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A B S T R A C T

Saddle points are prevalent in complex systems and contain important information. The high-
index saddle dynamics (HiSD) and the generalized HiSD (GHiSD) are two efficient approaches
for determining saddle points of any index and for constructing the solution landscape. In this
work, we first present an example to show that the orthonormality of directional vectors in
saddle dynamics is critical in locating the saddle point. Then we construct two orthonormalized
Runge–Kutta schemes tailored for the HiSD and GHiSD. We find that if a set of vectors are almost
orthonormal with the error 𝑂(𝜏𝛼) for some 𝛼 > 0, then the Gram–Schmidt process also applies
an 𝑂(𝜏𝛼) perturbation to orthonormalize them. We apply this and employ the structures of
Runge–Kutta schemes to prove the almost orthonormality in numerical schemes and then prove
their second-order accuracy with respect to the time step size. We substantiate the theoretical
findings by several numerical experiments.

. Introduction

Searching stationary points of complex systems is an important but challenging topic with wide applications across many
cientific fields [1–16]. Over the past few decades, scholars have proposed a series of efficient algorithms for searching saddle
oints [5,17–30] and have conducted various numerical analyses [28,31–35]. In 2019, the high-index saddle dynamics (HiSD)
ethod was introduced to calculate any index saddle points [36]. This method serves as an efficient tool for constructing the

olution landscape, offering a pathway map that begins with a high-index saddle point and connects to lower-index saddle points
nd minimizers [37]. The solution landscape approach has been utilized to explore various physical systems [38–43].

Consider a twice Fréchet differentiable energy functional 𝐸(𝒙) with 𝒙 ∈ RN defined on a real Hilbert space , with the associated
atural force 𝑭 (𝒙) = −∇𝐸(𝒙) and the negative Hessian G(𝒙) = −∇2𝐸(𝒙). Clearly, G(𝒙) is symmetric, i.e., G(𝒙) = G(𝒙)⊤. An
quilibrium (or critical) point 𝒙̄ ∈ , where 𝑭 (𝒙̄) = 𝟎, could be categorized as either a local extremum or a saddle point based
n whether 𝐸(𝒙̄) represents a local extremum in the vicinity of 𝒙̄. Assuming 𝒙̄ is non-degenerate, meaning the Hessian ∇2𝐸(𝒙̄) has
 bounded inverse at 𝒙̄, we can define the index (Morse index) at 𝒙̄ via Morse theory [44]. This index is the highest dimension
f the subspace on which ∇2𝐸(𝒙̄) is negative definite. The HiSD for an index-𝑘 saddle point of the energy functional 𝐸(𝒙), where
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Fig. 1. Comparison of the numerical results of RK2 and oRK2-I (Black dot: starting point; Yellow dot and red dot: end points.).

1 ≤ 𝑘 ∈ N, is expressed as follows [36]:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑑𝒙
𝑑 𝑡 = 𝛽

(

I − 2
𝑘
∑

𝑗=1
𝒗𝑗𝒗⊤𝑗

)

𝑭 (𝒙),

𝑑𝒗𝑖
𝑑 𝑡 = 𝛾

(

I − 𝒗𝑖𝒗⊤𝑖 − 2
𝑖−1
∑

𝑗=1
𝒗𝑗𝒗⊤𝑗

)

G(𝒙)𝒗𝑖, 1 ≤ 𝑖 ≤ 𝑘,

(1)

where 𝒙 represents a position variable, {𝒗𝑖}𝑘𝑖=1 are 𝑘 directional variables, and 𝛽, 𝛾 > 0 are relaxation parameters.
The HiSD method extends beyond gradient systems and has been adapted for non-gradient systems through a generalized HiSD

(GHiSD) approach. This extension enables the computation of any index saddle points and facilitates the exploration of solution
landscapes in non-gradient systems [45]. Consider the autonomous dynamical system in R𝑛:

𝒙̇ = 𝑭 (𝒙), (2)

where 𝒙 ∈ R𝑛 and 𝑭 ∶ R𝑛 → R𝑛 is a second-order continuously differentiable function. If a point 𝑥∗ satisfies 𝑭 (𝒙∗) = 0, it is called
an equilibrium point of system (2). Assuming 𝒙∗ is a hyperbolic equilibrium point, the Jacobian J(𝒙∗) = ∇𝑭 (𝒙∗) has no eigenvalues
with zero real part. If all eigenvalues of J(𝒙∗) have positive (or negative) real parts, 𝒙∗ is a source (or sink); otherwise, it is a saddle
point. The index of a saddle point is defined by the number of eigenvalues of J(𝒙∗) with positive real parts [46]. The GHiSD for an
index-𝑘 saddle point is formulated as [45]:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑑𝒙
𝑑 𝑡 = 𝛽

(

I − 2
𝑘
∑

𝑗=1
𝒗𝑗𝒗⊤𝑗

)

𝑭 (𝒙),

𝑑𝒗𝑖
𝑑 𝑡 = 𝛾

(

I − 𝒗𝑖𝒗⊤𝑖 − 2
𝑖−1
∑

𝑗=1
𝒗𝑗𝒗⊤𝑗

)(

J(𝒙) + J⊤(𝒙)
)

𝒗𝑖, 1 ≤ 𝑖 ≤ 𝑘,

(3)

where 𝒙 represents a position variable and {𝒗𝑖}𝑘𝑖=1 are 𝑘 directional variables.
It is shown in [36,45] that if the initial values of {𝒗𝑖(𝑡)}𝑘𝑖=1 satisfy the orthogonality condition, then {𝒗𝑖(𝑡)}𝑘𝑖=1 keep orthonormal

for any 𝑡 ≥ 0. Note that such orthogonality has been used to give the reflection operator in the dynamics of position variable, cf.
the derivations of HiSd and GHiSD in [36,45]. Thus, if such orthogonality is not preserved in numerical methods, the searching
direction of the position variable may gradually diverge, leading to the failure of the convergence to the saddle point. For instance,
we calculate the index-2 saddle point of the Eckhardt surface [47] using both the midpoint formula (RK2-I), a second-order Runge–
Kutta scheme, and the orthonormalized second-order Runge–Kutta scheme (oRK2-I) (31) of the index-2 saddle dynamics with the
terminal time 𝑇 = 14, the time step size 𝜏 = 0.14 and initial values 𝒙(0) = (1, 1), 𝒗1(0) = (1, 0) and 𝒗2(0) = (0, 1). The results are shown
in Fig. 1, which indicate that the RK2-I method fails to locate the saddle point, while the oRK2-I method converges to an index-2
saddle point. The better performance of the orthonormalized Runge–Kutta methods, along with the desire to further enhance its
confidence, has prompted us to conduct their error estimates.

In recent years, some results have been achieved in the numerical analysis of HiSD. The rate of convergence of the numerical
scheme for HiSD was analyzed in [48]. In [49], the error estimate for the explicit Euler discrete scheme of HiSD and GHiSD was
conducted, demonstrating a first-order rate of convergence with respect to time for both pathway and eigenvectors. In [50], the
error estimate for numerical discretization to the shrinking-dimer saddle dynamics by matching the dimer length and the time step
size was analyzed. In [51], a semi-implicit discrete scheme for HiSD was constructed and proved to be first-order accurate. In [52]
the mechanism of orthonormal preservation of directional variables in HiSD is revealed by numerical analysis. In this paper, we
develop orthonormalized explicit Runge–Kutta schemes for HiSD and GHiSD in order to achieve high-order accuracy. The main
difficulties we overcome lie in employing the structures of Runge–Kutta schemes to prove the almost orthonormality in numerical
schemes.
2 
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The rest of this paper is organized as follows: In Section 2, we introduce a unified abstract formulation of the dynamics of
directional variables for both HiSD and GHiSD and then provide an analysis of the errors arising from the orthogonalization process.
In Section 3, we develop two orthonormalized second-order Runge–Kutta schemes and carry out detailed error estimations for each.
ection 4 presents several numerical experiments to illustrate the performance of these schemes. Finally, Section 5 concludes with
 comprehensive summary of our findings.

2. Preliminary results

2.1. A unified formulation

Let

𝒈𝑖 =
(

I − 𝒗𝑖𝒗⊤𝑖 − 2
𝑖−1
∑

𝑗=1
𝒗𝑗𝒗⊤𝑗

)

G(𝒙)𝒗𝑖

or

𝒈𝑖 =
(

I − 𝒗𝑖𝒗⊤𝑖 − 2
𝑖−1
∑

𝑗=1
𝒗𝑗𝒗⊤𝑗

)(

J(𝒙) + J⊤(𝒙)
)

𝒗𝑖,

then we unify the dynamics of directional variables in HiSD and GHiSD into the following abstract form:
⎧

⎪

⎨

⎪

⎩

𝑑𝒗𝑖
𝑑 𝑡 = 𝒈𝑖,

𝒗𝑖|𝑡=0 = 𝒗𝑖,0,
𝑖 = 1, 2,… , 𝑘. (4)

Here {𝒗𝑖,0}𝑘𝑖=1 ∈ R𝑑 represent the initial values of {𝒗𝑖}𝑘𝑖=1 satisfying the orthonormalization condition 𝒗⊤𝑖,0𝒗𝑗 ,0 = 𝛿𝑖,𝑗 where 𝛿𝑖,𝑗 is the
irac notation defined as

𝛿𝑖,𝑗 =

{

1, 𝑖 = 𝑗 ,
0, 𝑖 ≠ 𝑗 .

