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Abstract. Saddle points largely exist in complex systems and play important roles in
various scientific problems. High-index saddle dynamics (HiSD) is an efficient method
for computing any-index saddle points and constructing solution landscape. In this
paper, we propose a two-step Adams explicit scheme for HiSD and analyze its error es-
timate versus time step. Through careful argumentation and overcoming the difficul-
ties caused by nonlinear coupling and orthogonalisation, we prove that the two-step
Adams explicit scheme has second-order accuracy. The theoretical results are further
verified by two numerical experiments.
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1 Introduction

Finding the stationary point of the nonlinear multivariate energy function E(x) has been
an important concern in many fields of science over the last decades. It has special signif-
icance and a wide range of applications in physics, chemistry, and biology, such as critical
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nuclei in phase transitions [10, 38], molecular clusters [1, 6], protein folding [23,27], arti-
ficial neural networks [8], and soft matter [5,15]. For example, an index-1 saddle point is
called a transition state, which means that at a stationary point, the Hessian matrix has
and only has one negative eigenvalue. According to Morse theory [25], the Morse in-
dex of a non-degenerate saddle point is the maximum dimension of the negative definite
subspace of its Hessian matrix V2E(x), i.e. the number of negative eigenvalues of the
Hessian matrix V2E(x).

How to compute the saddle point of E(x) is a very challenging problem [21]. Because
of the clear meaning and wide application of index-1 saddle point, extensive methods
have been developed in recent decades to find index-1 saddle point. One popular ap-
proach is the path-finding method, such as the nudged elastic band method [19, 28] and
the string method [7,9]. The other type method is the surface-walking method, such as
the gentlest ascent dynamics (GAD) [11], the dimer-type methods [18, 37, 39], and the
activation-relaxation technique [4], etc. In 2013, [2] extended the GAD method to find
high-index saddle points. More comprehensive overview can be found in [10, 17, 40].
In 2019, high-index saddle dynamics was proposed to compute any-index saddle points
[35], inspired by the optimization-based shrinking dimer method [39]. The HiSD method
presents an effective tool for constructing the solution landscape and describes a path-
way map starting with a parent state, the highest-index saddle point, that relates to the
low-index saddle points and all the minimisers [33]. The solution landscape approach
has been applied to investigate several physical systems [16,29, 30,32, 36]. In addition,
the HiSD method is not limited to the gradient systems, and has been extended to the
non-gradient systems by using a generalized high-index saddle dynamics (GHiSD), en-
abling the calculation of any-index saddle points and solution landscapes of non-gradient
systems [34].

Theoretical analyses are essential to improve the confidence of the algorithms. In re-
cent years some scholars have developed some theoretical analyses of saddle point search
algorithms. For example, the asymptotic stability and convergence rate of the shrinking
dimer dynamics in several different time discretization modes are analysed in [37]. The
linear stability and error estimation of the dimer method with preconditioners and line
search algorithms are analysed in [13]. Recently, the rate of convergence of numerical
scheme for HiSD [35] has been analysed in [22] and it was found that the rate of con-
vergence is mainly related to the local curvature around the saddle-points and the accu-
racy of the eigenvector computation. There are some other numerical analysis results we
present here [12,14,20].

The above-mentioned works provide asymptotic convergence results of, e.g. x,, —x,,
where x, and x, refer to the numerical solution at the n-th iteration and the limit (target
saddle point) of the scheme, respectively. By contrast, the difference between x,, and x(¢,)
provides an objective measure of the error, whereby x(t,) represents the exact solution
of HiSD at step t,. This approach allows for the assessment of the convergence of nu-
merical solutions to saddle dynamics, and provides valuable physical insights, including
the transition pathway [32,33]. Incorrect computation of the dynamical pathway may
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result in the miss of saddle points and an incomplete solution landscape. Hence, it is
essential and significant to estimate the errors of x, —x(t,) for HiSD. In a recent study
by Zhang et al. [41], the error estimation of the explicit Euler discrete scheme of HiSD
was conducted, which proved the first-order rate of convergence with respect to time
for trajectory positions and eigenvectors. In [42], the boundedness of the solution and
the dimer error of the shrinking-dimer saddle dynamics were analyzed under the local
Lipschitz conditions.

The explicit Euler scheme has only first-order accuracy, and the multistep method is
a good candidate if high accuracy is needed. In this paper we construct the two-step
Adams explicit scheme for HiSD and try to prove that it has second-order accuracy with
respect to time. Due to the Stiefel manifold constraint in discrete HiSD, the accuracy proof
of Adams scheme is far from the analyses of high-order methods of ordinary differential
equations and thus has significant difficulties. Through careful argumentation and over-
coming the difficulties caused by nonlinear coupling and orthogonalisation, we prove
that the two-step Adams explicit scheme has second-order accuracy, which presents the
high-accuracy numerical computation of HiSD and provides its numerical analyses for
the first time.

The rest of the paper is organised as follows. In Section 2, we present the specific form
of HiSD, the assumptions used and the lemma. In Section 3, we construct the two-step
Adams explicit scheme for index-1 saddle dynamics and analyse its error with respect to
time. In Section 4, we generalise the construction of the scheme and the error estimates to
HiSD. In Section 5, we verify our theoretical findings with several numerical experiments.
In the last section we generalise the relevant results to GHiSD and draw conclusions.

