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Abstract

We investigate critical points of the Onsager free-energy model on a sphere with different potential kernels, including
the dipolar potential, the Maier–Saupe potential, the coupled dipolar/Maier–Saupe potential, and the Onsager poten-
tial. A uniform sampling method is implemented for the discretization of the Onsager model, and solution landscapes
of the Onsager model are constructed using saddle dynamics coupled with downward/upward search algorithms. We
first construct the solution landscapes with the dipolar and Maier–Saupe potentials, for which all critical points are ax-
isymmetric. For the coupled dipolar/Maier–Saupe potential, the solution landscape shows a novel non-axisymmetric
critical point, named tennis, which exists for a wide range of parameters. We further demonstrate various non-
axisymmetric critical points in the Onsager model with the Onsager potential, including square, hexagon, octahedral,
cubic, quarter, icosahedral, and dodecahedral states. The bifurcation diagram is presented to show the primary and
secondary bifurcations of the isotropic state and reveal the emergence of the critical points. The solution landscape
provides an efficient approach to show the global structure of the model system as well as the bifurcations of critical
points, which can not only support the previous theoretical conjectures but also propose new conjectures based on the
numerical findings.
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1. Introduction

In 1949, Onsager proposed a free-energy model to describe the isotropic-nematic phase transition in three-
dimensional rod-like liquid crystals, and related the equilibrium states to critical points of the model [1]. Since
then, this molecular model has been applied to describe static and dynamic phenomena of liquid crystals [2, 3, 4, 5].
By including the positional dependence of the distribution function, the Onsager model can describe complicated
phenomena of liquid crystals [6, 7, 8, 9].

Let ρ : S 2 → R be a probability density function satisfying,

ρ(p) > 0,
∫

S 2
ρ(p)dp = 1, (1)

where ρ(p) characterizes the probability of finding molecules with orientation p on the unit sphere S 2. Based on the
second virial approximation, the Onsager free-energy model is derived as,

E(ρ) = τ

∫
S 2
ρ(p) log ρ(p)dp +

1
2

∫
S 2

∫
S 2

k(p · q)ρ(p)ρ(q)dpdq, (2)

combined with the constraint (1). The first term in (2) is an entropy term, and the positive parameter τ is proportional to
the absolute temperature of the system [10]. The second term in (2) represents the potential energy due to interactions
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between pairs of molecules but also contains an entropic component [11]. For the derivation and validity of the
Onsager model, one can also refer to [12]. The kernel k depends only on the scalar product p · q of two orientations p
and q to ensure the rotational symmetry [13]. Important examples of the kernel potentials include,

1. Dipolar: k(t) = −σt;
2. Maier–Saupe: k(t) = −κt2;
3. Coupled dipolar/Maier–Saupe: k(t) = −σt − κt2;
4. Onsager: k(t) = µ

√
1 − t2.

Here σ, κ, µ are positive parameters [11]. The Onsager potential, k(p · q) = |p × q|, is one of the first interaction
kernels that have been derived, while the non-analytic nature of this potential brings difficulties to explicit non-trivial
solutions. Subsequently, Maier and Saupe [14] suggested using a similar but analytic potential of k(p ·q) = 1

3 −|p×q|2.
Note that critical points of the Onsager model are not affected by adding a constant to k. For the Maier–Saupe and
Onsager potentials, k is an even function, corresponding to the head-to-tail symmetry of liquid-crystal molecules.

For an absolutely continuous interaction kernel k, the critical points of the Onsager model are proved to be smooth,
bounded away from zero, and satisfy the Euler–Lagrange equation [11]. A probability density function ρ is called
axisymmetric if there exists some vector e and some function f such that ρ(p) = f (p · e). For the dipolar potential,
any critical point is axisymmetric, and a full description of critical points is presented in [15]. For the Maier–Saupe
potential, a complete classification of all the critical points have been studied extensively with different methods in
[15] and [16], which accords with previous numerical simulations in [17, 18]. For the coupled dipolar/Maier–Saupe
potential, stable critical points are proved to be axisymmetric [19]. Furthermore, with some parameters, there exists
an unstable critical point that is non-axisymmetric [19]. For the Onsager potential, finding and classifying all critical
points of the Onsager free-energy model in three dimensions becomes much more complicated. By reformulating
the critical points as an eigenvalue problem, an iterative scheme was derived to compute axisymmetric critical points
in [20]. The complete set of all bifurcation points corresponding to the primary bifurcation of the isotropic state
ρ0(p) = 1/4π has been obtained in [13]. A transcritical bifurcation from this trivial solution occurs first and all critical
points around this bifurcation point are axisymmetric. Recently, Ball proved that non-axisymmetric critical points
exist for a wide variety of kernel potentials, including the Onsager potential [11]. To be specific, for large enough µ,
there exists a non-axisymmetric critical point with cubic symmetry, that is, in some Cartesian coordinate (x, y, z),

