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Abstract
We propose a model-free shrinking-dimer saddle dynamics for finding any-index 
saddle points and constructing the solution landscapes, in which the force in the 
standard saddle dynamics is replaced by a surrogate model trained by the Gassian 
process learning. By this means, the exact form of the model is no longer necessary 
such that the saddle dynamics could be implemented based only on some observa-
tions of the force. This data-driven approach not only avoids the modeling proce-
dure that could be difficult or inaccurate, but also significantly reduces the number 
of queries of the force that may be expensive or time-consuming. We accordingly 
develop a sequential learning saddle dynamics algorithm to perform a sequence of 
local saddle dynamics, in which the queries of the training samples and the update 
or retraining of the surrogate force are performed online and around the latent trajec-
tory in order to improve the accuracy of the surrogate model and the value of each 
sampling. Numerical experiments are performed to demonstrate the effectiveness 
and efficiency of the proposed algorithm.
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1  Introduction

Finding saddle points on complex energy landscapes or dynamical systems provides 
substantial physical and chemical properties and is thus an important problem in 
various fields such as nucleation and phase transformations in solid and soft matter 
[49, 50] and transition rates in chemical reactions and computational biology [31, 
40, 42]. The saddle points could be classified by the Morse index characterized by 
the maximal dimension of a subspace on which the Hessian H(x) is negative definite 
[29]. In practice, the index-1 saddle point represents the transition state connecting 
two local minima according to the transition state theory [28, 52]. The index-2 sad-
dle points are particularly useful for providing trajectory information of chemical 
reactions in chemical systems [19]. The excited states in quantum systems can also 
be characterized as saddle point configurations [1].

There exist several algorithms of finding saddle points with low indexes [12, 14, 
15, 25, 41]. In general, the computation of high-index (index>1) saddle point is 
more difficult as it has multiple unstable eigen-directions and receives less attention, 
though the number of high-index saddle points are much larger than the number of 
local minima and index-1 saddle points on the energy landscape [3, 22]. High-index 
shrinking-dimer saddle dynamics proposed in [44], which involves the force calcula-
tion (i.e. the negative gradient of the energy function), provides an effective means 
for finding any-index saddle points. This method is then combined with the down-
ward or upward search algorithms [43, 45] to construct the solution landscapes of 
both energy systems and dynamical (non-gradient) systems [17, 18, 27, 36], which 
also provides a systemic approach to find the largest possible number of saddle 
points.

However, it is possible that the exact form of the force in high-index saddle 
dynamics is not given a priori in some cases such that we need to either investigate 
the modeling of the underlying processes or perform experiments in order to obtain 
the inquired values of the force in saddle dynamics. In practice, modeling complex 
problems may be difficult or inaccurate, which often restricts the computation of the 
saddle points and its applications.

To resolve this issue, we employ a data-driven approach to propose a model-free 
saddle dynamics, in which the force in the original saddle dynamics is replaced by 
a surrogate model trained by the Gassian process learning. In the past few decades, 
the Gaussian process has been widely employed in extensive applications for con-
structing the surrogate models from the training data [33, 34]. In particular, there 
exist some recent works on combining the Gaussian process with searching algo-
rithms of index-1 saddle points [5, 16, 21]. Here we adopt this idea in the computa-
tion of high-index saddle points. By this means, the exact form of the model is no 
longer necessary such that the saddle dynamics could be implemented based only on 
some observations of the force. Furthermore, the number of the force calculations 
during training is generally smaller than that in performing the saddle dynamics.
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Based on the proposed model-free saddle dynamics and its local nature, we adopt 
the sequential learning framework [32] to develop a sequential learning saddle dynam-
ics algorithm in which the queries of the training samples and the update or retraining 
of the surrogate force are performed online and around the latent trajectory. In this way, 
the accuracy of the surrogate model and the value of each sampling could be improved 
such that the queries of the force could be further reduced. The proposed method 
could be further combined with the downward search algorithm for construction of the 
model-free solution landscape [43, 45], which provides a pathway map consisting of 
both saddle points and minima and avoids the sampling on energy landscape of the 
model system. Numerical experiments are performed to demonstrate the effective-
ness and efficiency of the proposed algorithm in comparison with the standard saddle 
dynamics.