Then 𝒗⊤𝑖 𝒗𝑗 = 𝛿𝑖,𝑗 is valid for any 𝑡 ≥ 0 [36,45].
By carefully analyzing the error estimate process for HiSD in [49], we notice that the main difficulty lies in the numerical

nalysis of directional variables due to the additional orthonormalization, while the error estimate for the position variable follows
he standard procedure and could be carried out similarly as, e.g. [49, Theorem 4.3] where the errors of 𝒙 is controlled by the
rrors of {𝒗𝑖}𝑘𝑖=1 and higher-order terms of 𝜏. Furthermore, under the Lipschitz condition of 𝑭 (𝒙), the position variable 𝒙 is bounded
or 0 ≤ 𝑡 ≤ 𝑇 for some terminal time 𝑇 [49]. Thus, we mainly focus on the dynamics (4) of {𝒗𝑖}𝑘𝑖=1 and omit its dependence on 𝒙
detailed numerical schemes of HiSD and GHiSD can be found in Appendix). Finally, if G (or J) is bounded for bounded 𝒙, there

exist positive constants 𝐿𝑔 and 𝐶𝑔 such that for 0 ≤ 𝑡 ≤ 𝑇 and 1 ≤ 𝑖 ≤ 𝑘

‖𝒈𝑖(𝒗1, 𝒗2,… , 𝒗𝑘) − 𝒈𝑖(𝒖1, 𝒖2,… , 𝒖𝑘)‖ ≤ 𝐿𝑔 max
1≤𝑗≤𝑘

‖𝒗𝑗 − 𝒖𝑗‖, (5)

‖𝒈𝑖(𝒗1, 𝒗2,… , 𝒗𝑘)‖ ≤ 𝐶𝑔 , (6)

∀ {𝒗𝑙}𝑘𝑙=1, {𝒖𝑙}𝑘𝑙=1 such that 𝒗⊤𝑙 𝒗𝑗 = 𝒖⊤𝑙 𝒖𝑗 = 𝛿𝑙 ,𝑗 for 1 ≤ 𝑙 , 𝑗 ≤ 𝑘. (7)

Here ‖ ⋅ ‖ represents the standard 𝑙2 norm of a vector or a matrix.

2.2. Analysis of orthogonalization perturbation

To numerically solve the equations, we generate a uniform grid over the interval [0, 𝑇 ] with a step size 𝜏. The time nodes are
denoted as 𝑡𝑛 = 𝑛𝜏 for 𝑛 = 0, 1, 2,… , 𝑁 with 𝑁 = 𝑇 ∕𝜏. To ensure the orthonormality of numerical solutions of directional vectors, a
common approach is to perform Gram–Schmidt orthogonalization at each time step. Specifically, for a set of 𝑘 vectors {𝒗̃𝑖}𝑘𝑖=1, the

ram–Schmidt orthogonalization reads:

𝒗𝑖 =
1
𝑌𝑖

(

𝒗̃𝑖 −
𝑖−1
∑

𝑗=1

(

𝒗̃⊤𝑖 𝒗𝑗
)

𝒗𝑗

)

, 1 ≤ 𝑖 ≤ 𝑘,

where the normalization factor is calculated as

𝑌𝑖 =
‖

‖

‖

‖

‖

‖

𝒗̃𝑖 −
𝑖−1
∑

𝑗=1

(

𝒗̃⊤𝑖 𝒗𝑗
)

𝒗𝑗
‖

‖

‖

‖

‖

‖

=

(

‖

‖

𝒗̃𝑖‖‖
2 −

𝑖−1
∑

𝑗=1

(

𝒗̃⊤𝑖 𝒗𝑗
)2
)1∕2

.

Them the resulting vectors {𝒗𝑖}𝑘𝑖=1 are orthonormal. In the subsequent numerical schemes, we denote the orthonormalization as

{𝒗𝑖}𝑘𝑖=1 = or t h({𝒗̃𝑖}𝑘𝑖=1).

Incorporating orthonormalization into numerical schemes introduces new challenges. Nevertheless, based on the specific
structure of the Gram–Schmidt process, the difference of vectors before and after orthonormalization has the following tight relation.
3 
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Lemma 1. Given a set of vectors {𝒗̃𝑖}𝑘𝑖=1, let {𝒗𝑖}𝑘𝑖=1 be orthonormal vectors generated from {𝒗̃𝑖}𝑘𝑖=1 via the Gram–Schmidt process. If
|𝒗̃⊤𝑖 𝒗̃𝑗 − 𝛿𝑖,𝑗 | ≤ 𝑀 𝜏𝛼 , 1 ≤ 𝑖, 𝑗 ≤ 𝑘,

for some 𝛼 > 0 where 𝑀 is a positive constant, then for a sufficiently small time step 𝜏, there exists a positive constant 𝑄 such that

‖𝒗̃𝑖 − 𝒗𝑖‖ ≤ 𝑄𝜏𝛼 .

Proof. The proof of this lemma is a generalization of the proof of Lemma 4.2 in [49], and is thus omitted. □

This lemma indicates that if a set of vectors before orthonormalization is almost orthonormal with the error of 𝑂(𝜏𝛼), the orthonor-
malization will only apply an 𝑂(𝜏𝛼) perturbation to orthonormalize them. In the rest of the work, we will present two second-order
Runge–Kutta schemes, namely the midpoint method and the improved Euler method, incorporating the orthonormalization steps
and then rigorously analyze the impact of orthonormalization on the convergence order of these schemes.

3. Two orthonormalized Runge–Kutta schemes

We propose and analyze two orthonormalized second-order Runge–Kutta methods for (4).

3.1. Orthonormalized midpoint formula

Given the numerical solution 𝒗𝑖,𝑛 at the 𝑛th time step, the numerical solution at the (𝑛 + 1)th time step of (4) can be obtained
sing the following midpoint formula:

{

𝒗𝑖,𝑛+1∕2 = 𝒗𝑖,𝑛 +
1
2
𝜏𝒈𝑖,𝑛,

𝒗𝑖,𝑛+1 = 𝒗𝑖,𝑛 + 𝜏𝒈𝑖,𝑛+1∕2,

where 𝒗𝑖,𝑛+1∕2 is an intermediate variable approximating the value of the solution at the half time step 𝒗𝑖(𝑡𝑛+1∕2), 𝑡𝑛+1∕2 = (𝑡𝑛+𝑡𝑛+1)∕2,
and

𝒈𝑖,𝑛 =
(

I − 𝒗𝑖,𝑛𝒗⊤𝑖,𝑛 − 2
𝑖−1
∑

𝑗=1
𝒗𝑗 ,𝑛𝒗⊤𝑗 ,𝑛

)

M𝒗𝑖,𝑛

where M = G or J⊤ + J.
Then the orthonormalized midpoint formula (oRK2-I) for (4) is as follows:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝒗̃𝑖,𝑛+1∕2 = 𝒗𝑖,𝑛 +
1
2
𝜏𝒈𝑖,𝑛,

{𝒗𝑖,𝑛+1∕2}𝑘𝑖=1 = or t h({𝒗̃𝑖,𝑛+1∕2}𝑘𝑖=1),
𝒗̃𝑖,𝑛+1 = 𝒗𝑖,𝑛 + 𝜏𝒈𝑖,𝑛+1∕2,
{𝒗𝑖,𝑛+1}𝑘𝑖=1 = or t h({𝒗̃𝑖,𝑛+1}𝑘𝑖=1).

(8)

In this case, the numerical solution at each step satisfies the orthogonality condition 𝒗⊤𝑖,𝑛𝒗𝑗 ,𝑛 = 𝛿𝑖,𝑗 .
We analyze the orthonormalization error of the intermediate variables.

Lemma 2. In the oRK2-I, the numerical solution for (4) before orthonormalization satisfies the following conditions for 1 ≤ 𝑛 ≤ 𝑁 − 1:
|

|

|

𝒗̃⊤𝑖,𝑛+1∕2𝒗̃
⊤
𝑗 ,𝑛+1∕2 − 𝛿𝑖,𝑗

|

|

|

≤ 𝐶 𝜏2,
|

|

|

𝒗̃⊤𝑖,𝑛+1𝒗̃𝑗 ,𝑛+1 − 𝛿𝑖,𝑗
|

|

|

≤ 𝐶 𝜏3.
Here and hereafter, 𝐶 denotes a positive constant that is independent of 𝜏, 𝑛, and 𝑁 .

Proof. By the orthonormality of 𝒗𝑖,𝑛, which implies

𝒗⊤𝑖,𝑛𝒈𝑗 ,𝑛 + 𝒗⊤𝑗 ,𝑛𝒈𝑖,𝑛 = 𝒗⊤𝑖,𝑛

(

I − 𝒗𝑗𝒗⊤𝑗 − 2
𝑗−1
∑

𝑘=1
𝒗𝑘𝒗⊤𝑘

)

M(𝒙)𝒗𝑗 + 𝒗⊤𝑗 ,𝑛
(

I − 𝒗𝑖𝒗⊤𝑖 − 2
𝑖−1
∑

𝑗=1
𝒗𝑗𝒗⊤𝑗

)

M(𝒙)𝒗𝑖

= 0.
Then we get

𝒗̃⊤𝑖,𝑛+1∕2𝒗̃𝑗 ,𝑛+1∕2 = (𝒗𝑖,𝑛 + 1
2
𝜏𝒈𝑖,𝑛)⊤(𝒗𝑗 ,𝑛 + 1

2
𝜏𝒈𝑗 ,𝑛)

= 𝒗⊤𝑖,𝑛𝒗𝑗 ,𝑛 +
1
2
𝜏𝒗⊤𝑖,𝑛𝒈𝑗 ,𝑛 +

1
2
𝜏𝒗⊤𝑗 ,𝑛𝒈𝑖,𝑛 +

1
4
𝜏2𝒈⊤𝑖,𝑛𝒈𝑗 ,𝑛

= 𝛿𝑖,𝑗 +
1
4
𝜏2𝒈⊤𝑖,𝑛𝒈𝑗 ,𝑛.