2 HiSD and assumption

Given a twice Fréchet differentiable energy functional E(x) defined on a real Hilbert
space and define the corresponding natural force F(x) = —VE(x) and the negative Hes-
sian J(x)=—V2E(x). Itis clear that ] (x)=](x) ". Then the saddle dynamics for an index-k
saddle point (k-SD) of E(x) with 1 <ke&IN reads [35]

d k
d—’t‘ :,B<I—2];vjva> F(x),

dvi

' (2.1)

i—1

=7 <I—vivlT —220,1)?) J(x)v;, 1<i<k,
j=1

where x represents a position variable, v; (i=1,...,k) are k directional variables, and 8, >0
are relaxation parameters. Additionally, [35] demonstrates that if the initial values of
{v;(t)}%_, for (2.1) are unit orthonormal vectors, then {v;(t)}¥_; are unit orthonormal
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vectors for any ¢t > 0. In particular, the index-1 saddle point dynamics (1-SD) takes the
following form, which is equivalent to the gentlest ascent dynamics [11]:

% =B (I—2v0" )F(x),
a 2.2)
n =y(I-v0")](x)v

Throughout the paper we make the following regular assumptions on the force and
the Hessian:

Assumption 2.1. There exists a constant L > 0 such that the following linearly growth
and Lipschitz conditions hold under the standard [? norm || || of a vector or a matrix:

1] (x2) = J(x1) [[+ | F(x2) = F(x1) [ < Ll x2 = x|
IEG)<L1+]Ixll),  xx1,02 € RN,

Based on Assumption 2.1, [41] demonstrates that the norm of x(¢) can be bounded
by /Qr for t € [0,T], where T is the terminal time, and we thus assume
Jr:= max_|[|J(x)]|.
| x[<vQr

We cite the discrete Gronwall inequality, which will be frequently used throughout this
paper [3].

Lemma 2.1 (Discrete Gronwall Inequality). Assume that the non-negative sequences {z, }n>1

and {ky },>1 satisfy
n—1

zn <p+ ijzj

j=1
for n>1 for some p > 0. Then

n—1
zn < pexp ki|, n>1
=1

In the rest of the work, we use Q to denote a generic positive constant that may as-
sume different values at different occurrences, and use Q;, Q or Q to denote fixed param-
eters. All constants are independent from time discretization parameters.

3 Numerical analysis for index-1 saddle dynamics

To make the main idea of the proof clearer, in this section we consider the Adams explicit
scheme of the index-1 saddle point (2.2) on the time interval [0, T] for some T > 0.
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3.1 Adams explicit scheme

We divide the interval [0, T| into Ny €N equal parts, t,=nT for 0<n <N is called a node,
where T=T/Nr is the time step size. For first-order ordinary differential equation

%Y _
5 =/ (L), (3.1)
we calculate (3.1) by the explicit Euler scheme at ¢; as follows:

y(t) =y(to) +f (to,y(to)) +T7,

and calculate by the second-order Adams explicit scheme at t,, (2<n < Nr) as follows:

y(tn) =y (tna1)+ %Tf(tn—lr]/(fn—l)) - %Tf(tn—zl}/@nfz)) +Ty,

where y refers to x or v, and the truncation error ||T}|| = O(7?) and ||T}|| = O(®)
(2<n < Nr). Applying above discretization into (2.2) yields

x(t)=x(to) +TB(I1—20(to)v(to) ") F(x(to)) + T3, (3.2a)

v(t1) =0(to)+Ty(I—v(to)v(to) ") ] (x(to))v(te) +T1, (3.2b)
x(t,) :x(tn,l)—|—grﬁ(1—2v(tn,1)v(tn,1)T)F(x(tn,l))
—%Tﬁ(I—ZU(tn_z)v(tn_z)T)F(x(tn_z))+T,f, (3.20)

o(t) :v(tn,l)+gm(l—v(tn,l)v(tn,m)](x(tn,l))v(tn,l)

—%T'y(l—v(tn,z)v(tn,z)T)](x(tn,z))v(tn,z) +T7. (3.2d)

Then we drop the truncation errors of (3.2) to obtain the Adams explicit scheme of (2.2)
with the approximations {x,,,v, }™, to {x(t,),0(t,) ),

X :x0+r[3(1—2vovoT)F(x0), (3.3a)

271 :UQ—FT’)/(I—UQU(—)F)](XQ)UQ, (33b)
01

U =—", (3.30)
101 ]]

3 1
xn:xn,l+§rﬁ(1—2vn,1v;,l)1f(xn,l)—575(1—2vn_zv;_2)1f(xn_2), (3.3d)
- 3 1
vn:Un—l+ET'Y(I_vn—lv;lr—1)](xn—l)vn—l_ET'Y(I_vanU;—qlz)](xanﬁJan/ (3.3¢)

On
O — P (3.3f)
" ol
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and the initial conditions x(0) =xo,v(0) =vy, ||vg||]2 =1. The Egs. (3.3a) and (3.3b) are the
explicit Euler scheme for calculating x; and @, while the Egs. (3.3d) and (3.3e) are the
Adams explicit scheme for calculating x,, and @, for 2 <n < Nr. Since 9, (1 <n < Nr)
may not be a unit vector in the sense of the I, norm due to the presence of discrete errors,
the Egs. (3.3¢c) and (3.3f) are used to ensure that vectors v, (1 <n < Nr) are unit vectors.
Notice that I —2v,, v,—f (0<n <Nr) is a Householder matrix, so we get

1200, || =1. (3.4)

Based on Assumption 2.1, it is proved in [41] that ||x(¢)|| is bounded for t€[0,T], and then
we prove a similar property for ||x,| (1 <7< Nr) in (3.3). We thus multiply x,) on both
sides of the Eq. (3.3d) and use (3.4) to obtain

3
HanZS (B ”xn—l““‘ETﬁHXnHHl_zvn—lvz—lu | F(xn-1)]
1
+ 5Bl |1 =20020, 5 || | F(xn2)

which leads to

3 1

[l || = llxn—1 [l < ET,BHF(xn—l)”‘f’ETﬁHF(xan)H
3 1
§ET[%L(H—||xn,1||)+§T,BL(1+Hxn_2||), n>2. (3.5)
Similarly, we multiply x| on both sides of the Eq. (3.3a) to obtain
1| llxo [ < TB[| T —2v02g ||| F(x0) || < TBL(1+ 0] 1)-

By summing up the inequalities (3.5) from n=2 to n* <Nt and adding the above inequal-

ity yields

3 = 1 &
|2+ | = [lxo [ < TBL(1+ ||xo|\)+§TﬁL Z (T4 {1 +5 7L Y (1+[xn2])
= n=2

n*

3 n*
<3 (et )+ 578L L (1 )

n=1

<2TBL+21BL Z ll2—1]|-
n=1

Then we apply the discrete Gronwall inequality to conclude that there exists a con-
stant Qr such that ||x, || < Qr for 0<n < Nr, and we thus assume

Jri= max ()] 6)
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3.2 Auxiliary estimate of 7, — v,
Inspired by [41], we split v(t, ) — 3, into
(0(tn) —vn) 4+ (05 —3y) =€)+ (04— Tp),

which introduces an additional error v, —3,. In particular, we need to show that the
|0, — 0, || has the magnitude of O(®) in order to preserve the O(7?) accuracy of the
numerical scheme (3.3), which motivates the following estimate.