The rest of the paper is organized as follows: In Sect. 2 we propose a model-free 
shrinking-dimer saddle dynamics by incorporating the Gaussian process learning 
with the original saddle dynamics. In Sect. 3 we present a sequential learning saddle 
dynamics algorithm to compute high-index saddle points and construct the solution 
landscapes. Numerical experiments are performed in Sect. 4 and we draw concluding 
remarks in the last section.

2 � Model‑free saddle dynamics

We present a model-free shrinking-dimer saddle dynamics for finding high-index sad-
dle points of complex energy functions or dynamical systems, in which the exact form 
of the force may not be given a priori and is recovered from its observations at dis-
crete locations. By this means, the saddle dynamics could be implemented based on 
these observations from, e.g., experiments or simulations, even without knowing the 
formulations of the energy functions or dynamics. This data-driven approach not only 
avoids the modeling procedure that could be difficult or inaccurate, but could signifi-
cantly reduce the number of queries of the true force that may be expensive or time-
consuming in practical problems.

2.1 � Saddle dynamics and its implementation

We begin by introducing the high-index saddle dynamics proposed in [44] to find an 
index-k ( 1 ≤ k ∈ ℕ ) saddle point of an energy function E(x)

Here the force F ∶ ℝ
N
→ ℝ

N is generated from the energy E(x) by F(x) = −∇E(x) , 
H(x) ∶= −∇2E(x) corresponds to the Hessian of E(x), � , 𝛾 > 0 are relaxation 

(1)
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⊤
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⊤
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parameters, x represents the state variable and direction variables {vi}ki=1 form a 
basis for the unstable subspace of the Hessian at x.

More generally, (1) could be applied to find the saddle points of the dynamical sys-
tems ẋ = F(x) which could be non-gradient, i.e., F(x) is not a negative gradient of some 
energy function E(x). In this case, the Hessian in (1) should be replaced by the Jacobian 
of F(x) or its symmetrization [45]. Without loss of generality, we focus on the saddle 
dynamics of gradient systems in this paper.

As it is often expensive to calculate and store the Hessian, the dimer method [20, 
47, 51] is applied to approximate the multiplication of the Hessian and the vector v as 
follows

where 2l refers to the dimer length for some l > 0 . Invoking this dimer approxima-
tion in (1) leads to the shrinking-dimer saddle dynamics [44]

Here an auxiliary function G(l) defined on [0,∞) with l = 0 being its global mini-
mum is introduced to control the dimer length. Following [47], we take G(l) = l2∕2 
to get an exponential decay of the dimer length, while other choices such as G(l) = l3 
lead to a more gradual polynomial decay [48].

It is proved in [45] that a linearly stable stationary point x∗ of the saddle dynamics 
(3) is an index-k saddle point satisfying F(x∗) = 0 . For practical implementation, we 
follow [44, 45] to get the scheme of the numerical solutions {xn} , {vi,n}ki=1 and {ln} for 
n ≥ 1

equipped with the prescribed initial values x0 , l0 and (orthonormal) {vi,0}ki=1 . Here 
ln−1 = l(�(n − 1)) for n ≥ 1 are determined by solving the equation of l in (3) analyti-
cally under suitable choice of G, and the Gram-Schmidt orthonormalization proce-
dure is applied in the third equation of (4) to ensure the computational accuracy [44]. 
The scheme (4) has been extensively applied to compute the saddle points and to 
construct the solution landscapes [17, 18, 43]. However, implementing this scheme 

(2)H(x)v ≈ Ĥ(x, v, l) ∶=
F(x + lv) − F(x − lv)

2l

(3)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

dx

dt
= 𝛽

�
I − 2

k�
j=1

vjv
⊤
j

�
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dt
= 𝛾

�
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⊤
i
− 2
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j=1

vjv
⊤
j

�
Ĥ(x, vi, l), 1 ≤ i ≤ k,

dl

dt
= −

dG

dl
.