Thus, we obtain the first result in the lemma
4 
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|

|

|

𝒗̃⊤𝑖,𝑛+1∕2𝒗̃
⊤
𝑗 ,𝑛+1∕2 − 𝛿𝑖,𝑗

|

|

|

≤ 𝐶 𝜏2.
According to Lemma 1, we have

‖𝒗̃𝑖,𝑛+1∕2 − 𝒗𝑖,𝑛+1∕2‖ ≤ 𝐶 𝜏2. (9)

On the other hand, in the numerical scheme (8), we have
𝒗̃⊤𝑖,𝑛+1𝒗̃𝑗 ,𝑛+1 = (𝒗𝑖,𝑛 + 𝜏𝒈𝑖,𝑛+1∕2)⊤(𝒗𝑗 ,𝑛 + 𝜏𝒈𝑗 ,𝑛+1∕2)

= 𝒗⊤𝑖,𝑛𝒗𝑗 ,𝑛 + 𝜏𝒗⊤𝑖,𝑛𝒈𝑗 ,𝑛+1∕2 + 𝜏𝒗⊤𝑗 ,𝑛𝒈𝑖,𝑛+1∕2 + 𝜏2𝒈⊤𝑖,𝑛+1∕2𝒈𝑗 ,𝑛+1∕2.
(10)

According to the orthonormality of 𝒗𝑖,𝑛+1∕2, the numerical solution at the half step satisfies

𝒗⊤𝑖,𝑛+1∕2𝒈𝑗 ,𝑛+1∕2 + 𝒗⊤𝑗 ,𝑛+1∕2𝒈𝑖,𝑛+1∕2 = 0.
Thus, using (9), we can estimate the cross terms in (10) as

𝒗⊤𝑖,𝑛𝒈𝑗 ,𝑛+1∕2 + 𝒗⊤𝑗 ,𝑛𝒈𝑖,𝑛+1∕2 =(𝒗𝑖,𝑛 − 𝒗𝑖,𝑛+1∕2)⊤𝒈𝑗 ,𝑛+1∕2 + (𝒗𝑗 ,𝑛 − 𝒗𝑗 ,𝑛+1∕2)⊤𝒈𝑖,𝑛+1∕2
= (𝒗𝑖,𝑛 − 𝒗̃𝑖,𝑛+1∕2)⊤𝒈𝑗 ,𝑛+1∕2 + (𝒗𝑗 ,𝑛 − 𝒗̃𝑗 ,𝑛+1∕2)⊤𝒈𝑖,𝑛+1∕2 + 𝑂(𝜏2).

(11)

In the numerical scheme (8), we have

𝒗𝑖,𝑛 − 𝒗̃𝑖,𝑛+1∕2 = −1
2
𝜏𝒈𝑖,𝑛. (12)

Then we get
(𝒗𝑖,𝑛 − 𝒗̃𝑖,𝑛+1∕2)⊤𝒈𝑗 ,𝑛+1∕2 + (𝒗𝑗 ,𝑛 − 𝒗̃𝑗 ,𝑛+1∕2)⊤𝒈𝑖,𝑛+1∕2

= − 1
2
𝜏(𝒈⊤𝑖,𝑛𝒈𝑗 ,𝑛+1∕2 + 𝒈⊤𝑗 ,𝑛𝒈𝑖,𝑛+1∕2).

(13)

Using (10), (11) and (13), we have
𝒗̃⊤𝑖,𝑛+1𝒗̃𝑗 ,𝑛+1

= 𝒗⊤𝑖,𝑛𝒗𝑗 ,𝑛 −
1
2
𝜏2(𝒈⊤𝑖,𝑛𝒈𝑗 ,𝑛+1∕2 + 𝒈⊤𝑗 ,𝑛𝒈𝑖,𝑛+1∕2) + 𝜏2𝒈⊤𝑖,𝑛+1∕2𝒈𝑗 ,𝑛+1∕2 + 𝑂(𝜏3)

= 𝛿𝑖,𝑗 +
1
2
𝜏2(𝒈𝑖,𝑛+1∕2 − 𝒈𝑖,𝑛)⊤𝒈𝑗 ,𝑛+1∕2 + 1

2
𝜏2(𝒈𝑗 ,𝑛+1∕2 − 𝒈𝑗 ,𝑛)⊤𝒈𝑖,𝑛+1∕2 + 𝑂(𝜏3).

(14)

Using the Lipschitz condition (5), (6), (9) and (12), we have
‖𝒈𝑖,𝑛+1∕2 − 𝒈𝑖,𝑛‖ ≤ 𝐶 max

1≤𝑖≤𝑘
‖𝒗𝑖,𝑛+1∕2 − 𝒗𝑖,𝑛‖

≤ 𝐶 max
1≤𝑖≤𝑘

(‖𝒗𝑖,𝑛+1∕2 − 𝒗̃𝑖,𝑛+1∕2‖ + ‖𝒗̃𝑖,𝑛+1∕2 − 𝒗𝑖,𝑛‖)

= 𝐶 max
1≤𝑖≤𝑘

‖𝒗𝑖,𝑛+1∕2 − 𝒗̃𝑖,𝑛+1∕2‖ +
1
2
𝐶 𝜏 max

1≤𝑖≤𝑘
‖𝒈𝑖,𝑛‖

≤ 𝐶 𝜏2 + 𝐶 𝜏 ≤ 𝐶 𝜏 .

(15)

Using (15), (14) and (6), we obtain the estimate for the orthogonality error
|

|

|

𝒗̃⊤𝑖,𝑛+1𝒗̃𝑗 ,𝑛+1 − 𝛿𝑖,𝑗
|

|

|

≤1
2
𝜏2‖𝒈𝑖,𝑛+1∕2 − 𝒈𝑖,𝑛‖‖𝒈𝑗 ,𝑛+1∕2‖ + 1

2
𝜏2‖𝒈𝑗 ,𝑛+1∕2 − 𝒈𝑗 ,𝑛‖‖𝒈𝑖,𝑛+1∕2‖ + 𝐶 𝜏3

≤𝐶 𝜏3‖𝒈𝑗 ,𝑛+1∕2‖ + 𝐶 𝜏3‖𝒈𝑖,𝑛+1∕2‖ + 𝐶 𝜏3 ≤ 𝐶 𝜏3,
which proves the second result in the lemma. □

For the numerical solution 𝒗𝑖,𝑛 obtained through the oRK2-I (8), define the error of the numerical solution as
𝒆𝑖,𝑛+1∕2 = 𝒗𝑖,𝑛+1∕2 − 𝒗𝑖(𝑡𝑛+1∕2),

𝒆𝑖,𝑛 = 𝒗𝑖,𝑛 − 𝒗𝑖(𝑡𝑛).

Using the perturbation introduced by orthonormalization, we can bound the error of the scheme as follows.

Lemma 3. For sufficiently smooth {𝒗𝑖}𝑘𝑖=1 in (4), the error 𝒆𝑖,𝑛+1 in the oRK2-I (8) satisfies the following inequality:

max
1≤𝑖≤𝑘

‖𝒆𝑖,𝑛+1‖ ≤
(

1 + 𝐶 𝜏 + 𝐶 𝜏2) max
1≤𝑖≤𝑘

‖𝒆𝑖,𝑛‖ + 𝐶 𝜏3, 𝑖 = 1, 2,… , 𝑘, 1 ≤ 𝑛 ≤ 𝑁 − 1. (16)

Proof. For the continuous Eqs. (4), given sufficient smoothness, we can use Taylor expansion to obtain

𝒗𝑖(𝑡𝑛+1∕2) = 𝒗𝑖(𝑡𝑛) + 1
2
𝜏𝒈𝑖({𝒗𝑖(𝑡𝑛)}𝑘𝑖=1) + 𝑂(𝜏2),

𝒗𝑖(𝑡𝑛+1) = 𝒗𝑖(𝑡𝑛) + 𝜏𝒈𝑖({𝒗𝑖(𝑡𝑛+1∕2)}𝑘𝑖=1) + 𝑂(𝜏3).
(17)

Subtracting the expanded results (17) from the numerical scheme (8), we obtain
5 
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𝒗̃𝑖,𝑛+1∕2 − 𝒗𝑖(𝑡𝑛+1∕2) = 𝒆𝑖,𝑛 +
1
2
𝜏(𝒈𝑖,𝑛 − 𝒈𝑖({𝒗𝑖(𝑡𝑛)}𝑘𝑖=1)) + 𝑂(𝜏2),

𝒗̃𝑖,𝑛+1 − 𝒗𝑖(𝑡𝑛+1) = 𝒆𝑖,𝑛 + 𝜏(𝒈𝑖,𝑛+1∕2 − 𝒈𝑖({𝒗𝑖(𝑡𝑛+1∕2)}𝑘𝑖=1)) + 𝑂(𝜏3).