ρ(x, y, z) = ρ(y, x, z) = ρ(x, z, y) = ρ(−x, y, z). (3)

Despite the extensive analytical works have been done for the critical points of the Onsager model, how to find
these critical points, especially for non-axisymmetric critical points, is an important but unsolved problem. According
to the Morse theory [21], the (Morse) index of a critical point is the maximal dimension of a subspace on which the
Hessian operator is negative definite, and local properties of a critical point can be described by its index. Compared
to the stable (index-0) critical points (i.e. minimizers), the unstable (index>0) critical points (i.e. saddle points) are
much more difficult to compute because of their unstable nature. There are several numerical methods for computing
critical points, including the generalized gentlest ascent dynamics [22], the iterative minimization formulation [23],
and the minimax method [24, 25]. An alternative method is to solve the Euler–Lagrange equation directly, such as
homotopy methods [26, 27] and Newton–Raphson methods with a deflation technique [28], However, the most exist-
ing numerical methods highly rely on good initial guesses for finding multiple critical points, which often requires a
priori knowledge of the model systems. Recently, Yin et al. proposed an efficient numerical method to compute the
solution landscape, which is a pathway map consisting of all critical points and their connections, in order to system-
atically find multiple critical points without tuning initial guesses [29]. By applying the high-index saddle dynamics
(HiSD) method [30], the solution landscape can be efficiently constructed by downward/upward search algorithms.
This numerical approach has been successfully applied to the Landau-type free-energy functionals, including the de-
fect landscape of confined nematic liquid crystals using a Landau–de Gennes model [31, 29] and the nucleation of
quasicrystals from period crystals using the Lifshitz–Petrich model [32].

In this paper, we aim to find global structure of the critical points of the Onsager model with different potential
kernels by using a solution landscape approach. In particular, we will identify non-axisymmetric critical points for
the coupled dipolar/Maier–Saupe potential and the Onsager potential, and then investigate the bifurcation diagrams
to show the emergence of the critical points. The rest of the paper is organized as follows. The Onsager model and
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numerical methods are introduced in Section 2. Numerical results are presented in Section 3. In order to reveal various
non-axisymmetric critical points, we construct the solution landscapes of the Onsager model. Some conjectures are
proposed based on the numerical results. Final conclusions and discussions are presented in Section 4.

2. Models and methods

2.1. Onsager model

For the Onsager free-energy model (2) with the constraint (1), we set τ = 1 due to simple rescaling and adjust the
model with the parameters in the interaction kernel k. The variation of E is,

δE
δρ

(ρ) = log ρ(p) + 1 +

∫
S 2

k(p · q)ρ(q)dq = log ρ(p) + 1 +Kρ(p), (4)

where the self-adjoint linear operator K : L2(S 2)→ L2(S 2) of the nonlocal interaction is defined as,

Kρ(p) =

∫
S 2

k(p · q)ρ(q)dq. (5)

To deal with the constraint (1), the orthogonal projection operator to the subspace L2
0(S 2) = {ρ ∈ L2(S 2) :

∫
S 2 ρ(p)dp =

0} is defined as,

Pρ(p) = ρ(p) −
1

4π

∫
S 2
ρ(q)dq, (6)

and then the derivative of E is ∇E(ρ) = P(log ρ +Kρ). The critical points of (2) are solutions to the Euler–Lagrange
equation, DE(ρ) = 0, that is,

log ρ(p) +

∫
S 2

k(p · q)ρ(q)dq − ξ = 0, (7)

where ξ is the Lagrange multiplier corresponding to the mass-conservation constraint (1). The second variation of E
is, for υ ∈ L2

0(S 2),
δ2E
δρ2 (ρ)[υ] =

∫
S 2

[
υ2(p)
ρ(p)

+ υ(p)Kυ(p)
]

dp = 〈υ, υ/ρ +Kυ〉, (8)

and the Hessian can be expressed as ∇2E(ρ) = P(ρ−1 +K)P.
From the Euler–Lagrange equation (7), the isotropic state ρ0(p) = 1/4π is a critical point for general kernels. The

Hessian at the isotropic state, ∇2E(ρ0) = 4πI +K has the same eigenvectors as those of K . Since K has an obvious
eigenvector ρ0, all the other eigenvectors are in L2

0(S 2). For max k(·) 6 W(2/π)/16 ≈ 0.0262, the isotropic state is the
unique solution and the global minimizer of the Onsager model (2) [13]. Here W denotes the Lambert-W function,
the inverse function of x exp x.