(4)

⎧⎪⎪⎨⎪⎪⎩

xn = xn−1 + 𝜏𝛽
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I − 2
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ṽi,n = vi,n−1 + 𝜏𝛾Ĥ(xn−1, vi,n−1, ln−1), 1 ≤ i ≤ k,
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k
i=1

= GramSchmidt({ṽi,n}
k
i=1

),
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requires the values of F at xn−1 and xn−1 ± lvi,n−1 for 1 ≤ i ≤ k at each time step tn , 
which may be difficult to evaluate if the model (e.g. the form of F) is unknown or 
the query of F is expensive or time-consuming.

2.2 � Surrogate force via Gaussian process

To accommodate the concerns mentioned above, we intend to replace the true force 
F(x) = [F1(x),⋯ ,FN(x)]

⊤ in (4) by a surrogate force F(x) = [F1(x),⋯ ,FN(x)]
⊤ , 

which is learned from the observations of F at training locations via the multi-output 
Gaussian process, see e.g. [24]. Suppose F(x) satisfies the following Gaussian process

where the multi-output covariance K(x, x�) ∈ ℝ
N×N is defined as

with the element kp,q ( 1 ≤ p, q ≤ N ) corresponding to the covariance between Fp(x) 
and Fq(x

�) . Denote the hyper-parameters in kp,q ( 1 ≤ p, q ≤ N ) as �.
Given the m observations Y ∶= {y1,⋯ , ym} of F at the training data set 

X ∶= {xt
1
,⋯ , xt

m
} where yj = [y

j

1
,⋯ , y

j

N
]⊤ for 1 ≤ j ≤ m and the observation of the ith 

output yi ( 1 ≤ i ≤ N ) is assumed to satisfy yi(x) = Fi(x) + �i with the independent and 
identically distributed Gaussian noise �i ∼ N(0, �2

s,i
) . Then the hyper-parameters � and 

the variances {�s,i}Ni=1 could be inferred by the standard maximum likelihood estima-
tion of maximizing the marginal likelihood p(Y|X;�, {�s,i}Ni=1) [24, 26, 34].

After inferring these parameters, the posterior distribution of F  at any test point 
x∗ could be analytically derived as [24, 34]

where the predicted mean and variance are presented as

and

Here ȳ ∈ ℝ
mN×1 is a rearrangement of the observations in Y defined by

K∗ ∈ ℝ
mN×N is defined by

(5)F(x) ∼ GP(0,K(x, x�))

K(x, x�) =

⎡
⎢⎢⎣

k1,1(x, x
�) ⋯ k1,N(x, x

�)

⋮ ⋱ ⋮

kN,1(x, x
�) ⋯ kN,N(x, x

�)

⎤
⎥⎥⎦

F(x∗)|X, Y , x∗ ∼ N(�∗,Σ∗)

𝜇∗ = K⊤
∗
(K(X,X) + Σ)−1ȳ

Σ(x∗) = K(x∗, x∗) − K⊤
∗
(K(X,X) + Σ)−1K∗.

ȳ = [y1
1
,⋯ , ym

1
, y1

2
,⋯ , ym

2
,⋯ , y1

N
,⋯ , ym

N
]⊤,
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where

for 1 ≤ p, q ≤ N , Σ = Σs

⨂
Im ∈ ℝ

mN×mN is the noise matrix with

and the symmetric block matrix K(X,X) ∈ ℝ
mN×mN is given as

with

for 1 ≤ p, q ≤ N.
In practice, we choose �∗ as the value of F(x∗) , i.e. we denote F(x∗) = �∗, and thus 

the predicted value of F(x∗) , and the diagonal entries of Σ(x∗) represent its variances. 
Then we replace the true force F(x) by its surrogate model F(x) in the saddle dynamics 
(3) to get the following model-free saddle dynamics

with

The corresponding numerical scheme takes an analogous form as (4)

K∗ =

⎡
⎢⎢⎣

K1,1(X, x∗) ⋯ K1,N(X, x∗)

⋮ ⋱ ⋮

KN,1(X, x∗) ⋯ KN,N(X, x∗)