Taking the norm on both sides, we get

‖𝒗̃𝑖,𝑛+1∕2 − 𝒗𝑖(𝑡𝑛+1∕2)‖ ≤ ‖𝒆𝑖,𝑛‖ +
1
2
𝜏‖𝒈𝑖,𝑛 − 𝒈𝑖({𝒗𝑖(𝑡𝑛)}𝑘𝑖=1)‖ + 𝑂(𝜏2),

‖𝒗̃𝑖,𝑛+1 − 𝒗𝑖(𝑡𝑛+1)‖ ≤ ‖𝒆𝑖,𝑛‖ + 𝜏‖𝒈𝑖,𝑛+1∕2 − 𝒈𝑖({𝒗𝑖(𝑡𝑛+1∕2)}𝑘𝑖=1)‖ + 𝑂(𝜏3).
(18)

Using the Lipschitz condition of 𝒈𝑖 in (5), we have
‖𝒈𝑖,𝑛 − 𝒈({𝒗𝑖(𝑡𝑛)}𝑘𝑖=1)‖ ≤𝐿𝑔 max

1≤𝑖≤𝑘
‖𝒗𝑖,𝑛 − 𝒗𝑖(𝑡𝑛)‖

=𝐿𝑔 max
1≤𝑖≤𝑘

‖𝒆𝑖,𝑛‖,

‖𝒈𝑖,𝑛+1∕2 − 𝒈({𝒗𝑖(𝑡𝑛+1∕2)}𝑘𝑖=1)‖ ≤𝐿𝑔 max
1≤𝑖≤𝑘

‖𝒗𝑖,𝑛+1∕2 − 𝒗𝑖(𝑡𝑛+1∕2)‖

=𝐿𝑔 max
1≤𝑖≤𝑘

‖𝒆𝑖,𝑛+1∕2‖,

(19)

Substituting (19) into (18), we obtain

‖𝒗̃𝑖,𝑛+1∕2 − 𝒗𝑖(𝑡𝑛+1∕2)‖ ≤ ‖𝒆𝑖,𝑛‖ +
1
2
𝐿𝑔𝜏 max

1≤𝑖≤𝑘
‖𝒆𝑖,𝑛‖ + 𝑂(𝜏2),

‖𝒗̃𝑖,𝑛+1 − 𝒗𝑖(𝑡𝑛+1)‖ ≤ ‖𝒆𝑖,𝑛‖ + 𝐿𝑔𝜏 max
1≤𝑖≤𝑘

‖𝒆𝑖,𝑛+1∕2‖ + 𝑂(𝜏3).
(20)

Additionally, from Lemmas 1 and 2, we have
‖𝒗̃𝑖,𝑛+1∕2 − 𝒗𝑖,𝑛+1∕2‖ ≤ 𝐶 𝜏2,

‖𝒗̃𝑖,𝑛+1 − 𝒗𝑖,𝑛+1‖ ≤ 𝐶 𝜏3.
That is,

‖𝒆𝑖,𝑛+1∕2‖ ≤ ‖𝒗̃𝑖,𝑛+1∕2 − 𝒗(𝑡𝑖,𝑛+1∕2)‖ + 𝐶 𝜏2,
‖𝒆𝑖,𝑛+1‖ ≤ ‖𝒗̃𝑖,𝑛+1 − 𝒗(𝑡𝑖,𝑛+1)‖ + 𝐶 𝜏3. (21)

Substituting (20) into (21), we get
‖𝒆𝑖,𝑛+1∕2‖ ≤ ‖𝒆𝑖,𝑛‖ + 𝐶 𝜏 max

1≤𝑖≤𝑘
‖𝒆𝑖,𝑛‖ + 𝐶 𝜏2,

‖𝒆𝑖,𝑛+1‖ ≤ ‖𝒆𝑖,𝑛‖ + 𝐶 𝜏 max
1≤𝑖≤𝑘

‖𝒆𝑖,𝑛+1∕2‖ + 𝐶 𝜏3.

Combining the above two inequalities and eliminating the intermediate variable, we obtain

max
1≤𝑖≤𝑘

‖𝒆𝑖,𝑛+1‖ ≤ max
1≤𝑖≤𝑘

‖𝒆𝑖,𝑛‖ + 𝐶 𝜏 max
1≤𝑖≤𝑘

‖𝒆𝑖,𝑛‖ + 𝐶 𝜏2 max
1≤𝑖≤𝑘

‖𝒆𝑖,𝑛‖ + 𝐶 𝜏3,

that is,
max
1≤𝑖≤𝑘

‖𝒆𝑖,𝑛+1‖ ≤
(

1 + 𝐶 𝜏 + 𝐶 𝜏2) max
1≤𝑖≤𝑘

‖𝒆𝑖,𝑛‖ + 𝐶 𝜏3.

Thus, we complete the proof. □

After obtaining the above result, we can use the Gronwall inequality to obtain the error estimate.

Theorem 1. For sufficiently smooth {𝒗𝑖}𝑘𝑖=1 in (4), the error in the oRK2-I (8) is second-order. That is,
max
1≤𝑖≤𝑘

‖𝒆𝑖,𝑛‖ ≤ 𝐶 𝜏2, 1 ≤ 𝑛 ≤ 𝑁 .

Proof. For any 1 ≤ 𝑛∗ ≤ 𝑁 − 1, summing Eq. (16) in Lemma 3 from 1 to 𝑛∗ gives
𝑛∗
∑

𝑛=1
max
1≤𝑖≤𝑘

‖𝒆𝑖,𝑛+1‖ ≤
𝑛∗
∑

𝑛=1

(

1 + 𝐶 𝜏 + 𝐶 𝜏2) max
1≤𝑖≤𝑘

‖𝒆𝑖,𝑛‖ + 𝐶
𝑛∗
∑

𝑛=1
𝜏3, 𝑖 = 1, 2,… , 𝑘.

Further calculations yield

max
1≤𝑖≤𝑘

‖𝒆𝑖,𝑛∗+1‖ ≤ max
1≤𝑖≤𝑘

‖𝒆𝑖,1‖ +
𝑛∗
∑

𝑛=1

(

𝐶 𝜏 + 𝐶 𝜏2) max
1≤𝑖≤𝑘

‖𝒆𝑖,𝑛‖ + 𝐶 𝜏2, 𝑖 = 1, 2,… , 𝑘.

Similar to the derivation in (9), max1≤𝑖≤𝑘 ‖𝒆𝑖,1‖ ≤ 𝐶 𝜏2 can be easily obtained. By combining max1≤𝑖≤𝑘 ‖𝒆𝑖,1‖ ≤ 𝐶 𝜏2 and using discrete
Gronwall inequality, we can then derive

max
1≤𝑖≤𝑘

‖𝒆𝑖,𝑛∗+1‖ ≤ 𝐶 𝜏2 exp(
𝑛∗
∑

𝑛=1

(

𝐶 𝜏 + 𝐶 𝜏2)) ≤ 𝐶 𝜏2, 𝑖 = 1, 2,… , 𝑘.

Due to the arbitrariness of 𝑛∗, the theorem is proved. □
6 



S. Miao et al.

m

t

Communications in Nonlinear Science and Numerical Simulation 145 (2025) 108731 
For the usual midpoint method, the accuracy is second order. The above conclusion shows that for the oRK2-I, the order of error
remains second order. This theoretically ensures that the orthonormalization operation does not affect the overall error order of the

idpoint method.

3.2. Orthonormalized improved Euler formula

Given the numerical solution at the 𝑛th time step, the numerical solution at the (𝑛+ 1)th time step for (4) can be computed using
he following improved Euler formula:

⎧

⎪

⎨

⎪

⎩

𝒗𝑖,𝑛+∗ = 𝒗𝑖,𝑛 + 𝜏𝒈𝑖,𝑛,

𝒗𝑖,𝑛+1 = 𝒗𝑖,𝑛 +
1
2
𝜏(𝒈𝑖,𝑛 + 𝒈𝑖,𝑛+∗),

The core idea of the improved Euler formula is the predictor–corrector method. The orthonormalized improved Euler numerical
scheme (oRK2-II) of (4) is then given by:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝒗̃𝑖,𝑛+∗ = 𝒗𝑖,𝑛 + 𝜏𝒈𝑖,𝑛,
{𝒗𝑖,𝑛+∗}𝑘𝑖=1 = or t h({𝒗̃𝑖,𝑛+∗}𝑘𝑖=1),
𝒗̃𝑖,𝑛+1 = 𝒗𝑖,𝑛 +

1
2 𝜏(𝒈𝑖,𝑛 + 𝒈𝑖,𝑛+∗),

{𝒗𝑖,𝑛+1}𝑘𝑖=1 = or t h({𝒗̃𝑖,𝑛+1}𝑘𝑖=1).
(22)

We analyze the orthonormalization error for the intermediate variables in the following lemma.

Lemma 4. In the oRK2-II (22), the numerical solutions of (4) before orthonormalization satisfy the following conditions for 1 ≤ 𝑛 ≤ 𝑁 − 1:
|

|

|

𝒗̃⊤𝑖,𝑛+∗𝒗̃𝑗 ,𝑛+∗ − 𝛿𝑖,𝑗
|

|

|

≤ 𝐶 𝜏2,
|

|

|

𝒗̃⊤𝑖,𝑛+1𝒗̃𝑗 ,𝑛+1 − 𝛿𝑖,𝑗
|

|

|

≤ 𝐶 𝜏3.