Because of the symmetry of the Onsager model (2),

E (ρ(p)) = E (ρ (Rp)) , ∀R ∈ O(3), (9)

each anisotropic critical points is on a solution manifold and not isolated. Therefore, the Hessian (8) at an anisotropic
critical point have zero eigenvalues. To be specific, Hessians at axisymmetric anisotropic critical points have zero
eigenvalues of multiplicity two, and Hessians at non-axisymmetric ones have zero eigenvalues of multiplicity three.
On the contrary, the Hessian at the isotropic state has no zero eigenvalues in general. These zero eigenvalues will
bring some difficulties to numerical computations.

For the coupled dipolar/Maier–Saupe potential, all the critical points of the Onsager model (2) can be described
as critical points of a finite-dimensional model within orthogonal transformations. This finite-dimensional model can
reduce computational costs and, more importantly, Hessians at critical points have no zero eigenvalues in general.
However, critical points may have lower indices in this reduced model, and there may exist extraneous critical points
as well. Therefore, we only present the details of the reduced model in Appendix A and will not apply it in practical
computations.
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2.2. Discretization methods
Since the Onsager model (2) involves no gradient terms, N points are sampled on the spherical surface S 2 to

discretize the probability density function ρ. Starting from a regular icosahedron inscribed in the unit sphere, each
face is subdivided four times to obtain N = 2562 points {xi}

N
i=1 on the sphere. By minimizing the Thomson problem

of N particles,

min
x1,··· ,xN∈S 2

N∑
i=1

N∑
j=i+1

1
‖xi − x j‖2

, (10)

we obtain N particles {xi}
N
i=1 approximatively uniformly distributed on the spherical surface. We have checked the

result of this subdivision with an N = 10242 subdivision and ensured that the N = 2562 discretization can provide
enough accuracy.

We denote ρ = (ρi) = (ρ(xi)) ∈ RN as the node values of the density distribution, and the constraint (1) is
discretized as,

ρ > 0; h1>ρ = 1, (11)

where h = 4π/N is the average area per particle, and 1 ∈ RN is the vector with all entries one. The Onsager free-energy
model is discretized as,

E(ρ) = h
N∑

i=1

ρi log ρi +
h2

2

N∑
i=1

N∑
j=1

Ki jρiρ j = hρ> log ρ +
h2

2
ρ>Kρ, (12)

where K = (Ki j) = (k(xi · x j)).
As the interaction term becomes dominant, some equilibrium density distributions can be highly anisotropic, and

many entries of ρ can be extremely close to zero which may suffer from underflow. Therefore, we iterate log ρ instead
of ρ in practical computations. For the almost-uniformly-sampled points {xi}, we simply consider the Euclidian inner
product instead of the discretized L2 inner product. The gradient flow of (12) is,

ρ̇ = −∇E(ρ) = −h log ρ − h2Kρ + ξ1, (13)

where ξ is the Lagrangian multiplier. Since ρ can be extremely close to zero, an explicit Euler scheme often requires
a tiny step size due to a large | log ρ|. Therefore, we impose a semi-implicit scheme with a fixed step size ∆t by taking
the nonlinear part implicitly,

expψn+1 + ∆t hψn+1 = ρn − ∆t h2Kρn + ∆t ξn1, (14)

where the multiplier ξn is calculated as,

ξn = N−11>(h log ρn + h2Kρn). (15)

Here, ρn represents the numerical solution ρ at the n-th iteration step, and ψn+1 represents the numerical solution log ρ
at the (n + 1)-th iteration step which may not satisfy the constraint (11). Although ψn+1 can be directly solved from
(14) using the Lambert-W function, this procedure can be numerically unstable for small ∆t. Alternatively, we solve
ψn+1 from (14) using the Newton’s method with the initial value log ρn, and calculate

log ρn+1 = ψn+1 − log(h1> expψn+1)1, (16)

to obtain a density ρn+1 satisfying the constraint (11).