Lemma 3.1. Under Assumption 2.1, the following estimate holds for T small enough:
[15a]l =11 < [lI7n|*~1|<Q7°, 2<n<Nr.

Proof. From the schemes of ¥, we have ||7, || >1/2 for T small enough. From [41, Lemma
3.1 and Corollary 3.2], we have

o1 -11<Q7?,  [los—51]| < Q7 (3.7)
We apply the above equation and the Eq. (3.3b), as well as the boundedness of |, to obtain
[[o1 —vol| =[[o1 =01+ 01 —vo|| < [[o1 =01 [[ + |01 —vo || < Q. (3.8)

It follows from the boundedness of ||xy|| that
|1 —xo| < TB|| (I—200vg ) F(x0) || < TB|F (x0)]| < Q. (3.9)

Denote g, = (I—v,0,) )] (x4 )vn, use vy go=0 and combine with the Eq. (3.3b) to obtain

v1))8o

vf go= (0] —vg )go=(?] —vg —

(57 —
(”lT % ‘( an\) I)

=180 §0— (”le_ )vl 0. (3.10)

[kl

Subtract go from g to obtain

81—80= (I_UIUI)](xl)Ul - (I—UOUOT)](XO)UO

=] (x1)v1—J (x0)vo+v0vg ] (x0)vo—v101 J(x1)01
=J(x1)v1—J (x0) w1+ (x0)v1 — ] (x0) 00+ 005 ] (x0)0
—0199 J(%0)v0+ 0190 J (x0)v0—010] J(x0)v0+0101 J(%0)0

—v101 J(x1)v0+0101 J(x1)00— 0107 J(x1)01.
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We then apply Assumption 2.1, (3.8) and (3.9), as well as the Eq. (3.3a), to find

181 =goll < (17 (x1) =] (x0) |+ 1] (x0) /o1 =0l + [|vo — o1 [[[| T (x0) |
+loo—=v1 |1 (x0) I+ [1] (x0) = J Cen) [+ 11 (x1) [ [[vo — 01
<2L|[x1—xo|+4]r[[vo—v1]| < Q. (3.11)

By ||v1|| =1 we directly calculate ||7,]|? in (3.3) and apply (3.10) to obtain

2 T 3
|52|* =10, & (vl+ T'rgl——f'rgo> <01+ T'rgl——wgo>

9
=1+~ T7g1g+ T'rgogo 78] g0— 7] &0

9 1 3 o1 =1
=14 7727%81 14 7727780 80— 57781 80— T80 80+ T TR ARS

9 3 3 o1 -1\ .+
=1+ T’yglg——f’rgog——f’rglgoﬂ’y ) 7180

3 -1 .
=14+377*(381 (81—80) +80 (81-80)) + 77 ( u |\1v”1 ” ) 9] - (312)
Then we use (3.7), (3.11) and (3.12) to obtain

) 3
172l =1] < Z7** (381 [[lls1 =80l + 180 [ l181 = goll)
|71 || —

oI ol g < e
We incorporate this estimate with
1221 = 1 <[(I72 [+ D) (152]| = 1) | =[] 52]* ~ 1| < Q7° (3.13)
e 9
~ % ~ ~
15 —onll = = 18n | = 1| =lI8a] - 1| (3.14)
19

to get the statement of this lemma with n=2.
Following a derivation similar to (3.11), we obtain for m >3

18m—1—gm—2[l < Qllxm—1—xm—2[|+Qllom—1—0m—2||. (3.15)
Following a derivation similar to (3.9), we obtain
[[xXm—1—xm—2[| <QT. (3.16)
We apply the Eq. (3.3e), as well as the boundedness of ], to obtain

[om-1— 0w < Q. (3.17)
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Then we use (3.15)-(3.17) to obtain

Hgm—l _gm72H < Q”xm—l _xm72H +Qva—1 —Umsz
<QTt+Q([vm—1—0m-1ll+|0m—1—0m—2|)
<QT+Qlvm—1—m1l. (3.18)

By v, ,¢m-2»=0we invoke the Eq. (3.3e) to obtain

| -18m—2| < QT, (3.19)
where m > 3. By ||v,,_1|| =1 we then multiply 3, on both sides of the Eq. (3.3b) to obtain

5[ = 0, T

— +§T _11— ! +§T _11—
=1\ Om-1 > Y8&m—1 2 Y8&8m—2 Om—1 2 Y8&m—-1 2 Y8&m—2

9 1 3
=1+ 778181+ 7T 8m—28m-2— 5TV gm-18m—2

T
—TY0y—18m-2

9 1 3
=14 798181+ 7TV 8m—28m-2— 5TV G- 18m—2

3 1 Gl =1\
= ST gm—28m2 5T Em—agm-—2+TY <M> Oy 18m—2

”5m—1”

1
=1+ 77981 (8m-1—8n—2)+3(gm-1—8m—2) ' gn 2

4
Om—1]|—1Y .
~2(gm-2—gm-3) gm-2)+TY (%) By 1§m-2-
Applying (3.19) yields

1Bl =11 <118l = 1) (N |+ 1) 1= 15 ||* ~ 1]

1
=107V Plgn-1llIgn-1—gn-2l+3I8m-1—gm-2l Ign—2|

|||5m71|| _1| ‘5
Hﬁmle

< QT om—1—0n-1]+Q7%||[om—2— 2|+ Q7+ Q||| Fp—1 ] - 1]I.

+2(gm—2—8m-sllllgm—2|l] + 17 m—18m—2|

Combining the above equations, we obtain

18mll =11 < QT[Tm—1l| = 1|+ QT[T -2l - 1|+ Q7. (3.20)
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Let

QP+ V/QTHAQT |, -7+ /T H4Q7 .
2 ;b= 5 .

such that a—b=Qt? and ab= Q2. Therefore, (3.20) can be rewritten as
1Tl =140l |01 || =1 <a([[|5m—1 | = 1 +][|Gm—2 ]| - 1)+ Q7. (3.22)

Let
P =[[Om || = 1| +b]|Om—1[| 1]

such that the above inequality can be further rewritten as
Pm <apn-1+Q7.

