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ABSTRACT
In this work, we study the nucleation of quasicrystals from liquid or periodic crystals by developing an efficient order–order phase transi-
tion algorithm, namely, the nullspace-preserving saddle search method. In particular, we focus on nucleation and phase transitions of the
decagonal quasicrystal (DQC) based on the Lifshitz–Petrich model. We present the nucleation path of DQC from the liquid and demonstrate
one- and two-stage transition paths between DQC and periodic crystals. We provide a perspective of the group–subgroup phase transition
and nucleation rates to understand the nucleation and phase transition mechanisms involving DQC. These results reveal the one-step and
multi-step modes of symmetry breaking or recovery in the phase transition from DQC, where the multi-step modes are more probable.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0232334

I. INTRODUCTION
Quasicrystals are space-filling ordered structures possessing

rotational symmetry but without translational invariance. They have
been a topic of significant interest in the fields of materials science
and condensed matter physics since their first discovery.1 Numerous
quasicrystals with 5-, 8-, 10-, 12-, and 18-fold rotational symmetries
have been reported in metallic alloys2 and soft matter.3–5 More-
over, quasicrystals, especially decagonal quasicrystals (DQC), have
been studied from various perspectives, including formation,6–8 geo-
metric features,9,10 and thermodynamic stability.11–14 However, the
nucleation mechanism of quasicrystals from the liquid and periodic
crystals is a topic that requires close attention.15

Over the past decades, much attention has been devoted to
studying the nucleation and phase transition of quasicrystals since
the first discovery, but little progress has been made. Experimen-
tally, only some snapshots of nucleation phenomena have been

observed because the nucleation events are rare and occur at ultra-
high speeds.16–20 In particular, the critical nuclei of quasicrystals
usually possess very high surface energies and are extremely unsta-
ble, existing for very short time. It is difficult to capture the critical
nuclei and the kinetic process of quasicrystal nucleation due to
the lack of precise characterization techniques. Theoretical studies
could provide an effective way to study nucleation and phase tran-
sition. Several mainstream theoretical frameworks include atomistic
simulations,21 density functional theories,22 and Landau theories.23

These theories have been successfully applied to study nucleation
and phase transition of the liquid, periodic crystals, and liquid
crystals.24–27 However, in the case of quasicrystals, previous studies
have focused on studying the growth of quasicrystals by imposing
initial embryos.28–32 The spontaneous nucleation of quasicrystals has
rarely been reported and remains a challenge in simulation, limited
by the computational methods to locate critical nuclei.
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Theoretically, the key to studying nucleation is to find the
index-1 saddle points (transition states and critical nuclei) on the
free energy landscape. Ordered phases, such as quasicrystals and
periodic crystals, usually correspond to degenerate local minima
whose Hessian has a nullspace. When searching for a transition
state from a degenerate local minimum, the presence of nullspaces
makes escaping from the basin very difficult. Furthermore, since
quasicrystals and crystals are incommensurate, there are no obvi-
ous epitaxial relations between them. How to represent quasicrystals
and crystals in the same computational framework also increases the
difficulties in theory. Thus, designing suitable methods for degen-
erate saddle search problems has long been an important issue. In
recent years, two effective saddle search methods for degenerate sad-
dle search problems have been proposed, including the high-index
saddle dynamics method33,34 and the nullspace-preserving saddle
search (NPSS) method.35 The former escapes the basin by climb-
ing along an ascent space that includes the nullspace and an ascent
direction, while the latter climbs upward along an ascent direction
orthogonal to the nullspace of the initial states. These studies have
offered efficient methods to study the nucleations and phase transi-
tions of the quasicrystals. Based on these two methods, the transition
paths of the dodecagonal quasicrystal have been revealed.34,35 How-
ever, for the DQC, its nucleation and transition mechanisms are still
unclear. For example, what structures can undergo phase transitions
to or from DQC? What intermediate states are involved? How does
the symmetry transform?