⎤
⎥⎥⎦

Kp,q(X, x∗) = [kp,q(x
t
1
, x∗),⋯ , kp,q(x

t
m
, x∗)]

⊤
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�2
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⋱
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s,N

⎤
⎥⎥⎦
,

K(X,X) =

⎡
⎢⎢⎣
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⋮ ⋱ ⋮
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⎤
⎥⎥⎦

Kp,q(X,X) =
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1
) ⋯ kp,q(x

t
1
, xt

m
)

⋮ ⋱ ⋮

kp,q(x
t
m
, xt

1
) ⋯ kp,q(x

t
m
, xt

m
)

⎤⎥⎥⎦

(6)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

dx

dt
= 𝛽

�
I − 2

k�
j=1

vjv
⊤
j

�
F(x),

dvi

dt
= 𝛾

�
I − viv

⊤
i
− 2

i−1�
j=1

vjv
⊤
j

�
H(x, vi, l), 1 ≤ i ≤ k,

dl

dt
= −

dG

dl

H(x, vi, l) ∶=
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.
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3 � A sequential learning algorithm

We propose a sequential leaning algorithm involving the model-free saddle dynam-
ics scheme (7) in practical computations of saddle points and solution landscapes. 
The motivation is that due to the local nature of the saddle dynamics, the training 
data located far from the dynamical path of saddle dynamics may have less contribu-
tions or even introduce errors in predicting the force F(x). Ideally, the training data 
should be sampled near the dynamical path, which, however, is not known a priori 
that makes the task of generating the training data for training the surrogate force 
nontrivial. To accommodate this issue, we adopt the sequential learning technique 
to perform the model-free saddle dynamics through an active learning framework, 
where the acquisition of training samples and the validation and update of the sur-
rogate force are performed “online” (during optimization). By this means, we expect 
to reduce the number of training points while preserving the accuracy of the surro-
gate model and thus the computed saddle points.

The basic idea of the sequential learning is to divide the learning-based optimiza-
tion into several trust region optimization subproblems. For the jth subproblem, we 
perform the Gaussian process learning to train the force F(x) in a hypercube trust 
region

for the center xjc and trust region length Δj based on a training data set with Nsam 
samples D ∶= {(xt

1
, y1),⋯ , (xt

Nsam
, yNsam

)} and then perform the surrogate-force-based 
saddle dynamics (7) inside this region for n = 1, 2⋯ until the xn gets out of this 
region for some n = n∗.

Then we check the reliability of F  at xn∗ in order to determine the center xj+1c  and 
the trust region length Δj+1 of the (j + 1) th subproblem. We compute the maximum 
norm of the diagonal of the covariance matrix Σ(xn∗ ) of F(xn∗ ) , that is,

Given the lower and upper tolerances 0 <toll <tolu , we encounter three cases:

•	 If r < toll , which means that the surrogate model is fairly reliable, we could set 
x
j+1
c  as xn∗ and enlarge the trust region length in the (j + 1) th subproblem.

(7)

⎧
⎪⎪⎨⎪⎪⎩

xn = xn−1 + 𝜏𝛽

�
I − 2

k�
j=1

vj,n−1v
⊤
j,n−1

�
F(xn−1),

ṽi,n = vi,n−1 + 𝜏𝛾H(xn−1, vi,n−1, ln−1), 1 ≤ i ≤ k,

{vi,n}
k
i=1

= GramSchmidt({ṽi,n}
k
i=1

).

Q(xj
c
,Δj) ∶= {x�‖x − xj

c
‖∞ ≤ Δj}

(8)r ∶= ‖diag (Σ(xn∗ ))‖∞.
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•	 For the case r > tolu , then the surrogate model may not be reliable such that the 
jth subproblem should be solved again using the retrained surrogate force under 
the updated training data set with Nnew newly added samples. In this case, we set 
x
j+1
c  back to xjc and shrink the trust region length to improve the accuracy.

•	 For toll ≤ r ≤tolu , we set xj+1c  as xn∗ and keep the trust region length unchanged to 
solve the (j + 1) th subproblem.