We repeatedly apply this relation to get

m=3
pm<a" p+Q7 Y d'.
i—=0

1

From (3.7), (3.13) and (3.21), which implies b < Qt, we have
P2l <lllZ2 [ 1] +bl[la1 ]| -1 <Q7°.

Then for T small enough such that a <1, we have

m—3
om | =1 < pm <a™ *p2+Q7° Y a' <Q7°,
=0

1

which, together with (3.14), completes the proof. O

3.3 Error estimates

Define the errors by e} :=x(t,) —x, and e}, :=v(t,) —v, for 1 <n < Nr. We first bound e},

in terms of ¢}, in the following theorem.

Theorem 3.1. Suppose Assumption 2.1 holds. Then the following estimate holds:
n—1
el <QT Y [len[[+Q7? 1<n<Nr.
m=1

Here Q depends on L, T and B but is independent from T,n and Nr.
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Proof. We subtract the Eq. (3.2a) from that of (3.3) to obtain
let | <751l (323)

We subtract the Eq. (3.2a) from the Eq. (3.3d) to obtain

ey =€+ 5 TB(F (x(ta 1)) —Flx 1))
—37B[v(tu-1)v(ts—1) " F(x(ts-1)) =0n-10, 1 F(xu-1)]
43 TB(F(vn2) ~ F(x(ty2))
—1Blv (fn 2)0(tn—2) "F(x(tu—2)) —0n20, oF (x4 2)] +Tp
=e, 1+—T/3( (x(ta-1)) = F(xn-1))

_3T:B[ n—19(tn-1) TF(x (tn-1) )+Un 1(e5,- )TF(x<tﬂ—1>)
+ 0,10, 1(F(x(tn-1)) —F(xn-1))]
F(x(

+1T‘B( (xn 2) x(t,— 2)

-1)

)
—B[el_y0(tu2) TF(x(tn2)) +0n_2(€l )  F(x(ts2))
0520, 2 (F(x(ta—2)) —F(xn—2)) |+ Ty, n=>2.

We then apply the Assumption 2.1 to find

el < s+ 5 Bl (xtn1)) = Eon )]
3B [1e5a [0t NIF (k1)) [+ lonal €5 || F (eCta) |
+|vn—1llon-1ll||F (x(tn-1)) = F(xn—1) ]
2B (x(ts-2) ~ Flx-2)|

+ B[ llen-2lll[o(ta-2) NIF (x(tu-2)) |+ lon-2ll |5 2 [ E (x(ta-2)
Hlon-2llllon—2[|[| F(x(ta-2)) = F(xn-2) |] + I T3

<|les ||+ 5 BL i
+3T( e[+ V/Qr) + &y 1L+ Q1)+ Llles o]+ 5 6L s
+7B[llen—2l L+ Qr)+leh 2 L+ Qr) +Lles 2|+ T3 |
<l +§TﬁLH3571H +6TBL(1++/Qr) e ||

3
+57BL|len o +2TBL(1+v/Qr) [le5 2| + | T -
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Adding this equation from n =2 to n, and using (3.23) leads to
My T4 -
le || <3TL Y [len 1|+ X [BTAL(+/Qr)lefiall+ (| T |+ T
n=1 n=1

Then an application of the discrete Gronwall inequality in Lemma 2.1 yields

lex 1 <Q| Y- (elles |+ T2 + 1T |-

We incorporate this estimate with || T||=O(73), ||T{ || = O(7?) to complete the proof. [

Based on the derived results, we prove the error estimates of the Adams explicit
scheme (3.3) in the following theorem.

Theorem 3.2. Under Assumption 2.1, the following estimate holds:
lesl+lesl<@e 1<n<ng.
Here Q depends on L, T and B but is independent from T,n and Nr.

Proof. We subtract the Eq. (3.2d) from the Eq. (3.3e) to obtain

0lt0) =00 =51+ 573 (] (x(tn1))2(tn1) =T (r-1)0n 1)
2oy [olta-1)0(ta—1) T (%(ta-1))0(ba-1) ~ 0107 1] (¥a-1)0n1]
(] (x(ba-2))0(ta-2)— (x-2)002)
+ 5y [0(te-2)o(te2) T (x(tn—2))v(tn—2) = 0n—20; o] (Xu-—2)Vn 2] + Ty
=yt 2y [(1(x(tu1) (1)) o(to1) 4 ] (x-1)65 ]

BT’Y[ ey 10(tn-1) ( tn-1))v(tn—1)+0n—1(€}_ 1)T](X(tn_1))v(tn_1)

NI—= DN =N W

)
F0u 10 (J(x(tn-1)) =] (%n-1))0(bn—1) +0n—100_1] (xn-1)€%_1]
e [ (xtu2) =T 2)) ol 2) (512065

+;T’Y[ ey_20(tn-2) ](x(tn—Z)) (tn—2) +0n— Z(En 2)T](x(tn—2))v(tn—2)
+0n-20, 5 (J(x(tu-2)) =] (Xn-2)) 0(tn—2)+0u—20, o] (xn-2)el ]+ T,
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which leads to

Jo(tn) =2l < 15 |+ 7y (L e al|+ Tl ]
2oy 2l + Ll Trlled a1+ 373 [Llei—all+Trei—a]]
43Tyl + Lol +Trlleh ol + T2 624
We split v(t,) — 0, as
(0(tn) —0p) + (Vg —Ty) = €+ (00— B),
and apply Lemma 3.1 and Theorem 3.1 for (3.24) to get

HEZH < HEZ_1H+an_5n“+QT(HeZ—1H + Heﬁ—ﬂ!)
+Qr(llesll+lle—2l) + [T

n—1
<len-all+Qrllen-i [ +Qrllen-—ol|+Q7° 21|!€%|!+QT3.

