expressed by integer coefficients with the four vectors,
as illustrated in Fig. 6(a,). Accordingly, the projection matrix
is

V2/2 0

1 —V2/2
_ . 18
Pooc (o V22 1 ) (1%

V22
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) x10" ' ' ' 3 )
O ;OQCZ — -7']-:14,%11\11 3 ld' ' ~ —6/042 = —0.1021
HEX' — L‘A!\/I' : v : 2 _
2 1.5+ & Fsquz — Fram }',[j -1 ' 08l —-6/0{ 0.0300
5 : H 3 1 e e/a? = 1.9159
g ‘ - 2F 7
' 7
g 1y 2 ; Q6r ,
o '
8 g -3 OQC?) //
8 2 | i / 1
% 0.5 &l ¥ 0.4 g HEX
- D
?’q:: 0 0QC? o II
A o -5t o HEX! 3 0.2} o
ASQU! ; [
6l * LAM! 0.0300 @ DISY .o LAML!
-0.5 ) : : 1 0 S

0 0.5 1 1.5 2 -0.1 -0.05 0 0.05 0 0.02 0.04

(a) & (b) * (C) €

FIG. 5. (a) HC free energy of two-length-scale candidate phases with the energy of LAM' as the baseline. Two length scales are 1 and
cos(rr /4). The embedded pattern is the optimal primary RLVs of OQC?2. (b) Free energies of candidate structures in the HC model with three
length scales cos(w/8), cos(ir /4), and cos(37/8). (c) HC phase diagram of the three-length-scale model in -« plane. DIS stands for the

disordered phase with zero free energy.

The OQC is embedded into a four-dimensional periodic struc-
ture that can be accurately calculated, and then it is recovered
by projecting this four-dimensional periodic structure into the
two-dimensional space.

In Figs. 6(a)-6(d), we present the diffraction patterns and
real-space morphologies of stationary candidate structures.
Figure 6(e) plots the Fourier transform of correlation potential
whose roots correspond to the three length scales. Figure 6(f)
presents the SC phase diagram, where OQC3, HEX', and
LAM! occupy stable regions but SQU! remains metastable.
The phase boundaries in the SC phase diagram are similar

to those in the HC phase diagram Fig. 5(c). It may be at-
tributed to the fact that the primary RLVs play a dominant
role in determining the stability of candidate structures and
the contribution of nonprimary RLVs causes slight changes
in phase boundaries. Consequently, we could come to a con-
clusion that the minimal Landau theory to stabilize OQCs
under SC involves three length scales cos(w/8), cos(m/4),
and cos(37/8).

In previous study on primary RLVs of OQCs, only a finite
number of configurations were considered [37,55]. SPSM
examines nearly all possible configurations and effectively

(0,
<7 sin )

SQU! (d) LAM!

0.5 1 0 0.02 0.04

FIG. 6. Coordinates of optimal primary RLVs of OQC? in (a;) two-dimensional and (a,) four-dimensional reciprocal space. Stationary
ordered states: (a) OQC?; (b) HEX!; (c) SQU'; (d) LAM! calculated by the projection method in the Landau model with three length scales
cos(m /8), cos(r /4), and cos(37 /8). The diffraction pattern embedded in the upper left corner only plots these RLVs with intensities greater
than 107°. (e) Fourier transform of correlation potential in units of ¢. (f) SC phase diagram of the three-length-scale model.

023021-6



DESIGNING A MINIMAL LANDAU MODEL TO STABILIZE ...

PHYSICAL REVIEW RESEARCH 7, 023021 (2025)

—e/a® = —0.0901
- -¢/a? = 0.0060
----- €/a? = 1.9159

()
FIG. 7. (a) Optimal primary RLVs of TDQC?, (b) HC phase di-
agram, (c) stationary patterns of TDQC? at € = —0.01 and o = 0.5,

and (d) SC phase diagram and correlation potential. The three length
scales are cos(ir /14), cos(37/14), and cos(5m /14).

identifies the optimal configuration. Therefore, SPSM can
design a minimal Landau theory to stabilize OQCs.

B. Tetradecagonal (TD), hexadecagonal (HD),
and octadecagonal (OD) QCs

To the best of our knowledge, TDQC and HDQC have
not yet been observed in nature and laboratories. Utilizing
SPSM, we design minimal Landau theories to stabilize these
structures, which may be helpful for experimental research.
Numerical results demonstrate that the minimal Landau theo-
ries both have three length scales.

For the three-length-scale TDQC, we present its optimal
configuration of primary RLVs in Fig. 7(a). The correspond-
ing HC free energy is

Frpocs ({‘73}31:1’ e*)

3
=—7¢" ) 7 — 56912

j=1

073 3
— 28(¢ids + b1 + h293) TZ

3
+252¢1 23 2431 + 84(hids + h193 + P303)
j=1
+378(8193 + 67163 + $343). (19)
Figure 7(b) plots the HC phase diagram, where TDQC? is
stable when —0.0901 < €* < 0.0060. Under SC, Fig. 7(c)

—e/a® = —0.0661
--¢/a® = —0.0420
----- €/a? = 1.9159

FIG. 8. (a) Optimal primary RLVs of HDQC?, (b) HC phase di-
agram, (c) stationary patterns at ¢ = —0.01 and « = 0.4, and (d) SC
phase diagram and correlation potential. The three length scales are
cos(m /8), cos(mr /4), and cos(37/8).

displays the stationary patterns of TDQC? computed by the
projection method. More details on the projection matrix and
high-dimensional coordinates can be found in Eq. (S4) and
Fig. S1(d), respectively, within the SM [53]. Figure 7(d)
shows the SC phase diagram, revealing a stable region for
TDQC?. The embedded pattern represents the Fourier trans-
form of correlation potential.