Proof. For the intermediate variables, the first step of the oRK2-II is equivalent to using the forward Euler method. According to
conclusions from the forward Euler method and the orthonormality of 𝒗𝑖,𝑛, we have

𝒗̃⊤𝑖,𝑛+∗𝒗̃𝑗 ,𝑛+∗ = (𝒗𝑖,𝑛 + 𝜏𝒈𝑖,𝑛)⊤(𝒗𝑗 ,𝑛 + 𝜏𝒈𝑗 ,𝑛)
= 𝒗⊤𝑖,𝑛𝒗𝑗 ,𝑛 + 𝜏𝒗⊤𝑖,𝑛𝒈𝑗 ,𝑛 + 𝜏𝒗⊤𝑗 ,𝑛𝒈𝑖,𝑛 + 𝜏2𝒈⊤𝑖,𝑛𝒈𝑗 ,𝑛
= 𝛿𝑖,𝑗 + 𝜏2𝒈⊤𝑖,𝑛𝒈𝑗 ,𝑛.

Thus, we obtain
|

|

|

𝒗̃⊤𝑖,𝑛+∗𝒗̃𝑗 ,𝑛+∗ − 𝛿𝑖,𝑗
|

|

|

≤ 𝐶 𝜏2.
This proves the first part of the lemma.

According to Lemma 1, we have

‖𝒗̃𝑖,𝑛+∗ − 𝒗𝑖,𝑛+∗‖ ≤ 𝐶 𝜏2. (23)

For the numerical scheme (22), we have
𝒗̃⊤𝑖,𝑛+1𝒗̃𝑗 ,𝑛+1

=(𝒗𝑖,𝑛 +
1
2
𝜏(𝒈𝑖,𝑛 + 𝒈𝑖,𝑛+∗))⊤(𝒗𝑗 ,𝑛 + 1

2
𝜏(𝒈𝑖,𝑛 + 𝒈𝑖,𝑛+∗))

=𝒗⊤𝑖,𝑛𝒗𝑗 ,𝑛 +
1
2
𝜏𝒗⊤𝑖,𝑛(𝒈𝑗 ,𝑛 + 𝒈𝑗 ,𝑛+∗) + 1

2
𝜏𝒗⊤𝑗 ,𝑛(𝒈𝑖,𝑛 + 𝒈𝑖,𝑛+∗) + 1

4
𝜏2(𝒈𝑖,𝑛 + 𝒈𝑖,𝑛+∗)⊤(𝒈𝑗 ,𝑛 + 𝒈𝑗 ,𝑛+∗)

=𝒗⊤𝑖,𝑛𝒗𝑗 ,𝑛 +
1
2
𝜏𝒗⊤𝑖,𝑛𝒈𝑗 ,𝑛+∗ +

1
2
𝜏𝒗⊤𝑗 ,𝑛𝒈𝑖,𝑛+∗ +

1
4
𝜏2(𝒈𝑖,𝑛 + 𝒈𝑖,𝑛+∗)⊤(𝒈𝑗 ,𝑛 + 𝒈𝑗 ,𝑛+∗).

(24)

According to the orthonormality of 𝒗𝑖,𝑛+∗, the numerical solution at the predicted value satisfies

𝒗⊤𝑖,𝑛+∗𝒈𝑗 ,𝑛+∗ + 𝒗⊤𝑗 ,𝑛+∗𝒈𝑖,𝑛+∗ = 0. (25)

Thus using (23), we obtain:

𝒗⊤𝑖,𝑛𝒈𝑗 ,𝑛+∗ + 𝒗⊤𝑗 ,𝑛𝒈𝑖,𝑛+∗ = (𝒗𝑖,𝑛 − 𝒗̃𝑖,𝑛+∗)⊤𝒈𝑗 ,𝑛+∗ + (𝒗𝑗 ,𝑛 − 𝒗̃𝑗 ,𝑛+∗)⊤𝒈𝑖,𝑛+∗ + 𝑂(𝜏2). (26)

In the numerical scheme (22), we have

𝒗𝑖,𝑛 − 𝒗̃𝑖,𝑛+∗ = −𝜏𝒈𝑖,𝑛, (27)

Substituting (27) into (26), we get
⊤ ⊤ ⊤ ⊤ 2
𝒗𝑖,𝑛𝒈𝑗 ,𝑛+∗ + 𝒗𝑗 ,𝑛𝒈𝑖,𝑛+∗ = −𝜏𝒈𝑖,𝑛𝒈𝑗 ,𝑛+∗ − 𝜏𝒈𝑗 ,𝑛𝒈𝑖,𝑛+∗ + 𝑂(𝜏 ). (28)

7 
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Substituting (28) into (24), we have
𝒗̃⊤𝑖,𝑛+1𝒗̃𝑗 ,𝑛+1

=𝒗⊤𝑖,𝑛𝒗𝑗 ,𝑛 −
1
2
𝜏2𝒈⊤𝑖,𝑛𝒈𝑗 ,𝑛+∗ −

1
2
𝜏2𝒈⊤𝑗 ,𝑛𝒈𝑖,𝑛+∗

+ 1
4
𝜏2(𝒈𝑖,𝑛 + 𝒈𝑖,𝑛+∗)⊤(𝒈𝑗 ,𝑛 + 𝒈𝑗 ,𝑛+∗) + 𝑂(𝜏3)

=𝛿𝑖,𝑗 +
1
4
𝜏2(𝒈𝑖,𝑛+∗ − 𝒈𝑖,𝑛)⊤(𝒈𝑗 ,𝑛+∗ − 𝒈𝑗 ,𝑛) + 𝑂(𝜏3).

(29)

Using the Lipschitz condition (5) and boundedness of 𝒈𝑖,𝑛 (6), combined with (23) and (27), we have:
‖𝒈𝑖,𝑛+∗ − 𝒈𝑖,𝑛‖ ≤ 𝐶 max

1≤𝑖≤𝑘
‖𝒗𝑖,𝑛+∗ − 𝒗𝑖,𝑛‖

≤ 𝐶 max
1≤𝑖≤𝑘

‖𝒗𝑖,𝑛+∗ − 𝒗̃𝑖,𝑛+∗‖ + 𝐶 max
1≤𝑖≤𝑘

‖𝒗̃𝑖,𝑛+∗ − 𝒗𝑖,𝑛‖

= 𝐶 max
1≤𝑖≤𝑘

‖𝒗𝑖,𝑛+∗ − 𝒗̃𝑖,𝑛+∗‖ + 𝜏 𝐶 max
1≤𝑖≤𝑘

‖𝒈𝑖,𝑛‖

≤ 𝐶 𝜏2 + 𝐶 𝜏 .

(30)

Taking the norm on both sides of (29) and using (30), we obtain
|

|

|

𝒗̃⊤𝑖,𝑛+1𝒗̃𝑗 ,𝑛+1 − 𝛿𝑖,𝑗
|

|

|

≤ 1
4
𝜏2‖𝒈𝑖,𝑛+∗ − 𝒈𝑖,𝑛‖‖𝒈𝑗 ,𝑛+∗ − 𝒈𝑗 ,𝑛‖ + 𝐶 𝜏3 ≤ 𝐶 𝜏3.

This proves the second part of the lemma. □

Remark 1. It is worth mentioning that although the orthonormalization error |

|

|

𝒗̃⊤𝑖,𝑛+1𝒗̃𝑗 ,𝑛+1 − 𝛿𝑖,𝑗
|

|

|

of oRK2-II has only third-order
accuracy according to the theoretical analysis, numerical experiments later on show that it achieves fourth-order accuracy. Such
interesting superconvergence phenomenon deserves further investigation.

For the numerical solution 𝒗𝑖,𝑛 obtained through the numerical scheme, we define the error of the numerical solution as
𝒆𝑖,𝑛+∗ = 𝒗𝑖,𝑛+∗ − 𝒗𝑖(𝑡𝑛+1),

𝒆𝑖,𝑛 = 𝒗𝑖,𝑛 − 𝒗𝑖(𝑡𝑛).

Similar to the derivations of Lemma 3 and Theorem 1, we could obtain analogous results for the oRK2-II (22) as follows (the
proofs are thus omitted due to similarity).

Lemma 5. For sufficiently smooth {𝒗𝑖}𝑘𝑖=1 in (4), the error 𝒆𝑖,𝑛+1 in the oRK2-II (22) satisfies the following inequality:

max
1≤𝑖≤𝑘

‖𝒆𝑖,𝑛+1‖ ≤ (1 + 𝐶 𝜏) max
1≤𝑖≤𝑘

‖𝒆𝑖,𝑛‖ + 𝐶 𝜏3, 𝑖 = 1, 2,… , 𝑘, 1 ≤ 𝑛 ≤ 𝑁 − 1.

Theorem 2. For sufficiently smooth {𝒗𝑖}𝑘𝑖=1 in (4), the error in the oRK2-II (22) is second-order. That is,
max
1≤𝑖≤𝑘

‖𝒆𝑖,𝑛‖ ≤ 𝐶 𝜏2, 1 ≤ 𝑛 ≤ 𝑁 .

For the usual improved Euler formula, the scheme accuracy is second-order. The above conclusions indicate that for the oRK2-II,
he error order of the scheme remains second-order. This theoretically ensures that the orthonormalization operation does not affect
he overall error order of the improved Euler formula.

Remark 2. In the Appendix, we present the complete discrete schemes oRK2-I (31) and oRK2-II (32) for HiSD and GHiSD, as well
as the third-order orthonormalized Runge–Kutta scheme (oRK3) (33) and the fourth-order orthonormalized Runge–Kutta scheme
(oRK4) (34). To enhance clarity in our discussion, we focus solely on analyzing the errors of the discrete schemes oRK2-I and
oRK2-II for the unified form of the second equation in HiSD and GHiSD. In fact, the error analysis for the variable 𝒙 in the first
equation is not fundamentally challenging. By referring to the analysis of 𝒙 in [49], it can be shown that it has the same order of
ccuracy as 𝒗. Under suitable assumptions on the data, we can follow the same procedure to analyze the errors of oRK3 and oRK4.