In all three cases, the training data obtained before will be inherited if they locate 
in the updated region, which helps to improve the accuracy of the surrogate model. 
The algorithm will be terminated if the error of two adjacent numerical solutions of 
x is smaller than the tolerance tolx or the total number of steps Nt exceeds the pre-
scribed value Nm . We summarize this algorithm in Algorithm 1, which computes an 
index-k saddle point and count the total number Nf  of queries of F.

Algorithm 1 Sequential learning algorithm of finding an index-k saddle point
1: Step 1: Initialization
2: Initial data: x0, {vi,0}ki=1, l0, β, γ, τ , toll, tolu, Nm, Nt = 0, Nf = 0, tolx,

Nsam, Nnew, xc, ∆.
3: Initial sampling: Sample Nsam points X = {xt1, · · · , xtNsam

} in the trust
region Q(xc,∆) and then evaluate the corresponding values of F as Y =
{F (xt1), · · · , F (xtNsam

))} to get the training date set D = {X,Y }.
4: Nf ⇐ Nf +Nsam.
5: Step 2: Implement model-free saddle dynamics within Q(xc,∆)
6: Infer the hyper-parameters θ and the variances {σs,i}Ni=1 by maximum likelihood

estimation with the training set D to obtain F .
7: Implement saddle dynamics (7) using F until one of the following cases occurs:
8: (a) xn �∈ Q(xc,∆) for some n = n∗; (b) Nt > Nm; (c) ‖xn − xn−1‖∞ ≤tolx for

some n.
9: For the cases (b) and (c), terminate the algorithm and output the latest

numerical solution of x and Nf .
10: Step 3: Update of xc, ∆ and D
11: Compute r in (8).
12: if r <toll then xc ⇐ xn∗ and ∆ ⇐ 2∆;
13: else
14: if r >tolu then ∆ ⇐ ∆/2;
15: else xc ⇐ xn∗ .
16: end if
17: end if
18: Resample Nnew training points in Q(xc,∆) as in Step 1 to get a training data

set Dnew.
19: Nf ⇐ Nf +Nnew, D ⇐ D|x∈Q(xc,∆) ∪Dnew and jump to Step 2.

Based on Algorithm  1, we could apply the downward or upward search algo-
rithms proposed in [43, 45] for construction of solution landscapes. For instance, the 
downward search algorithm aims to search lower-index saddles and stable states 
from a high-index saddle point. Given an index-k saddle point and its k unstable 
directions denoted by (x∗, v1,⋯ , vk) as a parent state, we could apply this algorithm 
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to search for an index-m saddle point with 0 ≤ m < k . Typically, the initial value is 
chosen as a perturbation of the parent state x∗ along the direction vi for some 
m < i ≤ k with the directions {vj}mj=1 as the initial vectors to start the saddle dynam-
ics. By repeating this procedure on the newly found saddle points, the landscape 
under the given index-k saddle point could be constructed completely.

4 � Numerical experiments

We present numerical examples to substantiate the effectiveness and the computational 
cost of the sequential-learning Gaussian process saddle dynamics (GPSD) proposed by 
Algorithm 1 in finding saddle points, in comparison with the standard saddle dynamics 
(SD). Here the computational cost is characterized by the number Nf  of the force evalu-
ations in order to demonstrate that the GPSD is more efficient than the SD in practical 
problems when the query of the force is expensive or time-consuming. In numerical 
experiments, we follow the conventional treatment to take kp,q for 1 ≤ p, q ≤ N as the 
squared exponential covariance function with the hyper-parameters � ∶= (�f , �l)

4.1 � A Rosenbrock type function

We compute the saddle points of the following four-dimensional Rosenbrock type 
function

We set � = l0 = 0.01 , toll=0.05, tolu=0.15, Nm = 20000 , tolx=1 × 10−6 , 
Nsam = Nnew = 100 , x0 = (0.7, 0.8, 1.2, 0.7) , Δ = 0.025 and the dimer length with 
polynomial decay

The initial values {vi,0}ki=1 are chosen as the orthonormal eigenvectors of the Hessian 
of E at x0 . The Latin hypercube sampling technique [38] is applied to generate the 
training data locations. Under different coefficients a, b, c and d, the index of the 
saddle point (1, 1, 1, 1) of E is different, and we perform both methods for the four 
cases in Table 1.