For the three-length-scale HDQC, Fig. 8(a) presents the
optimal configuration of primary RLVs, which results in the
HC free energy

Fhpocs ({‘73}4}=1’ E*)

3
=8¢ §7 = 32621 + )

J=1

3
+ 180 Z@j +96¢163 (47 + ¢3) + 38461459
j=1
+480(6763 + i3 + 6343). (20)
We plot the corresponding HC phase diagram in Fig. 8(b), in-
dicating that HDQC? is thermodynamic stable for —0.0661 <
€* < —0.0420. Under SC, we use the projection method
and obtain the stationary pattern of HDQC® as shown in
Fig. 8(c). We give the projection matrix in Eq. (S5) and high-
dimensional coordinates of HDQC? in Fig. S1(e) within the
SM [53]. Figure 8(d) plots the SC phase diagram, confirming
the stability of HDQC? under SC, and shows the pattern of
correlation potential in Fourier space.
ODQC has been discovered in soft colloidal systems, as
evidenced by their diffraction patterns that exhibit multiple
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—e/a” = —0.0901
- -e/a? = —0.0180,
------ €/a? = 1.9159

(b) ' oDQC? ' A (c) €

FIG. 9. Optimal primary RLVs of ODQC? whose radii of the
circles from outside to inside are (I) cos(m/18), cos(2w/9), 1/2;
(I) cos(w/9), cos(5m/18), 1/2; (1) 1/2, cos(7m /18), cos(4m /9).
(a) HC phase diagram of the three-length-scale model in €-o plane.
(b) Stationary patterns of ODQC?> at € = —0.01 and o = 0.5. Non-
primary RLVs with intensities greater than 10~° are indicated by
small dots. (c) Phase diagram of the SC minimal Landau model with
three length scales cos(wr /18), cos(27 /9), and 1/2. The pattern of
C(k) is embedded in (c).

length scales [17]. Stable ODQCs in theoretical study have
been obtained by a Landau model with four length scales
[37]. In our study, we design three minimal Landau mod-
els by SPSM, each with three different length scales: (I)
cos(m/18), cos(2m /9), 1/2; (I) cos(w /9), cos(5m/18), 1/2;
1) 1/2, cos(7m /18), cos(4m /9). Figures 9(I)-9(IIl) show
the optimal configurations of primary RLVs of ODQCs, corre-
sponding to the minimal models (I)—(III) respectively. These
configurations have the same number of three- and four-RLV
interactions, resulting in the same HC free energy

fODQC3({$};:1’ 6*)

3 3
=9 Y - 24
j=1 =1
3 459 &
=361 ) $7 — 3662032 +d3) + = 3 6]
j=2 j=1
+ 1084321 + b3) + 21643 (1 + ) + 7024342
+702¢7 (3 + $3) + 7569723
+ 432014243 (2 + $3). (21)

Figure 9(a) plots the HC phase diagram, where ODQC? is
expected to be thermodynamic stable in —0.0901 < €* <
—0.0180. Moreover, we take the minimal model (I) as an

example to examine the thermodynamic stability of ODQCs
under SC. The embedded pattern of Fig. 9(c) depicts the
Fourier transform of correlation potential about the three
length scales. By use of the projection method [see Eq. (S6)
for projection matrix and Fig. S1(f) for high-dimensional
coordinates within the SM [53]], we obtain the stationary
ODQC? phase. Its diffraction pattern and real-space morphol-
ogy are shown in Fig. 9(b). Figure 9(c) presents the SC phase
diagram, revealing a stable region for ODQC?>. The phase
boundaries exhibit a slight shift compared to the HC phase
diagram, which may be attributed to the nonnegligible influ-
ence of nonprimary RLVs and the predominant contribution
of primary RLVs. Moreover, we find stable ODQC? in the
models (IT) and (IIT) with SC.

IV. CONCLUSIONS

In this paper, we propose an efficient method (SPSM) to
design a minimal Landau theory to stabilize desired QCs.
SPSM evaluates almost all possible configurations of RLVs
for the target QC, allowing us to identify the optimal con-
figuration with the lowest free energy, as the free-energy
functional can be expressed as a polynomial under HC. With
this optimal configuration, SPSM then constructs phase di-
agrams to assess the thermodynamic stability of the target
QC. Generally, configurations with more length scales contain
more primary RLVs, which can form more three-RLV interac-
tions to lower the free energy. Thus, we can always design a
minimal Landau theory to stabilize desired QCs by gradually
increasing the number of length scales.

Using SPSM, we design minimal Landau theories to stabi-
lize 2n-fold QCs (n = 4, ..., 9). Concretely, two-length-scale
Landau models can stabilize 10- and 12-fold QCs, which is
consistent with previous results. Moreover, we obtain stable 8-
and 18-fold QCs in three-length-scale Landau models, reduc-
ing the number of length scales compared to earlier studies.
Our findings also indicate that three-length-scale models can
stabilize 14- and 16-fold QCs. We believe that these minimal
models with relatively simple potentials could be helpful to
control the synthesis of QCs.
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