4. Numerical experiments

In this section, we test the accuracy of the discrete schemes oRK2-I, oRK2-II, oRK3, and oRK4 for HiSD and GHiSD, as well as
he convergence paths of these discrete schemes. For comparison purposes, we also provided the numerical results in Euler scheme.
o evaluate convergence, we define the following errors:

Err(𝑥) ∶= max
1≤𝑛≤𝑁𝑇

‖𝒙(𝑡𝑛) − 𝒙𝑛‖,

Err(𝒗𝑖) ∶= max
1≤𝑛≤𝑁𝑇

‖𝒗𝑖(𝑡𝑛) − 𝒗𝑖,𝑛‖, 1 ≤ 𝑖 ≤ 𝑘,

Err(𝒗̃𝑖) ∶= max |

|‖𝒗̃𝑖,𝑛‖ − 1||, 1 ≤ 𝑖 ≤ 𝑘,

1≤𝑛≤𝑁𝑇 | |

8 
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Table 1
Convergence rates of five different schemes in Example 1.

Scheme 𝜏 Err(𝑥) Conv. rate Err(𝑣1) Conv. rate Err(𝑣̃1) Conv. rate

Euler

1∕23 1.02E−00 3.70E−01 4.18E−02
1∕24 6.25E−01 0.70 2.13E−01 0.80 1.37E−02 1.61
1∕25 3.43E−01 0.87 1.15E−01 0.89 4.73E−03 1.53
1∕26 1.78E−01 0.94 5.93E−02 0.96 1.31E−03 1.85
1∕27 9.03E−02 0.98 3.00E−02 0.98 3.42E−04 1.93
1∕28 4.53E−02 0.99 1.50E−02 1.00 8.75E−05 1.97

oRK2-I

1∕23 3.41E−01 1.48E−01 2.95E−02
1∕24 1.01E−01 1.75 3.92E−02 1.92 3.67E−03 3.01
1∕25 2.92E−02 1.80 1.09E−02 1.84 7.00E−04 2.39
1∕26 7.85E−03 1.90 2.90E−03 1.91 9.09E−05 2.95
1∕27 2.04E−03 1.95 7.46E−03 1.96 1.81E−05 2.95
1∕28 5.18E−04 1.97 1.90E−04 1.98 1.49E−06 2.99

oRK2-II

1∕23 4.73E−01 1.76E−01 3.09E−02
1∕24 1.69E−01 1.49 6.22E−02 1.50 2.65E−03 3.54
1∕25 5.06E−02 1.74 1.83E−02 1.76 1.46E−04 4.18
1∕26 1.40E−02 1.86 5.01E−03 1.87 8.16E−06 4.16
1∕27 3.67E−03 1.93 1.31E−03 1.93 5.59E−07 3.87
1∕28 9.44E−04 1.96 3.37E−04 1.96 3.72E−08 3.91

oRK3

1∕23 2.64E−01 9.47E−02 1.36E−02
1∕24 3.86E−02 2.77 1.31E−02 2.85 6.79E−04 4.33
1∕25 5.29E−03 2.87 1.79E−03 2.87 2.73E−05 4.64
1∕26 6.77E−04 2.96 2.29E−04 2.97 1.20E−06 4.51
1∕27 8.51E−05 2.99 2.88E−05 2.99 1.11E−07 3.43
1∕28 1.06E−05 3.00 3.60E−06 3.00 8.30E−09 3.74

oRK4

1∕23 6.13E−02 2.64E−02 8.63E−03
1∕24 5.58E−03 3.46 1.99E−03 3.73 2.71E−04 4.99
1∕25 4.47E−04 3.64 1.59E−04 3.65 8.54E−06 4.99
1∕26 3.15E−05 3.83 1.11E−05 3.83 3.35E−07 4.67
1∕27 2.09E−06 3.91 7.37E−07 3.92 1.13E−08 4.89
1∕28 1.34E−07 3.96 4.74E−08 3.96 3.62E−10 4.96

where 𝒙𝑛, 𝒗𝑖,𝑛 and 𝒗̃𝑖,𝑛 are the numerical solutions at time 𝑡𝑛, while 𝒙(𝑡𝑛) and 𝒗𝑖(𝑡𝑛) are the exact solutions at time 𝑡𝑛. Since there
re no exact solution for HiSD and GHiSD, the numerical solution calculated by 𝜏 = 2−20 is used as the reference solution, and for
implicity we set 𝛽 = 𝛾 = 1. Unless otherwise specified, we always take 𝑇 = 1.

Example 1 (Accuracy Test under Eckhardt Surface). We consider the saddle dynamics for the Eckhardt surface [47]

𝐸(𝑥1, 𝑥2) = exp(−𝑥21 − (𝑥2 + 1)2) + exp(−𝑥21 − (𝑥2 − 1)2) + 4 exp
(

−3
𝑥21 + 𝑥22

2

)

+
𝑥22
2
.

We set 𝒙0 = (0.5, 0.7)𝑇 with initial eigenvectors 𝒗1,0 = (1, 2)𝑇 ∕
√

5, and select time steps 𝜏 = 1∕23, 1∕24,… , 1∕28. Five discretization
schemes are employed to discretize HiSD for calculating a index-1 saddle point. The numerical results are presented in

From the Table 1, it can be observed that, regarding Err(𝒙) and Err(𝒗1), the Euler scheme achieves first-order accuracy, while
RK2-I and oRK2-II achieve second-order accuracy, oRK3 and oRK4 demonstrate third-order and fourth-order accuracy, respectively.

In terms of Err(𝒗̃1), the Euler scheme, oRK2-I, oRK3, and oRK4 achieve second-order, third-order, fourth-order, and fifth-order
accuracy, respectively, with oRK2-II achieving fourth-order accuracy (i.e. the superconvergence phenomenon).

Next, we set 𝑇 = 8 with a time step 𝜏 = 1∕24. Fig. 2 presents the convergence trajectory cloud plots for the five discretization
chemes, with Fig. 2(b) showing the results for the Euler scheme at a time step 𝜏 = 1∕27. It can be observed that all schemes converge

to the same index-1 saddle point.

Example 2 (Three-dimensional Dynamical System). Consider a three-dimensional dynamical system [45]

𝒙̇ = −
⎛

⎜

⎜

⎝

0.6 0.1 0
−0.1 0.6 −0.05
0 −0.1 0.6

⎞

⎟

⎟

⎠

𝒙 + 5
⎛

⎜

⎜

⎝

(1 + (𝑥1 − 5)2)−1
(1 + (𝑥2 − 5)2)−1
(1 + (𝑥3 − 5)2)−1

⎞

⎟

⎟

⎠

,𝒙 =
⎛

⎜

⎜

⎝

𝑥1
𝑥2
𝑥3

⎞

⎟

⎟

⎠

∈ R3.

We employ five discretization schemes in GHiSD to locate a index-2 saddle point of this three-dimensional dynamical system. The
nitial point is set to 𝒙0 = (3, 4, 5)𝑇 , with two orthogonal unit vectors 𝒗1,0 = (1, 0, 0)𝑇 and 𝒗2,0 = (0, 1, 0)𝑇 as the initial directions.

e set 𝑇 = 8 with a time step 𝜏 = 0.25. Fig. 3 presents a 3D visualization of the computed trajectory, where all schemes eventually
onverge to an approximate index-2 saddle point at 𝒙∗ = (4.1127, 3.2962, 5.7717). Using the solution from the Euler scheme with a
ime step of 𝜏 = 1∕220 as the reference solution, we observe that higher-order schemes exhibit smaller errors. Taking time steps
= 1∕23, 1∕24, 1∕25,… , 1∕27, Figs. 4 and 5 illustrate the logarithmic relationship between Err(𝒙), Err(𝒗 ), and Err(𝒗 ) and the
1 2
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Fig. 2. The convergence trajectories under various schemes in Example 1.

Fig. 3. The 3D convergence trajectories of Example 2 under different schemes.

reciprocal of the time step 𝜏, indicating that the Euler scheme achieves first-order accuracy, oRK2-I and oRK2-II achieve second-order
accuracy, while oRK3 and oRK4 reach third and fourth-order accuracy, respectively. Fig. 6 shows the logarithmic relationship of
Err(𝒗̃1) and Err(𝒗̃2) with the reciprocal of the time step 𝜏. The results indicate that the Euler scheme has second-order accuracy,
oRK2-II achieves fourth-order accuracy, and oRK2-I, oRK3, and oRK4 achieve third, fourth, and fifth-order accuracy, respectively.

Example 3 (Convergence of Dynamics under Modified Rosenbrock Function). In this study, we examine a high-dimensional modified
Rosenbrock function defined as follows:

𝐵ℎ(𝒙) = 𝐵(𝒙) −
ℎ
∑

𝑖=1
𝑠𝑖 ar ct an2(𝑥𝑖 − 𝑥∗𝑖 ) +

𝑑
∑

𝑗=ℎ+1
𝑠𝑗 ar ct an2(𝑥𝑗 − 𝑥∗𝑗 ),

where 𝐵(𝒙) represents the 𝑑-dimensional Rosenbrock function given by

𝐵(𝒙) =
𝑑−1
∑

𝑖=1
[100(𝑥𝑖+1 − 𝑥2𝑖 )

2 + (1 − 𝑥𝑖)2].