2.3. Saddle dynamics
The saddle dynamics is designed to search unstable saddle points with a given index. A nondegenerate index-k

saddle point (k-saddle) is a local maximum on a k-dimensional subspace V, and a local minimum on its orthogonal
complementV⊥. The HiSD for a k-saddle (k-HiSD) is given by,

ρ̇ = −

I − k∑
i=1

2viv>i

∇E(ρ),

v̇i = −

I − viv>i −
i−1∑
j=1

2v jv>j

∇2E(ρ)vi, i = 1, · · · , k.

(17)

4



The k-HiSD involves a position variable ρ and k ascent variables vi with an initial condition,

ρ = ρ(0), vi = v(0)
i ∈ R

N
0 , s.t.

〈
v(0)

j , v
(0)
i

〉
= δi j, i, j = 1, · · · , k, (18)

where RN
0 = {v ∈ RN : 1>v = 0} ensures the constraint (11). The dynamics for ρ in (17) is a transformed gradient

flow, i.e.,
ρ̇ = PV∇E(ρ) − (I − PV)∇E(ρ). (19)

Here PV∇E(ρ), which is the orthogonal projection of ∇E(ρ) on the subspaceV, represents the gradient ascent direc-
tion to find a local maximum along the subspace V = span{v1, · · · , vk}, while (I − PV)∇E(ρ) is the gradient descent
direction onV⊥.

The dynamics for vi in (17) renews the subspace V by finding the eigenvectors corresponding to the smallest k
eigenvalues of the Hessian∇2E(ρ) at the current position ρ. The i-th eigenvector vi is obtained by solving a constrained
optimization problem,

min
vi∈RN

0

〈
∇2E(ρ)[vi], vi

〉
s.t.

〈
v j, vi

〉
= δi j, j = 1, · · · , i − 1, (20)

with the knowledge of v1, · · · , vi−1 using the gradient flow. The dynamics (17) is linearly stable if and only if at index-
k saddle points [30]. The HiSD method can also be generalized for equality-constrained cases [33] and non-gradient
(dynamical) systems [34].

The Hessian of (12) ∇2E(ρ) is a linear operator on RN
0 ,

∇2E(ρ) = P
(
h Diag(ρ−1) + h2K

)
P, (21)

where P = I − 11>/N is the projection matrix concerning the constraint (11). Here ρ−1 = (ρ−1
i ) is the elementwise

inverse of ρ. Because of the high anisotropy of ρ, Hessians (21) at critical points can be highly ill-conditioned.
Fortunately, in the saddle dynamics, only the smallest k eigenvalues need to be considered, so we alternatively replace
∇2E(ρ) in (17) with,

HM(ρ) = P
(
h Diag(max{ρ−1,M}) + h2K

)
P, (22)

where M is a large constant set as 108. In fact, for a large M from 106 to 1010, HM(ρ) can present the smallest several
eigenvalues and corresponding eigenvectors which are fairly consistent with ∇2E(ρ) numerically. In numerical imple-
mentation, the dynamics of vi is solved using the locally optimal block preconditioned conjugate gradient (LOBPCG)
method [35], and the details can be found in [30].

For numerical stability, the saddle dynamics is solved in a similar manner to the gradient flow (13) by taking the
nonlinear part implicitly. The time discretization of ρ in the HiSD (17) is given by,

expψn+1 − ρn

∆t
= −hψn+1 − h2Kρn + ξn1 +

k∑
i=1

2〈vn
i ,∇E(ρn)〉vn

i , (23)

where ξn is calculated as (15). Then ψn+1 is solved from (14) using Newton’s method with the initial value log ρn, and
ρn+1 is obtained by (16) eventually. This iteration is terminated if ‖∇E(ρn)‖ is smaller than the tolerance.

2.4. Algorithm of solution landscape

The procedure for construction of the solution landscape consists of a downward search algorithm and an upward
search algorithm. Starting from a parent state that is a high-index saddle point, the downward search algorithm is
applied to search critical points with lower indices by following its unstable directions. Assume ρ̂ is an index-m saddle
point and û1, · · · , ûm are the m orthonormal eigenvectors of ∇2E(ρ̂), corresponding to the smallest m eigenvalues
λ̂1 < · · · < λ̂m < 0, respectively. Then we attempt to search critical points of indices from 0 to m − 1. To find
an index-k critical point, we first slightly perturb ρ̂ along an unstable direction (typically ûk+1). Then the k-HiSD is
solved from the initial position ρ(0) = ρ̂ + εûk+1 and initial directions vi(0) = ûi for i = 1, · · · , k. Because of the
degeneracy of critical points, this k-HiSD may converge to a critical point whose index is smaller than k, which should
be checked after convergence. An arrow from ρ̂ to this critical point is drawn in the solution landscape to illustrate
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this relationship. Then this downward search procedure is repeated to the newly-found saddle points, until no more
critical points are found.