In this work, we focus on the study of nucleation and phase
transitions involving DQC based on the Lifshitz–Petrich (LP) model.
In particular, we identify three new ordered phases based on the
symmetry of DQC, including the fusiform crystal (FC), pseudo-
sixfold crystal (PC6), and lamellar quasicrystal (LQ). Using the NPSS
method, we obtain transition states and minimum energy paths
(MEPs) representing the most probable transition paths between
different stable phases. We show the nucleation path of DQC from
the liquid and find two transient structures,36,37 HEX-like and LQ-
like, which benefit the formation of nuclei. We also demonstrate

one- and two-stage transition paths between DQC and crystals.
We analyze these phase transitions with the group–subgroup phase
transition theory38 and nucleation rates. These results reveal that
the phase transition from DQC could follow one-step and multi-
step modes of symmetry breaking or recovery, where the multi-step
modes of breaking or recovery are easier to occur.

II. THEORETICAL FRAMEWORK
A. The Lifshitz–Petrich model

The LP model provides a useful framework for character-
izing the phases and phase transitions of quasiperiodic systems,
including the bifrequency excited Faraday wave12 and soft-matter
quasicrystals.39,40 The LP model introduces a scalar order parameter
ψ(r) to represent the density profile in a domain Ω. The LP free
energy is

ℱLP(ψ) = ∫
Ω
{

1
2
[(12
+ Δ)(q2

+ Δ)ψ]2 −
τ
2
ψ2
−
γ
3
ψ3
+

1
4
ψ4
} dr,

(1)
where τ is a temperature-like controlling parameter and γ charac-
terizes the intensity of three-body interaction.40,41 Here, 1 and q are
two characteristic length scales, which are needed to stabilize the
quasicrystals. Furthermore, we impose the mean zero condition of
order parameter on the LP systems to ensure the mass conserva-
tion ∫Ω ψ(r)dr = 0, which comes from the definition of the order
parameter, i.e., the deviation from average density.

In this work, we study the nucleation and phase transition
of two-dimensional DQC based on the LP model. To stabilize the
DQC, the second length scale q is selected as 2 cos(π/5) as dictated
by the tenfold symmetry.40 Figures 1(a)–1(d) show four ordered
structures associated with tenfold symmetry in physical and recip-
rocal spaces, including DQC, PC6, FC, and LQ phases. FC and PC6
are new periodic crystals obtained by locating a set of major diffrac-
tion spectra forming a parallelogram with the central point in the
reciprocal space. Their reciprocal lattice vectors (RLVs) are linear

FIG. 1. Ordered structures (a)–(f) and phase diagram (g) of the LP model with q = 2 cos(π/5). (a) DQC; (b) LQ; (c) FC; (d) PC6; (e) LAM; and (f) HEX. Panels (b)–(d) are
the new structures associated with tenfold symmetry, where the hollow points represent the corresponding positions of major diffraction spectra of DQC, and the solid points
are the major diffraction spectra of new structures. PC6 is metastable in the phase diagram (g).
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combinations of basic vectors {e1, e2} and {e3, e4}with integer coef-
ficients, respectively, as shown in Figs. 1(c) and 1(d). LQ is a new
one-dimensional quasicrystal identified by spanning the basic vec-
tors of PC6 and FC, where {e2, e3, e4} is the linearly independent
basis over the rational number field.

We construct the phase diagram in the τ − γ plane using an
open software AGPD,42 which can quickly search for stable states
using efficient numerical methods, such as the adaptive acceler-
ated Bregman proximal gradient methods.43,44 The candidate phases
that we considered include three common crystal, lamella (LAM),
square, and hexagonal (HEX) phases, and four structures related
to tenfold rotational symmetry: PC6, FC, LQ, and DQC. We give
the initial configurations of these ordered structures in the recip-
rocal space and obtain the converged states when ∥∇ℱ∥∞ < 10−11,
where ∥(x1, x2, . . . , xn)∥∞ = max(∣x1∣, ∣x2∣, . . . , ∣xn∣). By comparing
their energy, we call the state with the lowest energy as the stable
or equilibrium state. Figures 1(a)–1(f) show five stable states in the
phase diagram and one metastable state PC6 involved in phase tran-
sitions. Figure 1(g) shows the phase diagram of the LP model with
q = 2 cos(π/5).