In our setup, we specify the dimension 𝑑 = 400, set ℎ = 20, with 𝑠𝑖 = 200 for 𝑖 = 1, 2,… , 20, and 𝑠𝑗 = 1 for 𝑗 = 21, 22,… , 𝑑. Here,
𝒙∗ ∶= [1, 1,… , 1]⊤ serves as an index-5 saddle point of 𝐵ℎ(𝒙).

We use five different discretization schemes of HiSD to compute the index-5 saddle point of 𝐵ℎ(𝒙). The initial point is set to
𝒙 = [1.05, 0.95, 1.05, 0.95, 1, 1,… , 1]⊤, and the initial set of eigenvectors is taken as the unit eigenvectors corresponding to the smallest
0

10 
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Fig. 4. The logarithmic plot of Err(𝒙) with respect to the time step 1∕𝜏 in Example 2.

Fig. 5. The logarithmic plot of Err(𝒗1) and Err(𝒗2) against 1∕𝜏 in Example 2.

Fig. 6. The logarithmic plot of Err(𝒗̃1) and Err(𝒗̃2) against 1∕𝜏 in Example 2.

five eigenvalues of the Hessian matrix of 𝐵ℎ(𝒙0). The time steps 𝜏 are set as 1∕212, 1∕213, …, 1∕217. From Table 2, we can see that
regarding Err(𝒙) and Err(𝒗1), the Euler scheme has only first-order accuracy, while oRK2-I and oRK2-II have second-order accuracy,
oRK3 has third-order accuracy, and oRK4 has fourth-order accuracy. For the convergence of Err(𝒗̃1), the Euler scheme, oRK2-I,
oRK3, and oRK4 have second-order, third-order, fourth-order, and fifth-order accuracy, respectively, while oRK2-II has fourth-order
accuracy. This indicates that increasing the index of saddle points does not compromise the accuracy of oRK-type schemes. The
table only lists the numerical results for Err(𝒗1) and Err(𝒗̃1); in fact, Err(𝒗𝑖) and Err(𝒗̃𝑖) (𝑖 = 2, 3, 4, 5) show similar results, which are
omitted here.
11 
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Table 2
Convergence rates of five different schemes in Example 3.

Scheme 𝜏 Err(𝒙) Conv. rate Err(𝒗1) Conv. rate Err(𝒗̃1) Conv. rate

Euler

1∕212 6.24E−03 1.72E−03 9.09E−06
1∕213 2.88E−03 1.12 7.97E−04 1.11 1.85E−06 2.29
1∕214 1.38E−03 1.06 3.82E−04 1.06 4.23E−07 2.13
1∕215 6.69E−04 1.05 1.85E−04 1.05 1.01E−07 2.06
1∕216 3.21E−04 1.06 8.88E−05 1.06 2.48E−08 2.03
1∕217 1.49E−04 1.11 4.13E−05 1.11 6.14E−09 2.02

oRK2-I

1∕212 7.08E−04 3.83E−04 1.31E−06
1∕213 1.56E−04 2.18 7.64E−05 2.33 1.36E−07 3.27
1∕214 3.68E−05 2.09 1.72E−05 2.15 1.54E−08 3.14
1∕215 8.92E−06 2.04 4.08E−06 2.08 1.82E−09 3.08
1∕216 2.19E−06 2.03 9.88E−07 2.04 2.22E−10 3.03
1∕217 5.38E−07 2.03 2.41E−07 2.04 2.74E−11 3.02

oRK2-II

1∕212 6.95E−04 3.82E−04 1.31E−06
1∕213 1.54E−04 2.18 7.64E−05 2.32 8.20E−08 3.99
1∕214 3.63E−05 2.08 1.73E−05 2.15 5.14E−09 4.00
1∕215 8.81E−06 2.04 4.08E−06 2.08 3.21E−10 4.00
1∕216 2.17E−06 2.03 9.90E−07 2.04 2.01E−11 4.00
1∕217 5.31E−07 2.03 2.41E−07 2.04 1.26E−12 4.00

oRK3

1∕212 5.49E−05 5.40E−05 2.29E−07
1∕213 6.00E−06 3.19 5.56E−06 3.28 7.54E−09 4.92
1∕214 7.04E−07 3.09 6.30E−07 3.14 1.11E−09 2.77
1∕215 8.53E−08 3.05 7.49E−08 3.07 8.85E−11 3.65
1∕216 1.05E−08 3.02 9.14E−09 3.04 6.12E−12 3.85
1∕217 1.30E−09 3.01 1.13E−09 3.02 4.01E−13 3.93

oRK4

1∕212 3.73E−06 5.26E−06 1.25E−07
1∕213 2.04E−07 4.20 2.73E−07 4.27 4.22E−09 4.89
1∕214 1.19E−08 4.10 1.57E−08 4.13 1.39E−10 4.93
1∕215 7.20E−10 4.05 9.34E−10 4.07 4.47E−12 4.96
1∕216 4.42E−11 4.02 5.70E−11 4.03 1.41E−13 4.98
1∕217 2.74E−12 4.01 3.52E−12 4.02 4.22E−15 5.06

5. Conclusions

In this paper, we begin by identifying the common characteristics of the second equations in HiSD and GHiSD and abstract
them into a unified form. Subsequently, we construct orthonormalized Runge–Kutta methods for HiSD and GHiSD and carefully
analyze the error of the two second-order orthonormalized Runge–Kutta schemes. Finally, we verify the correctness of the theoretical
esults through several numerical experiments. The paper does not provide error estimates for the third-order and fourth-order
rthonormalized Runge–Kutta schemes but presents numerical results. Under the assumption of a certain degree of smoothness in

HiSD and GHiSD, the error estimates for the third-order and fourth-order orthonormalized Runge–Kutta schemes are expected to be
similar.
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Appendix. The orthonormalized Runge–Kutta schemes for HiSD and GHiSD

In this section, we present the second-order, third-order, fourth-order orthonormalized Runge–Kutta schemes for HiSD and
HiSD. To simplify the expressions, we denote 𝑅({𝒗𝑗}𝑙𝑗=1) = I− 2∑𝑙

𝑗=1 𝒗𝑗𝒗
⊤
𝑗 for some 1 ≤ 𝑙 ≤ 𝑘. Given the initial condition 𝒙0 = 𝒙(0)

and {𝒗𝑖,0}𝑘𝑖=1 = {𝒗𝑖(0)}𝑘𝑖=1, the orthonormalized midpoint formula (oRK2-I) for HiSD is as follows:
⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝒙𝑛+ 1
2
= 𝒙𝑛 +

1
2
𝜏 𝛽 𝑅({𝒗𝑗 ,𝑛}𝑘𝑗=1)𝑭 (𝒙𝑛),

𝒗̃𝑖,𝑛+ 1
2
= 𝒗𝑖,𝑛 +

1
2
𝜏 𝛾(𝑅({𝒗𝑗 ,𝑛}𝑖−1𝑗=1) − 𝒗𝑖,𝑛𝒗⊤𝑖,𝑛)G(𝒙𝑛)𝒗𝑖,𝑛, 1 ≤ 𝑖 ≤ 𝑘,

{𝒗𝑖,𝑛+ 1
2
}𝑘𝑖=1 = or t h({𝒗̃𝑖,𝑛+ 1

2
}𝑘𝑖=1),

𝒙𝑛+1 = 𝒙𝑛 + 𝜏 𝛽 𝑅({𝒗𝑗 ,𝑛+ 1
2
}𝑘𝑗=1)𝑭 (𝒙𝑛+ 1

2
),

𝒗̃𝑖,𝑛+1 = 𝒗𝑖,𝑛 + 𝜏 𝛾(𝑅({𝒗𝑗 ,𝑛+ 1
2
}𝑖−1𝑗=1) − 𝒗𝑖,𝑛+ 1

2
𝒗⊤
𝑖,𝑛+ 1

2
)G(𝒙𝑛+ 1

2
)𝒗𝑖,𝑛+ 1

2
, 1 ≤ 𝑖 ≤ 𝑘,

{𝒗𝑖,𝑛+1}𝑘𝑖=1 = or t h({𝒗̃𝑖,𝑛+1}𝑘𝑖=1).

(31)

With the same initial conditions as before, the orthonormalized improved Euler scheme (oRK2-II) for HiSD is as follows:
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝒙𝑛+∗ = 𝒙𝑛 + 𝜏 𝛽 𝑅({𝒗𝑗 ,𝑛}𝑘𝑗=1)𝑭 (𝒙𝑛),
𝒗̃𝑖,𝑛+∗ = 𝒗𝑖,𝑛 + 𝜏 𝛾(𝑅({𝒗𝑗 ,𝑛}𝑖−1𝑗=1) − 𝒗𝑖,𝑛𝒗⊤𝑖,𝑛)G(𝒙𝑛)𝒗𝑖,𝑛, 1 ≤ 𝑖 ≤ 𝑘,
{𝒗𝑖,𝑛+∗}𝑘𝑖=1 = or t h({𝒗̃𝑖,𝑛+∗}𝑘𝑖=1),
𝒙𝑛+1 = 𝒙𝑛 +

1
2
𝜏 𝛽[𝑅({𝒗𝑗 ,𝑛}𝑘𝑗=1)𝑭 (𝒙𝑛) + 𝑅({𝒗𝑗 ,𝑛+∗}𝑘𝑗=1)𝑭 (𝒙𝑛+∗)],

𝒗̃𝑖,𝑛+1 = 𝒗𝑖,𝑛 +
1
2
𝜏 𝛾[𝑅({𝒗𝑗 ,𝑛}𝑖−1𝑗=1) − 𝒗𝑖,𝑛𝒗⊤𝑖,𝑛)G(𝒙𝑛)𝒗𝑖,𝑛 + (𝑅({𝒗𝑗 ,𝑛+∗}𝑖−1𝑗=1 − 𝒗𝑖,𝑛+∗𝒗⊤𝑖,𝑛+∗)G(𝒙𝑛+∗)𝒗𝑖,𝑛+∗], 1 ≤ 𝑖 ≤ 𝑘,

{𝒗𝑖,𝑛+1}𝑘𝑖=1 = or t h({𝒗̃𝑖,𝑛+1}𝑘𝑖=1).