If the parent state is unavailable, the upward search algorithm can be used to find a high-index critical point
starting from a low-index saddle point or a minimum. Assume ρ̂ is an index-m saddle point with k zero eigenvalues,
and û1, · · · , ûm+k+1 are the (m + k + 1) orthonormal eigenvectors of ∇2E(ρ̂), corresponding to the smallest (m + k + 1)
eigenvalues λ̂1 < · · · < λ̂m < 0 = λ̂m+1 = · · · = λ̂m+k < λ̂m+k+1, respectively. To find a saddle point with a higher index,
we perturb ρ̂ along a stable direction (e.g. ûm+k+1). Then the (m + k + 1)-HiSD is solved from the initial position
ρ(0) = ρ̂+ εûm+k+1 and the initial directions vi(0) = ûi for i = 1, · · · ,m + k + 1. If the HiSD converges to a high-index
saddle point, we can repeat the upward search algorithm starting from this saddle till no higher-index saddle point can
be found. Once the parent state is found, the downward search from it can obtain all connected critical points in the
solution landscape.

For the Onsager model (2), we implement both downward and upward searches from the isotropic state ρ0 = 1/4π.
The downward search guarantees the systematic finding of critical points connected by the isotropic state. The upward
search from the isotropic state is applied to find possible critical points with higher indices because of saddle-node
bifurcations while tracing only the isotropic state could fail to locate such saddle points, for example, the prolate′ state
for the Maier–Saupe potential at κ = 7 and for the Onsager potential at µ = 10 in the next section.

3. Solution landscape of the Onsager model

3.1. Dipolar potential
The simplest kernel of the Onsager model is the dipolar potential k(t) = −σt. K has an only negative eigenvalue

− 4
3πσ, with three linearly independent eigenvectors v(p) = pi, (i = 1, 2, 3); all the other eigenvalues are zero (with

infinite multiplicity). Therefore, the isotropic state ρ0 is a minimizer for σ < 3, and a 3-saddle for σ > 3. From the
Euler–Lagrange equation (7), a critical point ρ satisfies,

ρ(p) = exp
(
ξ +

∫
S 2
−σp · qρ(q)dq

)
= eξ exp

(
−σp ·

∫
S 2

qρ(q)dq
)
, (24)

so all critical points are axisymmetric for the dipolar potential. In fact, critical points other than the isotropic state are
proved to be,

ρ(p) =
1
Z

exp(−rp ·m), σ =
r2

r coth r − 1
, (25)

where m is a unit vector and Z =
∫

S 2 exp(−rp ·m)dp denotes the partition function [15]. This nontrivial critical point
exists for σ > 3 as a minimum, which emerges via a pitchfork bifurcation from the isotropic state ρ0, and is referred
to as a nematic state.

isotropic (0)

 (A) σ = 2

nema!c (0)isotropic (3)

 (B) σ = 4  (C) σ − r diagram

3

6

9

Analy!cal

Numerical

0 2 4 6 8

σ

r

Figure 1: Solution landscapes for the dipolar potential at (A) σ = 2, and (B) 4. (C) Comparison between the analytical and numerical results of r
at different σ for the dipolar potential. The critical points in all Figures are plotted with log ρ and their names are labelled above with the indices in
brackets (log(1/4π) ≈ −2.5).