B. Incommensurate epitaxies
One bottleneck in studying phase transitions is that quasicrys-

tals and crystals are incommensurate, i.e., their lattice mismatch.45

In the case of the two-dimensional DQC, whose major RLVs are
shown in Fig. 2, it is impossible to represent all its RLVs linearly
using two noncollinear bases over the rational number field.

Methods to solve the lattice mismatch problem between crystals
and quasicrystals include the projection method46 and the periodic
approximation method.47–50 The former simulates the quasiperiodic
structure in a higher-dimensional periodic system, while the latter
approximates the quasiperiodic structure with a periodic approxi-
mant. In this paper, we use the periodic approximation method to
study phase transitions about DQC. In the computation, some RLVs
are linear combinations of primitive RLVs with irrational coeffi-
cients, which are difficult for the current computers to store. For
the irrational number κ, we can approximate it with the rational

FIG. 2. RLVs of two-dimensional DQC, where k j = [cos(jπ/5), sin(jπ/5)] for
j = 1, 2, . . ., 10, and k j = [q cos(jπ/5), q sin(jπ/5)] for j = 11, 12, . . ., 20.

TABLE I. Coefficients of RLVs for DQC required to be approximated simultaneously.

∣k∣ = 1 1, cos(π/5), sin(π/5), sin(2π/5), cos(2π/5)

∣k∣ = q q, q cos(π/5), q sin(π/5), q sin(2π/5), q cos(2π/5)

FIG. 3. DAE of different computational domain sizes [0, 2πL]2 for studying the
phase transitions involving two-dimensional DQC.

number [Lκ], where [a] rounds a to the nearest integer. Apply-
ing Diophantine approximation theory, the proper value L satisfy-
ing the required accuracy can be determined by the Diophantine
approximation error (DAE).51 Then, the quasiperiodic structure
can be approximated by the periodic structure in a finite domain
with the period [0, 2πL)2. For two primitive RLVs, e∗1 = (1, 0) and
e∗2 = (0, 1), the coefficients of RLVs about DQC required to be
approximated simultaneously are presented in Table I.

Figure 3 shows the DAEs as the integer L increases.34,46,51 In this
work, we select L = 126 (DAE = 0.167) and L = 204 (DAE = 0.092)
to obtain the proper computational domains, which can encompass
the critical nucleus in the phase transition.

C. Nullspace-preserving saddle search method
Quasicrystals can be embedded into high-dimensional periodic

systems and can thus be viewed as having translational invari-
ance in superspace. For the energy functional (1), critical points
(local minima/maxima, saddle points) characterizing DQC and its
symmetry-related ordered structures are usually degenerate.34,44 For
a degenerate local minima ψ0, its Hessian H(ψ0) = ∇

2ℱ(ψ0) usually
has a nullspace. The dimension k of the nullspace usually indicates
that the corresponding ordered structure is inhomogeneous periodic
in the k-dimensional space.35,44 The presence of the nullspace may
prevent escape from the attraction basin of ψ0 because the eigen-
vectors corresponding to zero eigenvalues would be mistaken as the
ascent direction.

The NPSS method is an efficient saddle search method for
ordered phase transitions, which can escape from the basin quickly
by exploiting the properties of nullspaces and symmetry-breaking.35

In particular, at a degenerate state ψ in the attraction basin of ψ0,
keeping the ascent direction v orthogonal to the nullspace 𝒲 k

(ψ)
can eliminate the effects of nullspace. To avoid computing the
nullspace at each iteration, the NPSS method uses the nullspace
𝒲 k
(ψ̄) of the initial state ψ̄ = ψ0 to replace that of ψ. Then, the NPSS

keeps the ascent direction v orthogonal to the nullspace 𝒲 k
(ψ̄).
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When the difference between nullspaces of the current and initial
states becomes distinct, we update ψ̄ = ψ and continue to climb as
above. These operations ensure the effectiveness of the ascent direc-
tion and reduce the costs of updating the nullspaces. Therefore, the
NPSS method updates the state ψ by