(32)

The orthonormalized third-order Runge–Kutta scheme (oRK3) for HiSD is as follows:
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝒙𝑛+ 1
2
= 𝒙𝑛 +

1
2
𝜏 𝛽 𝑅({𝒗𝑗 ,𝑛}𝑘𝑗=1)𝑭 (𝒙𝑛),

𝒗̃𝑖,𝑛+ 1
2
= 𝒗𝑖,𝑛 +

1
2
𝜏 𝛾(𝑅({𝒗𝑗 ,𝑛}𝑖−1𝑗=1)) − 𝒗𝑖,𝑛𝒗⊤𝑖,𝑛)G(𝒙𝑛)𝒗𝑖,𝑛, 1 ≤ 𝑖 ≤ 𝑘,

{𝒗𝑖,𝑛+ 1
2
}𝑘𝑖=1 = or t h({𝒗̃𝑖,𝑛+ 1

2
}𝑘𝑖=1),

𝒙𝑛+∗ = 𝒙𝑛 − 𝜏 𝛽 𝑅({𝒗𝑗 ,𝑛}𝑘𝑗=1)𝑭 (𝒙𝑛) + 2𝜏 𝛽 𝑅({𝒗𝑗 ,𝑛+ 1
2
}𝑘𝑗=1)𝑭 (𝒙𝑛+ 1

2
),

𝒗̃𝑖,𝑛+∗ = 𝒗𝑖,𝑛 − 𝜏 𝛾(𝑅({𝒗𝑗 ,𝑛}𝑖−1𝑗=1) − 𝒗𝑖,𝑛𝒗⊤𝑖,𝑛)G(𝒙𝑛)𝒗𝑖,𝑛 + 2𝜏 𝛾(𝑅({𝒗𝑗 ,𝑛+ 1
2
}𝑖−1𝑗=1) − 𝒗𝑖,𝑛+ 1

2
𝒗⊤
𝑖,𝑛+ 1

2
)G(𝒙𝑛+ 1

2
)𝒗𝑖,𝑛+ 1

2
, 1 ≤ 𝑖 ≤ 𝑘,

{𝒗𝑖,𝑛+∗}𝑘𝑖=1 = or t h({𝒗̃𝑖,𝑛+∗}𝑘𝑖=1),
𝒙𝑛+1 = 𝒙𝑛 +

1
6
𝜏 𝛽[𝑅({𝒗𝑗 ,𝑛}𝑘𝑗=1)𝑭 (𝒙𝑛) + 4𝑅({𝒗𝑗 ,𝑛+ 1

2
}𝑘𝑗=1)𝑭 (𝒙𝑛+ 1

2
) + 𝑅({𝒗𝑗 ,𝑛+∗}𝑘𝑗=1)𝑭 (𝒙𝑛+∗)],

𝒗̃𝑖,𝑛+1 = 𝒗𝑖,𝑛 +
1
6
𝜏 𝛾[𝑅({𝒗𝑗 ,𝑛}𝑖−1𝑗=1) − 𝒗𝑖,𝑛𝒗⊤𝑖,𝑛)G(𝒙𝑛)𝒗𝑖,𝑛 + 4(𝑅({𝒗𝑗 ,𝑛+ 1

2
}𝑖−1𝑗=1) − 𝒗𝑖,𝑛+ 1

2
𝒗⊤
𝑖,𝑛+ 1

2
)G(𝒙𝑛+ 1

2
)𝒗𝑖,𝑛+ 1

2

+(𝑅({𝒗𝑗 ,𝑛+∗}𝑖−1𝑗=1) − 𝒗𝑖,𝑛+∗𝒗⊤𝑖,𝑛+∗)G(𝒙𝑛+∗)𝒗𝑖,𝑛+∗], 1 ≤ 𝑖 ≤ 𝑘,
{𝒗𝑖,𝑛+1}𝑘𝑖=1 = or t h({𝒗̃𝑖,𝑛+1}𝑘𝑖=1).

(33)

The orthonormalized fourth-order Runge–Kutta scheme (oRK4) for HiSD is as follows:
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

𝒙𝑛+ 1
2
= 𝒙𝑛 +

1
2
𝜏 𝛽 𝑅({𝒗𝑗 ,𝑛}𝑘𝑗=1)𝑭 (𝒙𝑛),

𝒗̃𝑖,𝑛+ 1
2
= 𝒗𝑖,𝑛 +

1
2
𝜏 𝛾(𝑅({𝒗𝑗 ,𝑛}𝑖−1𝑗=1) − 𝒗𝑖,𝑛𝒗⊤𝑖,𝑛)G(𝒙𝑛)𝒗𝑖,𝑛, 1 ≤ 𝑖 ≤ 𝑘,

{𝒗𝑖,𝑛+ 1
2
}𝑘𝑖=1 = or t h({𝒗̃𝑖,𝑛+ 1

2
}𝑘𝑖=1),

𝒙𝑛+∗ = 𝒙𝑛 +
1
2
𝜏 𝛽 𝑅({𝒗𝑗 ,𝑛+ 1

2
}𝑘𝑗=1)𝑭 (𝒙𝑛+ 1

2
),

𝒗̃𝑖,𝑛+∗ = 𝒗𝑖,𝑛 +
1
2
𝜏 𝛾(𝑅({𝒗𝑗 ,𝑛+ 1

2
}𝑖−1𝑗=1) − 𝒗𝑖,𝑛+ 1

2
𝒗⊤
𝑖,𝑛+ 1

2
)G(𝒙𝑛+ 1

2
)𝒗𝑖,𝑛+ 1

2
, 1 ≤ 𝑖 ≤ 𝑘,

{𝒗𝑖,𝑛+∗}𝑘𝑖=1 = or t h({𝒗̃𝑖,𝑛+∗}𝑘𝑖=1),
𝒙𝑛+∗∗ = 𝒙𝑛 +

1
2
𝜏 𝛽 𝑅({𝒗𝑗 ,𝑛+∗}𝑘𝑗=1)𝑭 (𝒙𝑛+∗),

𝒗̃𝑖,𝑛+∗∗ = 𝒗𝑖,𝑛 +
1
2
𝜏 𝛾(𝑅({𝒗𝑗 ,𝑛+∗}𝑖−1𝑗=1) − 𝒗𝑖,𝑛+∗𝒗⊤𝑖,𝑛+ 1

2
)G(𝒙𝑛+∗)𝒗𝑖,𝑛+∗, 1 ≤ 𝑖 ≤ 𝑘,

{𝒗𝑖,𝑛+∗∗}𝑘𝑖=1 = or t h({𝒗̃𝑖,𝑛+∗∗}𝑘𝑖=1),
𝒙𝑛+1 = 𝒙𝑛 +

1
6
𝜏 𝛽[𝑅({𝒗𝑗 ,𝑛}𝑘𝑗=1)𝑭 (𝒙𝑛) + 2𝑅({𝒗𝑗 ,𝑛+ 1

2
}𝑘𝑗=1)𝑭 (𝒙𝑛+ 1

2
) + 2𝑅({𝒗𝑗 ,𝑛+∗}𝑘𝑗=1)𝑭 (𝒙𝑛+∗) + 𝑅({𝒗𝑗 ,𝑛+∗∗}𝑘𝑗=1)𝑭 (𝒙𝑛+∗∗)],

𝒗̃𝑖,𝑛+1 = 𝒗𝑖,𝑛 +
1
6
𝜏 𝛾[(𝑅({𝒗𝑗 ,𝑛}𝑖−1𝑗=1) − 𝒗𝑖,𝑛𝒗⊤𝑖,𝑛)G(𝒙𝑛)𝒗𝑖,𝑛 + 2(𝑅({𝒗𝑗 ,𝑛+ 1

2
}𝑖−1𝑗=1) − 𝒗𝑖,𝑛+ 1

2
𝒗⊤
𝑖,𝑛+ 1

2
)G(𝒙𝑛+ 1

2
)𝒗𝑖,𝑛+ 1

2

+2(𝑅({𝒗𝑗 ,𝑛+∗}𝑖−1𝑗=1) − 𝒗𝑖,𝑛+∗𝒗⊤𝑖,𝑛+∗)G(𝒙𝑛+∗)𝒗𝑖,𝑛+∗ + (𝑅({𝒗𝑗 ,𝑛+∗∗}𝑖−1𝑗=1) − 𝒗𝑖,𝑛+∗∗𝒗⊤𝑖,𝑛+∗∗)G(𝒙𝑛+∗∗)𝒗𝑖,𝑛+∗∗], 1 ≤ 𝑖 ≤ 𝑘,
𝑘 𝑘

(34)
⎩

{𝒗𝑖,𝑛+1}𝑖=1 = or t h({𝒗̃𝑖,𝑛+1}𝑖=1).

13 
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The oRK2-I, oRK2-II, oRK3 and oRK4 for GHiSD can be obtained by replacing G with J + J⊤ in above equations.

Data availability

No data was used for the research described in the article.
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