The solution landscapes at σ = 2 and 4 are shown in Fig. 1(A–B), and the critical points in all Figures are shown
with a logarithmic scale for better illustration. Compared with the analytical results in (25), the numerical nematic
state at σ = 4 has an L2-error of 1.2e-5. Furthermore, we calculate the nematic states at different σ and compare the
numerical range of 1

2 log ρ with the analytical solution, as shown in Fig. 1(C). The discretization method provides fine
accuracy for numerical results.
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3.2. Maier–Saupe potential

prolate’ (1)isotropic (0)

isotropic (0)

isotropic (5)

prolate (0)

prolate (0) oblate (2)

 (A) κ = 6  (B) κ = 7  (C) κ = 8  (D) κ − r diagram

-12 -9 -6 -3
5

7.5

10

12.5

15

0 3 6

oblate(2)

prolate’
(1)

prolate (0)

κ*

Analy#cal

Numerical

κ

r

isotropic (5)

isotropic (0) oblate (2)isotropic (0)

prolate (0)

κ = 6 κ = 7 κ = 8

prolate (0)

prolate’ (1)

κ = 7.5

 (E) Bifurca#on diagram

Figure 2: Solution landscapes for the Maier–Saupe potential at (A) κ = 6, (B) 7, and (C) 8. (D) Comparison between the analytical and numerical
results of r at different κ for the Maier–Saupe potential. The curve has a tangent line κ = κ∗ separating the prolate and prolate′ states, and passes
through the bifurcation point (0, 7.5) separating the prolate′ and oblate states. (E) The bifurcation diagram for the Maier–Saupe potential. The
index of each state is in the bracket, and the corresponding parameter κ is labelled below. The bifurcation point of the isotropic state is κ = 7.5.

For the Maier–Saupe potential k(t) = −κt2,K has an only negative eigenvalue − 8
15πκ, with five linear independent

eigenvectors v(p) = p2
i − 1/3 and v(p) = pi p j. All the other eigenvalues are zero (with infinite multiplicity). The

solution landscapes for the Maier–Saupe potential are constructed at κ = 6, 7 and 8 in Fig. 2(A–C). The isotropic state
ρ0 is a minimizer for κ < 7.5, and a 5-saddle for κ > 7.5. Moreover, the critical points other than the isotropic state
ρ0(p) are proved to be,

ρ(p) =
1
Z

exp
(
−r(p ·m)2

)
, κ = 4r2

(
2r − 3 +

6
√

r exp(−r)
√
π erf

√
r

)−1

, (26)

where m is a unit vector [16, 15]. This nontrivial solution is referred to as a prolate state with density concentrating
at two antipodal points if r < 0, and an oblate state with density concentrating on a great circle if r > 0. Two
prolate states emerge at κ∗ ≈ 6.7315 with r∗ ≈ −2.18, as a local minimizer and a 1-saddle (referred to as prolate′

to distinguish), respectively. As κ increases, the prolate state becomes the global minimizer in replacement of the
isotropic state. After a transcritical bifurcation at κ = 7.5, the isotropic state ρ0 becomes a 5-saddle, while the oblate
state appears as a 2-saddle with r > 0 [15]. The minimum prolate nematic state remains as a global minimizer
(Fig. 2(C)), and the bifurcation diagram is shown in Fig. 2(E). Compared with the analytical result (26), the numerical
prolate and oblate states at κ = 8 have L2-errors of 7.0e-4 and 4.1e-5. We further calculate the prolate(′) and oblate
states at different κ and compare the numerical range of log ρ with the analytical solutions in Fig. 2(D) to show the
accuracy and consistency of numerical methods.

3.3. Coupled dipolar/Maier–Saupe potential
For the coupled dipolar/Maier–Saupe potential k(t) = −σt− κt2,K has two negative eigenvalue − 4

3πσ and − 8
15πκ,

and all other eigenvalues are zero (with infinite multiplicity), so the index of the isotropic state ρ0 is not greater than
8. With simple calculations, it can be seen that for a fixed κ, critical points at σ = 0 (i.e. the Maier–Saupe potential)
remain as critical points at σ > 0, while their indices may increase.
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isotropic (5)

 (A) σ = 0  (B) σ = 2  (C) σ = 2.8  (D) σ = 3.2  (F) σ = 10

isotropic (8)

oblate (4)

 (E) σ = 7

isotropic (5) isotropic (5) isotropic (8) isotropic (8)

cap (5)

nema"c (0)

tennis (2)

nema"c (0)nema"c (0)nema"c (0)nema"c (0)

tennis (2) tennis (2)

oblate (4) oblate (5) oblate (5)oblate (2)oblate (2)

 (G) Tennis state at σ = 2.8, 3.2, and 7

prolate (0) prolate (1)prolate (1) prolate (1) prolate (1) prolate (3)