β−1ψ̇ = −𝒫𝒱 T(ψ) + (I −𝒫𝒱 )T(ψ), (2)

where T(ψ) = −∇ℱ(ψ) is the negative gradient and β represents the
positive relaxation constant. 𝒫𝒱 denotes the orthogonal projection
operator onto the subspace 𝒱 . Furthermore, the ascent direction v
can be updated by

ξ−1v̇ = −H(ψ)v + ⟨v, H(ψ)v⟩v + 2
lk
∑
i=1
⟨v̄k

i , H(ψ)v⟩v̄k
i , (3)

where ξ > 0 are the relaxation parameters, v satisfies the unitization
constraint, and {v̄k

i }
lk
i=1 are basic vectors of 𝒲 k

(ψ̄).
As ψ climbs upward on the potential energy surface, updating

v is no longer affected by the nullspace after the smallest eigenvalue
of H(ψ) becomes negative. Thus, we update v by

ξ−1v̇ = −H(ψ)v + ⟨v, H(ψ)v⟩v, (4)

This NPSS method has shown its superiority in studying the phase
transition of crystals and dodecagonal quasicrystals with an econom-
ical computational. Numerical details can be found in a previous
work.35

III. RESULTS AND DISCUSSION
A. Nucleation of DQC from liquid

In this subsection, we investigate the nucleation of DQC from
the liquid state. We select an appropriate computational domain
Ω = [0, 2πL]2 with L = 126 and spatial discretization points
N = 1024 in each dimension. For τ = −0.01 and γ = 0.5 in the LP
model (1), DQC is the stable state with a free energy density of
f = ℱ/∣Ω∣ = −8.96 × 10−5, while the liquid is metastable with f = 0.
As shown in Fig. 4(a), we obtain the critical nucleus of DQC with
f = 2.38 × 10−8 by using the NPSS method, which represents the
transition state on the MEP.

On the MEP, the liquid is an isotropic high-symmetry phase
whose all symmetry operations belong to the extended Euclidean
space group E(R2

).38 DQC has no translational invariance but a
tenfold rotation symmetry and two mutually exclusive mirror sym-
metries. Thus, DQC is a low-symmetry phase with space group
p10 mm in comparison with the liquid.52 Obviously, p10 mm
is a subgroup of E(R2

), and a group–subgroup phase transition
from the high-symmetry phase to the low-symmetry phase occurs
by symmetry breaking. From the diffraction patterns shown in
Fig. 4(b), the diffraction spectra cluster of the critical nucleus starts
to show an incomplete tenfold symmetry, indicating that the sym-
metry of the original structure is broken and a new symmetric
structure is forming. Due to the presence of energy barriers, the
appearance and initial growth of the nucleus is thermodynami-
cally unfavorable. When the size of the DQC nucleus is smaller
than that of the critical nucleus, the nucleus tends to disappear.
After the DQC nucleus attains a critical size, its growth becomes

FIG. 4. (a). Transition path from liquid to DQC computed by using the NPSS
method in the LP model with τ = −0.01 and γ = 0.5, where L = 126 and
N = 1024. All the white scale bars present 10π. (b). Diffraction spectra of sta-
tionary points on the transition path from liquid to DQC as shown in panel (a).
The major diffraction spectra are labeled in salmon color, and the minor diffraction
spectra are labeled in blue.

thermodynamically favorable and the nucleus will grow irreversibly,
thus completely transforming into the DQC.

Furthermore, it is interesting that two transient structures,
HEX-like and LQ-like, are found in the nucleation process, as shown
in Fig. 5(a). First, a localized HEX-like structure emerges in the
amorphous phase. As the DQC nucleus becomes gradually visible,
the LQ-like structure appears as a bridging phase at the bound-
ary between the DQC and amorphous or HEX-like phases. Once
the critical nucleus forms, both the HEX-like and LQ-like transient
structures disappear. During the growth process, an LQ-like phase
also exists in the marginal regions of the DQC nucleus, as shown in
Fig. 5(b). These transient structures are unstable and vanish finally,
serving to construct the disorder-order connections.31 In particular,
they might be favorable for the formation of critical nuclei during
the nucleation process.