Adding this estimates from n =2 to n, for 2 <n, < Nr and using

ne n—1 ne—1 ny ne—1
Y Y lenll=7 X el <Tr Y el
1 m=1

n=1m=1 m=1n=m-+

we get

ne—1

lei [ <[le]|+QT }_ [len]|+Q7*
n=1

From [41, inequality (3.15)], we have ||¢?|| < Qt%. Then an application of the discrete
Gronwall inequality leads to ||e%|| < Q7 for 1 <n < Nr. Plugging this estimate back to the
conclusion of Theorem 3.1 yields the estimate of ||e}; || and we thus complete the proof. O

4 Numerical analysis for index-k saddle dynamics

We study the Adams explicit approximation of k-SD (2.1) for some k > 1, which has k
eigenvectors and thus needs additional orthogonalization process that significantly com-
plicates the analysis.
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4.1 Adams explicit scheme

Similar to Section 3.1, Adams explicit scheme in the continuous case for k-SD (2.1) reads

x(t1) =x(to)+1p <I—22k:vj(t0)v]-(t0)T>F(x(to)) +T7,
=1

)
i—1

T)i(ﬁ) :Ul‘(to)"i"l.")/ (I—Ul'(t())l)l‘(t())—r —2Z:Uj(to)vj(to)T>](x(to))vi(to)+Tvi,

j=1

k
x(tn):x(tn_1)+§rﬁ<I—2]§vj(tn_1)vj(tn_1)T>F(x(tn_1))
1 k T x
—57ﬁ<1_220j<tn2)0j(tn2) )F(x(tnz))—l—Tn,
j=1
i (tn) =0i(ty-1)
3 T8 T
+§T’Y<I—Ui(fn—1)vi(fn—1) —2Y 0j(tp—1)vj(ty—1) >](X(tn—1))vi(tn—1)

=1
i—1

— %T’)/ <I—Z)i(tn_z)vi(tn_z)T—ZZvj(tn_z)?]j(tn_z)T> ](x(tn_z)) Ui(tn_z) —i—Tf;"
=1

for 1 <i <k. Then we drop the truncation errors to obtain the Adams explicit scheme
of (2.1)

k
xl:xo+rﬁ(I—ZZvj,ovaO)F(xo), (4.1a)
j=1

i—1

271',1 sz‘,0+T’Y<1_Uz‘,0020—220j,0020>](XO)Uz‘,Or 1 Sigk, (4.1b)
j=1

1 i—1 - .
Ui1= ﬂ (?71',1 — Z;(ﬁi,lvjfl)v]',1> , 1 S 1 S k, (41C)
7 ]:

3 k
Xp=2Xp_1+ ET‘B (1—2201',11—10;1_1) F(x,-1)
j=1

1 k
—ET:B<I_2Z%U]‘,HZUjT,n2>F<xn2)/ (4.1d)
]:
3 T = T
Zji,n =0Uin-1+ ET'Y <1_vi,nlvi,n1 _2Zvj,nlvj,n1> ](xn—l)vi,nfl
=1

1 _ .
=577 <1—Ui,nzvznz—2zvj,nzvznz>](xn2)vi,nz, 1<i<k, (4.1e)
=1

1/ 2 :
Vin= Y— (vi,n — Z(Uznvj,n)vj,n> , 1 S 1 S k (41f)
in =1
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for 2 <n < Nt equipped with the initial conditions
x(O) =Xy, 7)1'(0) =700 with 7)2—07)]',0 = (Si,j/ 1< i,j <k,

where §;;=1if i=j and 4;; =0 otherwise. The Eq. (4.1f) is the standard Gram-Schmidt
normalized orthogonalization procedure in order to preserve the orthonormal property
of the vectors as in the continuous problem (2.1), and Y;, stands for the norm of the
corresponding vector, i.e.

i1 3
N <H6i'nH2_Z(ﬁInvf'”)2> '

j=1

Yi,n =

i1
Oipn— Z (Zinvjf”) Ujn
=1

Similar to the derivation of Jr in (3.6), we could conclude that there exists a positive
constant [1 independent from Nt and T such that maxi<,<n;, [|J(x2)|| <J7.

4.2 Auxiliary estimates
We first present the following lemma for future use.

Lemma 4.1. There exists a function §: R" — R such that if a set of vectors {w;}X_, satisfy
lw] w;—6;j| < CT3 for 1 <i<j<k for some constant C >0 and {@;}*_; are orthonormal vec-
tors generated from {w;}*_, via the Gram-Schmidt process, the following estimate holds for T
sufficiently small

|@; —w;|| <g(C)73, 1<i<k.

Proof. The proof is similar to the analysis in [41, Lemma 4.2] and is omitted here. O
Lemma 4.2. Under the Assumption 2.1, we have
1030 =i < QT
for 1 <i<kand2<n <Nr for the Adams explicit scheme (4.1) for some constant Q > 0.
Proof. It is shown in [41] that
01— 01| <QiT?, 1<i<k, (4.2)

for some Q7 > 0. Denoting
= T
8in= (1 ~Vin0jy —szj,nvj,n> J(xn) i
j=1

for 1 <i<k and 0 <n < Nr, based on the symmetry of ], we can easily verify

Uz;z,ngi,n + Uz?:ngm,ﬂ =0 (4.3)
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for 1 <m,i <k and 0 <n < Nr. We directly calculate to get

<vi,n71 - vi,an)Tgm,an

— (7 ~ T
— ( i,nfl_vi,n72+vi,n71_vi,n71) Sm,n—2

3 1 o
= Ervgi,angm,an - ET’)’gi,nf?;gm,an"i_ <vi,n71 - vi,nfl) 8m,n—2,

(Um,nfl - Um,n—Z) ng‘,n—z
= z’jm,nfl —Umn—2+Omn-1— Z’jm,nfl)Tgi,n—Z
3 1 ~ T
= 5 TV8mn-28in-2~ 5TV&mn-38in-2+ (Umn—1—Fmn—-1) Sin—2-
Using the first equation of (4.1) yields

U1 = Um0 =0m1— Um0+ Vm1—0mo
=TY8&m,0+Vm1—0m,, (4.4)

0i1—0i0="0;1—0i0+0i1—Tip
=T78i0+0i1—0ip- (4.5)