0 2π 0 2π 0 2π

π

0

π

0

π

0

Figure 3: Solution landscapes for the coupled dipolar/Maier–Saupe potential at κ = 8 and (A) σ = 0, (B) 2, (C) 2.8, (D) 3.2, (E) 7, and (F) 10. (G)
Expanded two-dimensional plots in spherical coordinates for the tennis state at σ = 2.8, 3.2, and 7. The horizontal axis represents azimuthal angle
in [0, 2π] and the vertical axis represents the polar angle in [0, π].
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Figure 4: Solution landscapes for the coupled dipolar/Maier–Saupe potential at κ = 7 and (A) σ = 0, (B) 2, (C) 2.5, (D) 3.2, (E) 5, and (F) 7.
(G) Expanded two-dimensional plot in spherical coordinates for the tennis state at σ = 5. (H) Existence region of the non-axisymmetric tennis
2-saddle, with a boundary point (3, 7.5) and a tangent line κ = κ∗ separating bifurcations from the oblate, prolate′, and prolate states.
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We first fix κ = 8 and construct the solution landscapes for the coupled dipolar/Maier–Saupe potential at different
σ in Fig. 3(A–F). At σ = 0, we recall that there exist a minimum prolate state, a 2-saddle oblate state, and a 5-saddle
isotropic state (Fig. 3(A)). At σ = 2, the prolate state becomes a 1-saddle via a pitchfork bifurcation, and a nematic
state appears as a global minimizer (Fig. 3(B)). Although this minimizer cannot be expressed in the form of (25), we
refer to it as a nematic state as well, because its density mainly focuses at one pole. At σ = 2.8, the oblate state
becomes a 4-saddle via a pitchfork bifurcation, and a tennis state emerges as a 2-saddle with density concentrating
around parts of a great circle (Fig. 3(C)). The isotropic state is destabilized as a 8-saddle at σ > 3, and a cap state
density concentrating on one side emerges as a 5-saddle. This cap 5-saddle then merges with the oblate 4-saddle,
resulting in an oblate 5-saddle. Finally, the tennis state merges with the prolate state, which leads to a prolate 3-
saddle. The solution landscapes at σ = 3.2, 7, and 10 are shown in Fig. 3(D–F). For better illustration, the bifurcation
diagram at κ = 8 is shown in Fig. 5(A).

Among these anisotropic states, the tennis state is a non-axisymmetric 2-saddle and has the dihedral symmetry
D2, that is, in some spherical coordinate (θ, ϕ) (the azimuthal angle θ ∈ [0, 2π] and the polar angle ϕ ∈ [0, π]), the
tennis state ρ satisfies,

ρ(θ, ϕ) = ρ(θ + π, ϕ) = ρ(−θ, ϕ). (27)

To illustrate the evolution of the non-axisymmetric state, we plot the tennis state for differentσ in spherical coordinates
in Fig. 3(G). The tennis state emerges from the oblate state, and merges with the prolate state, as shown in Fig. 5(A).

Since the solution landscapes are quite different at κ = 7 and 8 for the Maier–Saupe potential, we further compute
the solution landscapes at κ = 7 by varying σ, as shown in Fig. 4(A–F). Two minima, the prolate state and the isotropic
state, are connected by the prolate′ 1-saddle at σ = 0, as shown in Fig. 4(A). At σ = 2, a nematic state emerges as
a minimizer via a pitchfork bifurcation from the prolate state (Fig. 4(B)). Similarly, a nematic′ 1-saddle has been
bifurcated from the prolate′ state at σ = 2.8 (Fig. 4(C)), and then merges into the isotropic state at σ = 3, leading to
an isotropic 3-saddle. At σ = 5, a non-axisymmetric tennis state has emerged as a 2-saddle via a pitchfork bifurcation
from the prolate′ state, and then merges with the prolate state at σ = 7. The solution landscapes at σ = 3.2, 5, and
7 are shown in Fig. 4(D–F), and the tennis state at σ = 5 is plotted in Fig. 4(G) in the spherical coordinate. The
bifurcation diagram is shown in Fig. 5(B).

In Fig. 4(H), we plot the existence region of the non-axisymmetric tennis state in the parameter space. The tennis
state exists only at κ > κ∗, where κ∗ ≈ 6.7315 is the critical κ for the existence of anisotropic states for the Maier–Saupe
potential. By increasing σ, the tennis state is a 2-saddle bifurcated from the prolate′ 2-saddle (for κ∗ < κ < 7.5) or the
oblate 2-saddle (for κ > 7.5), and finally merges into the prolate 3-saddle. The bifurcation point (σ = 3, κ = 7.5) of
the isotropic state is on the boundary of the existence region of the tennis state. Based on the numerical findings, we
have the following conjectures for the coupled dipolar/Maier–Saupe potential.