B. Phase transition from DQC to FC
We study how FC emerges from DQC. At τ = 0.018 and γ = 0.4

in the LP model, we obtain several paths for the phase transition

J. Chem. Phys. 161, 164503 (2024); doi: 10.1063/5.0232334 161, 164503-4
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FIG. 5. Snapshots on nucleation (a) and growth (b) processes of transition path from liquid to DQC shown in Fig. 4. The white solid circles in (a2) and (a3) show the HEX-like
transient structures, and the white dash circles in (a3) present the LQ-like transient structures. In panels (b1)–(b3), the LQ-like transient structure also exists in the marginal
regions of the DQC nucleus. All the white scale bars present 10π. All the figures in panels (a) and (b) share a common colour bar, respectively.

from DQC to FC through the NPSS method. As shown in Fig. 6, FC
with f = −2.85 × 10−4 is more stable than the metastable state DQC
with f = −2.48 × 10−4. The space group of FC is p2, which is a sub-
group of p10 mm corresponding to DQC.53 We observe a one-stage
transition path from DQC to FC through Saddle-1 with an energy
barrier Δ f = 2 × 10−7. This transition follows a one-step symmetry
breaking mode (p10 mm→ p2) by breaking both rotational and mir-
ror symmetries. We then identify a metastable intermediate state LQ
with the space group p2 mm between DQC and FC. We discover a
two-stage transition path DQC → LQ → FC via the Saddle-2 and
Saddle-4. Nucleation at the first stage transition from DQC to LQ
shows an ellipsoidal critical nucleus of LQ with Δ f = 1 × 10−7. From
Fig. 6(b), the group–subgroup phase transition from DQC reserves
mirror symmetry and breaks tenfold rotational symmetry. Conse-
quently, LQ has a twofold rotational symmetry and two mutually
perpendicular mirror symmetries along with horizontal and vertical
axes. The second stage transition from LQ to FC involves the forma-
tion of another ellipsoidal critical nucleus of FC with Δ f = 3 × 10−8.
Since two mirror symmetries along the horizontal and vertical axes
are broken, the space group eventually becomes p2. Compared to
the one-stage transition, the two-stage transition with a multi-step
symmetry-breaking mode (p10 mm→ p2 mm→ p2) needs to cross
a lower energy barrier. It also has a higher probability of occurrence
due to fewer symmetry variations at each step.

We also observe another low-symmetry phase PC6 with the
space group p2. PC6 also has twofold rotational symmetry, but its
lattice size with the edge length ratio 1 : 2 cos(π/5) is different from
that of FC with the ratio 1 : 1. Then, we discover another two-stage

phase transition path DQC → LQ → PC6, which also satisfies the
multi-step symmetry-breaking mode (p10 mm→ p2 mm→ p2). By
observing the diffraction spectra shown in Fig. 6(b), we can find that
FC and PC6 are transformed from LQ via two different symmetry-
breaking modes, respectively. In particular, these two low-symmetry
phases PC6 and FC are also connected by a special crystal-crystal
phase transition. First, the symmetries are recovered to incomplete
p2 mm, as shown by the diffraction spectrum clusters at Saddle-5 in
Fig. 6(b). Then, the recovered symmetries are broken to form FC. In
this process, a higher energy barrier Δ f = 4 × 10−6 exists compared
to other paths only with symmetry breaking. Possible causes include
a high change in overall symmetry, as well as the simultaneous
occurrence of symmetry breaking and recovery.

Furthermore, we estimate the nucleation rate J by the
formula (5),26,54–57

J = J0 exp (−αΔ fLP), (5)

where Δ fLP represents the dimensionless energy barrier in the LP
model and J0 > 0 is the kinetic prefactor. In addition, α is a dimen-
sionless factor dependent on the concrete problem. For example,
consider the block copolymer systems;58 the difference of free energy
per chain among different ordered structures is 10−3