Numerical results are presented in Tables 2, 3, which indicate that both GPSD 
and SD generate satisfactory approximations for the saddle point (1, 1, 1, 1) with 
different indexes, while the GPSD requires much less queries of the true force F, 
which demonstrate the potential of the GPSD in practical problems where the acqui-
sition of the force is expensive or time-consuming.

k(x, x�) ∶= �2
f
exp

�
−

‖x − x�‖2
2

2�2
l

�
.

E(x1, x2, x3, x4) ∶= a(x4 − x
2

3
)2 + b(x3 − x

2

2
)2 + c(x2 − x

2

1
)2 + d(1 − x1)

2
.

ln =
l0

1 + (n�)2
.
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4.2 � A modified codesign problem

We compute the saddle point of the following modification of the codesign prob-
lem [2, 6] that simultaneously optimizes the plant design variable a and the control 
design variable u(t) defined on [0, 0.1] in the plant design objective J = J(a, u)

Different from the most conventional problems, in which the energy or cost func-
tionals are exactly given in priori, there is an unknown state variable �(t) in J that 
relates to both a and u(t) via the underlying mechanism. In other words, for each 
query of J or the corresponding negative gradient F = [a,−𝜉(t)2u(t)]⊤ at some 
(a, u(t)) in each iteration of SD, we need to compute �(t) by simulating or solving 
the governing process related to the current (a, u(t)), which is in general computa-
tionally expensive. Therefore, we expect to apply GPSD, which constructs a surro-
gate mapping from (a, u(t)) to F to partly circumvent queries of �(t) in evaluating F, 
to reduce the number of simulating or computing the governing process during the 
SD iterations.

From F = [a,−𝜉(t)2u(t)]⊤ we find that x∗ ∶= [0, 0]⊤ is an index-1 saddle point of J 
and we will apply both SD and GPSD for its computation. For illustration, we follow 

(9)J(a, u) ∶= −
a2

2
+

1

2 ∫

0.1

0

�2(t)u2(t)dt.

Table 1   Index of the saddle 
point (1, 1, 1, 1) for E under 
different parameters

a b c d Index

(i) −0.5 0.5 0.5 2 1
(ii) −0.5 0.5 −0.5 2 2
(iii) −0.5 −0.5 −0.5 2 3
(iv) −0.5 −0.5 −0.5 −2 4

Table 2   Comparison of SD and 
GPSD for approximating the 
saddle point (1, 1, 1, 1) of E 

SD          GPSD

(i) (1.000, 0.999, 0.998, 0.995) (1.022, 1.016, 1.018, 1.032)
(ii) (1.000, 1.0000, 1.000, 1.000) (1.011, 0.997, 1.004, 1.006)
(iii) (1.000, 1.000, 1.000, 0.999) (1.002, 0.991, 1.012, 0.999)
(iv) (1.000, 0.999, 0.998, 0.995) (0.990,1.002, 0.993, 0.991)

Table 3   Comparison of the 
number of force evaluation 
N
f
 in SD and GPSD for 

approximating the saddle point 
of E 

N
f
 in SD N

f
 in GPSD

(i) 50673 5200
(ii) 13995 2700
(iii) 23548 3100
(iv) 155502 5200
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[6, Example 1] to select the governing process as a system of nonlinear differential 
equations on (0, 0.1]

equipped with the initial conditions �(0) = �(0) = 1 . In practice, much more com-
plicated equations or processes than (10) could appear. We set � = l0 = 0.0025 , toll
=0.05, tolu=0.15, Nm = 20000 , tolx=1 × 10−6 , Nsam = Nnew = 300 , Δ = 0.1 and the 
dimer length with polynomial decay as before. We discretize the domain [0, 0.1] of 
u, � and � by a uniform partition with mesh size 0.01, and approximate their values 
on this partition where the explicit difference method is used to solve (10). The ini-
tial value v1,0 of saddle dynamics is chosen as the normalized vector of [1,⋯ , 1]⊤ , 
and different initial values are applied as follows