By (4.3), we directly calculate the product 5;,2271',2 for1<m,i<k

o 3 1 T 3 1
0, 20i2= | Um1+ ET’Yg m1— ET’ng,o vi1+ ET Y8i1— ET Y8i0

9 3 3
=0mit 7TV 8811~ 7TV 8810~ 7T 8mo8in
1 3 1
+ 1 Y gmo8io+ 5 TY V1800 — > TY0p18i0

3 1
+ ET’YUIlgm,l - ET’YUIlgm,O-
Using (4.3), we have
T o~ 9 2.0 T 320 T 3 2.0 T
Om20i2 = 0mit 3 T 8ma8in = 7TV &m18i0 — 7T 7 &mo8in
1 1 1
+ 172728 z;g,og 0t 5 7702,08 0~ ET'YUVTn,lg i,0
1 - 1
+ 5 TV0i08m0 — 5 TYVi18m0
9 2.0 T 300 T 3 2.0 T
=0mit T 8181~ 7TV 8m18i0— 7T &mo8in
1

1

1 1
2780810 — 5TV (Vm1—Vmo) ' Gin— 5T (0i1—0i0) " mpo-
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Substituting (4.4) and (4.5) into the above equation and by factorisation we get

2,2 T 3 322T

o 9
O 2012 = Omit 7T 8 18i1 = 7T 7 8ma8i0 = 7 T 8mo8in

- %Tz’ng;qr,ogi,o - %7272@7;1,1 — 1) ' gio— %T'Y@i,l ~i1) ' gmo
=Om,i+ iTz’Yz [98m,1(8i1—8i0) +6(8m1—8gmo) ' 810 —38m,0(8i1—8io)]
- ET“Y(UmJ —Oma) " gio— %77(01‘,1 ~0i1) " gm,o-
A similar derivation to (3.11) yields

&m,1—8moll <QT, &i1—&ioll < Q7. (4.6)
By (4.2), we apply (4.6) to obtain
\ O 20i2— O i \
<1 20270)07 Illlgi1—gioll+6 — ol 43 1 —gi
< 3T Olgm 1 MIgin = 8ioll +6lIgm1—gmolllIgioll+3llgmoll l1gi1 —gioll]
1 . 1 .
+§T’Y||Um,1—vm,l||ng‘,0||+§T’Y|\Ui,1—vz‘,1||Hgm,0||SQT3'
Then an application of Lemma 4.1 leads to
loi2—ial| <Qo7°, 1<i<k, (47)

for some Q> > 0. Similarly to the proof of n =2, we can show that

1
|Om,g%ia = Omil < 777" [Ollgmg-1ll118i-1— 8192l +6llgmq-1—gma-2ll I gig-2l

+31gmg—2118i9-1 = Sig—2ll + 1 §mg—2—&mq—3ll|iq—2|l
+18i.-2—8i,g—3lllgmqg—21l]

1 _ 1 -
+ ET'YHUm,qfl —Um,q-1 | ||gi,q—2 |+ ET’)’HUz‘,q—l —Uig—1 1 ||gm,q—2 | (48)
for 3 <g < Nr. Similar to the derivation of (3.18), we obtain

”gi,qfl _gi,qu“ < QT+QHvi,qfl _51‘,1171 H/

3 (4.9)
||gm,qfl _gm,q—ZH < QT‘FQva,qfl —Um,g—-1 H

Substituting (4.9) into (4.8) yields

|Z7;—nr,q5i,q _5m,i’ < Q_Tz H Om,g—2—Um,g—2 H + Q_Tz ||5z‘,q—2 —Uig-2 H

"‘QTHﬁm,q—l —OUmg—1 H "‘QTHﬁi,qfl —Uig-1 H +Q_T3/ (4.10)
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for some Q > 0. Setting g =3 and invoking (4.2)-(4.7) we get [5/33;3 —; ;| < Q7> such that
an application of Lemma 4.1 leads to

03— i3]l <Qs7°, 1<i<k (4.11)

for some Q3 >0. Let Q>0 be a constant such that Q >max{Q,,Q3,¢((1+¢)Q)} for some
¢>0, and we intend to use mathematical induction to show that

[0, =01l <QT°, 1<i<k (4.12)

holds for 2 < p < Nt. By the definition of Q and (4.7)-(4.11), (4.12) holds for p =2,3.
Suppose (4.12) holds for p=g—1 and p=gq—2 for some 4 <q < Nr. Then it follows from
(4.10)-(4.11) that

|0 q0ig—Om,i] <QT°(2QT*+2QT+1).

For 7 sufficiently small we have 2Q7?+2Qt<e such that |5, ,0; g —6p,i| < (e+1)Q7>. From
Lemma 4.1, we have

[oig—iqll <g((e+1)Q) T < QT

for 1 <i<k, which is exactly (4.12) with p=g. Thus, the proof is completed by induction.
O

4.3 Error estimates

Define the errors
er:=x(ty) —xp, e?,n::vi(tn)—vim, 1<n<Nr, 1<i<k.

We then perform the error estimates for the Adams explicit scheme (4.1) of k-SD (2.1) in
the following theorem.

Theorem 4.1. Suppose Assumption 2.1 holds. Then the following estimate holds for T sufficiently
small:

k
He’éH+Z%HeZnH§QT2, 1<n<Nr.
=

Here Q depends on k,L, T and B but is independent from T,n and Nr.

Proof. Similar to the derivations in Theorem 3.1 we could bound ej; in terms of ef, for

1<i<k as follows:

n—1 k
lexll<QT Y Y llef,l[+Q7% 1<n<Nr. (4.13)
m=1j=1
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Similar to the derivations in Theorem 3.1 we could obtain the recurrence relation for the
error ¢}, for 1 <i<k as follows:

lefll <lle

0
ei,

Cin 1H+QT222|

_]—

]mH +QTZHe]n Al +Q7°.

jn— l”

],mH+QTZ|

+QTHezn 2H+Q7 Z Z|

m=1 ]—

Adding this equation from i =1 to k and denoting

k
=2 llefull
i=1

1§n§NTI

yield an estimate in terms of E},

n—1
Ep<EY _,+QtE;_1+Qt* ) El+QtE; ,+0Q7.
m=1

Adding this equation from n=2 to n, and using

Ny 1
ZZHZ:E”—TZZ 5 E”<TTZE
n=1m= m=1n=m+1

we get
ne—1
E) <E{+Qt Y Ej+Qt°.
n=1

From [41, inequality (4.15)], we have E{ < Q2. Then an application of the discrete Gron-
wall inequality leads to
E?<Qt? 2<n<Nr.