∼ 10−2kBT
through the self-consistent field theory (SCFT),59 where kB is the
Boltzmann constant and T is the absolute temperature. If we use the
LP model to study the self-assembly of block copolymers, α can be
determined by comparing the energies or energy difference among
different ordered structures obtained from the LP model and SCFT
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FIG. 6. (a). Transition path about DQC computed by using the NPSS method in the LP model with τ = 0.018 and γ = 0.4, where L = 126 and N = 1024. Saddle-i (i = 1,
2, . . ., 5) are transition states on MEPs. All the white scale bars present 10π, and all the figures share a common colour bar. (b) Diffraction spectra of stationary points on the
transition path from DQC to FC as shown in panel (a) The blue and red boxes mark the diffraction spectra changed in symmetry breaking and recovery, respectively.

model. Here, in the nucleation process, the nucleation rate is only
dominated by the energy barrier Δ f . From (5), it is easy to find that
the nucleation rates from DQC to Saddle-2 and LQ to Saddle-3 are
higher. This also indicates that the transition with a multi-step sym-
metry breaking is more likely than the transition with a one-step
symmetry breaking.

C. Phase transition from FC to DQC
In this subsection, we explore the multi-step emergence of

DQC from FC. By selecting τ = −1 × 10−4 and γ = 0.32 in the
LP model, we observe that FC becomes a metastable state with
f = −2.63 × 10−5 and DQC reaches a stable state with f = −2.99
× 10−5. We discover a two-stage transition path FC → LQ → DQC

J. Chem. Phys. 161, 164503 (2024); doi: 10.1063/5.0232334 161, 164503-6
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FIG. 7. (a). Transition path from FC to DQC computed by using the NPSS method in the LP model with τ = −1 × 10−4 and γ = 0.32, where L = 204 and N = 2048. Saddle-i
(i = 1, 2) are transition states on these transition paths. All the white scale bars present 10π, and all the figures share a common colour bar. (b). Diffraction spectra of
stationary points on transition path from FC to DQC as shown in panel (a). The marked boxes have the same meaning as in Fig. 6.

via a metastable intermediate state, as shown in Fig. 7. Here, FC is
a low-symmetry phase whose space group is a subgroup of that of
DQC. The group–subgroup phase transition occurs through multi-
step symmetry recovery. In the first stage, the mirror symmetries
recover from p2 to p2 mm via an ellipsoidal critical nucleus of LQ,
which is quasiperiodic in the major axis direction. In the second
stage, the space group becomes p10 mm with rotational symme-
try recovery, and a quasiperiodic order is formed in the remaining
periodic direction. As shown in Fig. 7(b), comparing the recovered
diffraction spectra in Saddle-1 and Saddle-2, a fact is revealed that
a larger symmetry variation corresponds to a higher energy barrier.
However, the one-stage transition from FC to DQC is not observed,
perhaps because the two-stage transition path with multi-step sym-
metry recovery is the more likely path. Another possible reason is
that the attraction basins of FC and DQC on the potential energy
surface are not adjacent. Alternatively, there may be an LQ attrac-
tion basin between them. Once the system escapes the FC attraction
basin, it will easily fall into the LQ attraction basin.

IV. CONCLUSIONS
In this work, we investigate the nucleation and transition path-

way of DQCs by using the recently developed nullspace-preserving
saddle search method,35 which greatly improves the calculation
efficiency of studying ordered phase transitions. We obtain the
nucleation path of DQC from the liquid and the one- and two-
stage transition paths between DQC and crystals. In the path from
DQC to the liquid, we find two transient structures, HEX-like and
LQ-like, which contribute to the construction of the disorder-order
links. Furthermore, we provide a new perspective on the group
theory to understand the phase transition mechanism involving qua-
sicrystals and discuss the nucleation rate. The results reveal that the
phase transitions from DQC could follow one-step and multi-step
symmetry-breaking modes to two distinct low-symmetry phases, FC
and PC6. Interestingly, these two low-symmetry phases can also
be linked by undergoing transitions with simultaneous symmetry
recovery and breaking. Then, a larger symmetry variation neces-
sitates overcoming higher energy barriers. Meanwhile, the phase
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transitions with the multi-step mode of symmetry breaking or recov-
ery are more likely to occur. Overall, our work offers a novel and
comprehensive insight into the transition pathways and mechanisms
of DQC.
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