The Latin hypercube sampling technique [38] is applied to generate the training 
data locations. We measure the number Ns of simulating (10) and the errors between 
x∗ and its output numerical approximation xF in both methods in Table  4, which 
indicate that both methods generate satisfactory results while the GPSD performs 
much less simulations of the underlying process. Furthermore, as the initial value x0 
approaches x∗ from (i) to (iii), the Ns of GPSD rapidly decreases while the Ns of SD 
does not decrease evidently. All these observations demonstrate the advantages of 
the proposed GPSD method.

4.3 � A nonlocal phase‑field model

We employ SD and GPSD to compute saddle points of the following nonlocal phase-
field equation [9, 37, 46]

on x ∈ (−1, 1) , equipped with the initial and nonlocal boundary conditions

(10)

⎧
⎪⎨⎪⎩

d�

dt
= −a� + �2,

d�

dt
= � − 2a2� − �2 + u,

( i) x0 = [0.2,⋯ , 0.2]⊤; ( ii) x0 = [0.1,⋯ , 0.1]⊤; ( iii) x0 = [0.05,⋯ , 0.05]⊤.

(11)�tu = F(u) ∶= −�
(
(−Δ)�∕2u +

1

�2
(u − 1)(u − 1∕2)u

)

Table 4   Comparison of the number N
s
 of simulating the underlying process (10) and the errors 

‖x
F
− x

∗‖∞ in SD and GPSD for approximating the saddle point x∗ of J 

N
s
 in SD ‖x

F
− x

∗‖∞ in SD N
s
 in GPSD ‖x

F
− x

∗‖∞ in GPSD

(i) 10494 3.98×10−4 4800 8.22×10−3

(ii) 9618 3.98×10−4 2700 9.47×10−4

(iii) 8775 3.99×10−4 1200 6.84×10−3
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Here � represents the “elastic” relaxation time, � is the interface parameter and the 
fractional Laplacian operator is defined as [13, 23, 35]

where

To discretize model (11), we adopt the numerical scheme of (−Δ)�∕2 in [10] with the 
mesh size h = 2−5 . Furthermore, we set � = 1.5 , toll=0.05, tolu=0.15, Nm = 20000 , 
tolx=1 × 10−5 , Nsam = Nnew = 120 , u0(x) = 0.5(1 − x2) as shown in Fig.  1(a), 
� = 0.02 , Δ = 0.01 and the shrinking dimer with exponential decay ln = e−n� l0 . The 
initial values {vi,0}ki=1 are chosen as the orthonormal eigenvectors of the Jacobian of 
F at u0 . Appropriate smooth curves serve as the samples of the training set. We take 
� = l0 = 0.00025 to compute the saddle points of model (11) under different values 
of 1∕�2 and different indexes as follows

Numerical results are presented in Fig. 1 and Table 5, which lead to the same con-
clusions as in the first example.

The we combine both SD and GPSD under � = l0 = 0.0005 with the downward 
search algorithm proposed in [43, 45] to demonstrate the construction of the solu-
tion landscapes. We fix 1∕�2 = 120 and � = 0.02 and start from an index-3 saddle 

u(x, 0) = u0(x), x ∈ (−1, 1); u(x, t) = 0, x ∈ (−∞,−1] ∪ [1,∞), t ≥ 0.

(−Δ)�∕2u(x, t) ∶= C� P.V.
∫

∞

−∞

u(x, t) − u(y, t)

|x − y|1+� dy

C� ∶=
2�−1�Γ(�∕2 + 1∕2)

�1∕2Γ(1 − �∕2)
.

( i)
1

�2
= 30, index = 1; ( ii)

1

�2
= 80, index = 2; ( iii)

1

�2
= 120, index = 3.