Substituting this estimate back into (4.13) yields an estimate of ||e}|| , and we complete
the proof. O

Remark 4.1. In this paper, the first time step is discretized using a straightforward explicit
Euler scheme. While this approach mathematically preserves the second-order accuracy
of the global error, it is generally not advisable due to the potential for introducing a sig-
nificantly larger constant in the error estimate. A more accurate approach for the initial
step is recommended, as this can minimize the error. Practically, a warm-up numerical
method, such as using a smaller step size or employing a predictor-corrector technique,
is advisable.

Remark 4.2. The paper only studies error estimation for the two-step Adams method.
Error estimation for higher-order Adams methods can be proven similarly but requires
higher smoothness assumptions on the energy function.
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5 Numerical experiments

In this section, we perform numerical experiments to confirm the accuracy of Adams
explicit schemes (3.3) and (4.1), as well as the path convergence of the numerical solutions
to the actual search paths of HiSD. We denote the error by

Err(x):= max |[x(t;)—x,],

1<n<Nr

Err 5i>::2$i)1(\7T"‘5i’””_1" 1<i<k

< 1<n<Nr
Err(v)::122)1(\&“0“”)_0””’
Ere(9):=, max_|[[on]-1],
Err(v;):= max |[vi(t,)—vinll, 1<i<k,
(

to test their convergence rates. Since there is no exact solution for HiSD, the numerical
solution calculated by =272 is used as the reference solution, and for simplicity we set

‘B:’)/:T:]_'

Example 5.1 (Accuracy Test under Minyaev-Quapp Surface). We consider the saddle dy-
namics for the Minyaev-Quapp surface [26]

E(x1,x2) =cos(2x1) +cos(2x;) +0.57cos(2x1 —2x3).

We first compute its index-1 saddle point via the explicit Euler and the Adams explicit
scheme (3.3) with the initial conditions x(0) = (1,1)" and v(0) = (0,1) ". The results of
the numerical experiments are displayed in Tables 1 and 2, respectively, and we can see
that the errors of Err(x) and Err(v) in the explicit Euler scheme have only a first-order
convergence rate, and the error of Err(9) has a second-order convergence rate, whereas
all three errors in the Adams explicit scheme have a convergence rate that is one order
higher than that of the explicit Euler scheme. This agrees with the result of the proved
theorem. Next, we compute its index-2 saddle point via scheme (4.1) with the initial
conditions x(0) = (1,1) ", v1(0) = (0,1) " and v,(0) = (1,0) ". In fact, the index-2 saddle
point at this point is strictly a local maximum point. Numerical results are presented in
Tables 3 and 4, which demonstrate the relevant accuracy of the Adams explicit scheme
(4.1) as proved in Lemma 4.2 and Theorem 4.1. The CPU times of the explicit Euler
scheme and the Adams explicit scheme at different time steps are shown in Table 5, and
it can be seen that the two schemes spend about the same amount of CPU time, but
the error of the Adams explicit scheme is much smaller than the error of explicit Euler
scheme, so there is a greater advantage in using the Adams explicit scheme. The images
of the search paths for the index-1 saddle point and index-2 saddle point are shown in
Fig. 1.
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Table 1: Convergence rates of Euler explicit scheme [41] in Example 5.1.

T Err(x) | Conv. rate | Err(v) | Conv.rate | Err(d) | Conv. rate
1/32 | 2.20E-02 1.73E-02 2.54E-03
1/64 | 1.03E-02 1.09 8.35E-03 1.05 6.34E-04 2.00

1/128 | 5.03E-03 1.04 4.11E-03 1.02 1.59E-04 2.00
1/256 | 2.48E-03 1.01 2.04E-03 1.01 3.97E-05 2.00
1/512 | 1.23E-03 1.01 1.02E-03 1.01 9.92E-06 2.00

Table 2: Convergence rates of Adams explicit scheme (3.3) in Example 5.1.

T Err(x) Conv. rate Err(v) Conv. rate | Err(d) | Conv. rate
1/32 | 9.22E-03 4.58E-03 9.34E-4
1/64 | 2.33E-03 1.98 1.19E-03 1.94 1.13E-4 3.05

1/128 | 5.85E-04 2.00 3.03E-04 1.98 1.41E-5 3.00
1/256 | 1.46E-04 2.00 7.65E-05 1.99 1.77E-6 2.99
1/512 | 3.66E-05 2.00 1.92E-05 1.99 2.22E-7 3.00

Table 3: Convergence rates of Adams explicit scheme (4.1) in Example 5.1.

T Err(x) | Conv. rate | Err(v;) | Conv. rate | Err(vy) | Conv. rate
1/32 | 1.94E-03 2.10E-03 2.10E-03
1/64 | 5.05E-04 1.94 5.40E-04 1.96 5.40E-04 1.96

1/128 | 1.28E-04 1.97 1.37E-04 1.98 1.37E-04 1.98
1/256 | 3.24E-05 1.99 3.45E-05 1.99 3.45E-05 1.99
1/512 | 8.13E-06 1.99 8.66E-06 1.99 8.66E-06 1.99

Table 4: Convergence rates of Adams explicit scheme (4.1) in Example 5.1.

T Err(d1) | Conv. rate | Err(d,) | Conv. rate
1/32 | 3.44E-04 3.44E-04
1/64 | 4.30E-05 3.00 4.30E-05 3.00

1/128 | 5.41E-06 2.99 5.41E-06 2.99
1/256 | 6.78E-07 3.00 6.78E-07 3.00
1/512 | 8.48E-08 3.00 8.48E-08 3.00

Table 5: CPU time (s) of Euler and Adams explicit scheme in Example 5.1.

CPU time(s) | T=2"16 | =218 | 1=2"20 | t=2"22
Euler 0.62 2.19 8.55 33.81
Adams 0.62 221 8.83 34.82
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0
0 0.5 1 1.5 2 . 0 0.5 1 1.5 2 25 3

Figure 1: Numerical solution of x(t) with T=2720 and terminal time T=1. (left) 1-SD, (Right) 2—SD.

Example 5.2 (Convergence of Dynamics under Modified Biggs EXP6 Functions). Con-
sider a six-dimensional Biggs EXP6 function [35]

6
B(x)= Z (x3exp™ M1 —xyexp 2 +xgexp i —yz‘)z,
i—1

where ti= l/ 10/%‘ = exp*ti _5exp*10t;‘ _|_3expf4t,- and

k 6
Bi(x) =B(x)— ) _s;arctan®(x;—x7)+ Y s;arctan®(x;—x;).
i=1 i=k+1

By choosing s = (4,8,16,8,4,2),x* = (1,10,1,5,4,3) " becomes a k-saddle of Bi(x) for k =
2,3,4,5. An initial point x(0) = (0,9,1,5,4,3) achieves convergence to x*. The numerical
results for the Adams explicit scheme (4.1) for k=2,3,4,5 are displayed in Table 6, where
we can see that the Adams explicit scheme has second-order convergence speeds with
respect to Err(x) and Err(v;), third-order convergence speeds with respect to Err(7), and
numerical results with respect to Err(v;) and Err(;) for j=2,3,4 are omitted here due to
similarities. The maximum allowable time steps for the explicit Euler method and the
Adams explicit method are shown in Table 7. It can be observed that the maximum al-
lowable time step for the explicit Euler method is approximately twice that of the Adams
explicit method. The image of the error ||x —x* ||, with respect to the number of iteration
steps n about k =4 for different time steps is shown in Fig. 2. The figure shows that the
coarser the step size, the faster the convergence to the saddle point, so we would prefer to
use a coarse step size, but the first-order scheme at a coarse step size, because of the low
precision, will result in an inaccurate path that may not converge to the specified saddle
point. The second-order scheme solves this problem, and is still accurate at coarse step
sizes.
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Table 6: Convergence rates of Adams explicit scheme (4.1) in Example 5.2.

k T Err(x) | Conv. rate | Err(v;) | Conv. rate | Err(d;) | Conv. rate
1/64 | 1.05E-02 1.36E-03 4.67E-05
1/128 | 2.93E-03 1.84 3.32E-04 2.03 5.55E-06 3.07
2| 1/256 | 7.78E-04 1.92 8.29E-05 2.00 6.83E-07 3.02
1/512 | 2.00E-04 1.96 2.08E-05 2.00 8.48E-08 3.01
1/1024 | 5.09E-05 1.98 5.20E-06 2.00 1.06E-08 3.01
1/64 | 6.13E-03 8.83E-04 3.79E-06
1/128 | 1.61E-03 1.93 2.48E-04 1.83 3.23E-07 3.55
3| 1/256 | 4.13E-04 1.96 6.62E-05 191 3.99E-08 3.02
1/512 | 1.05E-04 1.98 1.71E-05 1.95 4.95E-09 3.01
1/1024 | 2.63E-05 1.99 4.35E-06 1.98 6.17E-10 3.01
1/64 | 6.13E-03 9.75E-04 4.28E-06
1/128 | 1.61E-03 1.93 2.73E-04 1.84 4.31E-07 3.31
4| 1/256 | 4.13E-04 1.96 7.25E-05 1.91 5.30E-08 3.02
1/512 | 1.05E-04 1.98 1.87E-05 1.95 6.58E-09 3.01
1/1024 | 2.63E-05 1.99 4.76E-06 1.98 8.19E-10 3.00
1/64 | 6.01E-03 9.73E-04 4.00E-06
1/128 | 1.58E-03 1.93 2.72E-04 1.84 3.90E-07 3.36
5| 1/256 | 4.05E-04 1.96 7.24E-05 1.91 4.76E-08 3.04
1/512 | 1.03E-04 1.98 1.87E-05 1.95 5.90E-09 3.01
1/1024 | 2.57E-05 1.99 4.73E-06 1.98 7.34E-10 3.01

Table 7: Maximum step size of Euler and Adams explicit scheme in Example 2.

Maximum step size | k=2 | k=3 | k=4 | k=5
Euler 0.042 | 0.059 | 0.065 | 0.066
Adams 0.021 | 0.029 | 0.032 | 0.033
_Tzz»x
—_—r=
1E1} =2 4
~ 1E0 1
= IE-1} 1
5 1E2} 1
I 1E3} 1
B IE4} 1
T IESS} ]
1E-6 | i
1E-7 1
1E-8 f 1
1E-9 | 1
1E-10 : . *
0 1000 2000 3000 4000

n

Figure 2: Plots of ||x—x*||, with respect to the iteration number for different time step 7.

23
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6 Conclusions

In this paper, we first constructed the two-step Adams explicit scheme of HiSD. Then
we develop new techniques to overcome the difficulties posed by strong nonlinearities
and orthogonalisation procedures, proving that the Adams explicit scheme errors have
second-order accuracy with respect to the time step. We rigorously demonstrate that the
use of the explicit Euler scheme in the first step does not affect the accuracy of the later
steps. The developed methods and results provide theoretical support for the accuracy
of numerical calculations.

In contrast to the HiSD for gradient systems, the generalized HiSD [34] is used to
compute any-index saddle points of the dynamical systems of non-gradient type, where
the Hessian matrix in HiSD is replaced by a symmetrization of the Jacobian of the force.
Similar to previous derivations, we could analyse the Adams explicit scheme of the gen-
eralized HiSD. For systems constrained by equalities, the constrained HiSD is developed
in [31] to accommodate the constraints by employing the Riemannian gradients and Hes-
sians. As the numerical treatments of Riemannian gradients and Hessians bring addi-
tional challenges, how to extend the proposed method to the constrained HiSD remains
further investigations.

Compared to the explicit Euler method, the maximum step size of the Adams explicit
method is reduced by about half. However, the corresponding computational accuracy is
improved from first-order to second-order, which is beneficial for some high-dimensional
problems [22]. High-order explicit schemes also include Runge-Kutta schemes. We know
that the stability region of Runge-Kutta schemes expands with the increment of the order.
The topic of constructing and analyzing higher-order explicit Runge-Kutta methods for
higher-order saddle point dynamics will be found in [24].
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