-1 -0.5 0 0.5 1
0

0.25

0.5

(a) Initial value u0(x)
-1 -0.5 0 0.5 1
0

0.3

0.6

(b) An index-1 saddle
point

-1 -0.5 0 0.5 1
0

0.4

0.8

(c) An index-2 saddle
point

-1 -0.5 0 0.5 1
0

0.4

0.8

(d) An index-3 saddle
point

Fig. 1   Plots of u0(x) in (a) and the approximated saddle points by SD (blue solid) and GPSD (red dashed) 
for the cases (i)–(iii) in (b)–(d), respectively

Table 5   Comparison of the 
number of force evaluation N

f
 

in SD and GPSD for computing 
the saddle points of the nonlocal 
phase field model (11)

N
f
 in SD N

f
 in GPSD

(i) 18225 960
(ii) 95125 3480
(iii) 117516 4200
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point to construct the solution landscape of the nonlocal phase-field model (11). 
Numerical results are presented in Fig. 2, which indicate that both methods generate 
similar solution landscapes, which demonstrates the effectiveness of the GPSD in 
solution landscape constructions.

4.4 � A particle cluster model

The Morse potential provides a model for analyzing the effect of strain and the range 
of the interparticle forces on structure, dynamics and thermodynamics [7, 8, 39]. In 
this example we employ GPSD to compute the solution landscape of the cluster of 5 
particles in three space dimensions described by the energy

where ri,j is the Euclidean distance between the ith and the jth particles and V(r) is 
the Morse potential [30]

E =
∑

1≤i<j≤5

V(ri,j)

Fig. 2   Solution landscape of nonlocal phase-field model (11) constructed by (left) SD- and (right) 
GPSD-based downward search algorithm
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We select � = 3 , toll=0.05, tolu=0.15, Nm = 20000 , tolx=1 × 10−5 , Nsam = 200 , 
Nnew = 200 , and ln = e−n� l0 . We combine the GPSD under � = l0 = 0.001 with the 
downward search algorithm proposed in [43, 45] to construct the energy landscape 
from an index-3 saddle point in Fig. 3, which again indicates the effectiveness of the 
GPSD.

5 � Concluding remarks

In this work we propose a model-free shrinking-dimer saddle dynamics and a corre-
sponding sequential learning algorithm for finding any-index saddle points of com-
plex models and constructing their solution landscapes. This data-driven approach 
avoids employing the exact form of the model and could significantly reduce the 
number of queries of the force that may be expensive or time-consuming, and the 
active learning mechanism along the latent trajectory increases the value of each 
sampling. More importantly, with the proposed algorithm, we can efficiently 

V(r) = e−2�(r−1) − 2e−�(r−1).

Fig. 3   Energy landscape of particle cluster constructed by the GPSD-based downward search algorithm
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construct the model-free solution landscape, in which only the informative saddle 
points and minima are computed, so that one can avoid the sampling on the whole 
energy landscape of complex models.

As far as we know, high-index saddle dynamics method is the only method to 
compute high-index saddle points and to construct solution landscapes, though there 
exist several methods for finding saddle points with low indexes. For instance, the 
gentlest ascent method is proposed in [11] to compute the index-1 and index-2 sad-
dle points. Some works also use the Newton’s method to search saddle points, cf. 
[4], while the convergence behavior depends heavily on the selection of the initial 
value such that it is difficult to efficiently compute all saddle points. Thus, it is dif-
ficult to compare the proposed method with other ones in constructing solution 
landscapes.

There are several potential extensions of the current method. For instance, dif-
ferent covariance kernels in the Gaussian process or different learning methods 
such as the deep learning method could be applied to train the surrogate model. The 
proposed data-driven method could be further applied for constructing the solution 
landscapes of more complex problems, and how to utilize the structure of the solu-
tion landscape to further reduce the number of queries of the force is an interesting 
but challenging problem that will be considered later. Finally, there are some recent 
progresses on numerical analysis to high-index saddle dynamics [53–55], while it is 
not clear how to extend the developed methods to perform numerical analysis for the 
proposed model-free saddle dynamics due to the approximation of F via the surro-
gate model. We will investigate this interesting topic in the near future.
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