Conjecture 3.1. All the critical points have the dihedral symmetry D2.

Conjecture 3.2. There exists at most one non-axisymmetric critical point (regardless of the rotation) for each param-
eter (σ0, κ0), which is an index-2 critical point.

Conjecture 3.3. If a non-axisymmetric critical point exists for (σ0, κ0), then that also exists for (σ0, κ > κ0).

3.4. Onsager potential

For the Onsager potential k(t) = µ
√

1 − t2,K has an infinite number of negative eigenvalues as − 1
2 Γ(s + 1)−1Γ(s +

2)−1Γ(s − 1
2 )Γ(s + 1

2 )πµ (with multiplicity 4s + 1, s ∈ N+) [13]. All the other eigenvalues are zero (with infinite
multiplicity) with odd functions as the corresponding eigenvectors. The bifurcation points for the isotropic state ρ0
are µs = 8Γ(s − 1

2 )−1Γ(s + 1
2 )−1Γ(s + 1)Γ(s + 2), s ∈ N+, and the first three bifurcation points are µ1 = 32/π ≈ 10.2,

µ2 = 256/π ≈ 81.5, and µ3 = 4096/5π ≈ 261. As predicted in [11], non-axisymmetric critical points with cubic
symmetry can exist with lower energy than E(ρ0) if µ > µ2.

For sufficiently small µ (e.g. µ = 8), the isotropic state is the only critical point and the global minimizer
(Fig. 6(A)). At µ = 10, two prolate states have emerged as a minimizer and a 1-saddle (referred to as prolate′)
respectively via a saddle-node bifurcation, while the isotropic state remains as a minimizer. The prolate′ 1-saddle
can be found by upward search from the isotropic state. After µ > µ1, the isotropic state loses its local stability and
becomes a 5-saddle, while the 1-saddle prolate′ state becomes a 2-saddle oblate state via a transcritical bifurcation, as
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Figure 5: The bifurcation diagrams for the coupled dipolar/Maier–Saupe potential at (A) κ = 8, and (B) κ = 7. The color of each node indicates its
axisymmetric property with its index in the bracket, and the corresponding parameter σ is labelled below.
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Figure 6: Solution landscapes for the Onsager potential at (A) µ = 8, (B) 10, (C) 25, (D) 50, and (E) 100. (F) Expanded two-dimensional plots in
spherical coordinates for the non-axisymmetric solutions at µ = 100. The horizontal axis represents azimuthal angle in [0, 2π] and the vertical axis
represents the polar angle in [0, π].
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proved in [13] and obtained numerically in [20, 36]. This transcritical bifurcation bears a resemblance to the bifurca-
tion at κ = 7.5 for the Maier–Saupe potential. It should be noted that these prolate and oblate states are axisymmetric
critical points named for their qualitative features and cannot be expressed in the form of (26). The solution landscape
at µ = 25 is shown in Fig. 6(C).

At µ = 50, the oblate state becomes a 4-saddle via a pitchfork bifurcation, and a square state exists as a 2-saddle,
with density concentrating at four vertices of a square on a great circle (Fig. 6(D)). The square state with the square
prismatic symmetry D4h is a non-axisymmetric solution which emerges first as µ increases. Here, ρ is said to be with
prismatic dihedral symmetry D2nh (order 8n), if in some spherical coordinate (θ, ϕ), ρ satisfies

ρ(θ, ϕ) = ρ(θ + π/n, ϕ) = ρ(−θ, ϕ) = ρ(θ,−ϕ). (28)

For a larger µ, the oblate state becomes a 6-saddle via another pitchfork bifurcation, and a hexagon state exists as a
4-saddle with D6h symmetry. It is a non-axisymmetric solution with density concentrating at six vertices of a regular
hexagon on a great circle. It is noted that for a two-dimensional Onsager free-energy model with the Onsager potential,
a critical point with four (or six) fold symmetry was also obtained with probability density concentrating on four (or
six) directions uniformly distributed on the unit circle [37, 38].

Finally we show the solution landscape at µ = 100 in Fig. 6(E), where the isotropic state is a 14-saddle. The
cubic state and the octahedral state are two non-axisymmetric solutions with cubic symmetry as predicted in [11].
The cubic state has eight density peaks at vertices of a regular cube, and the octahedral state has six at vertices of a
regular octahedron. Both the cubic state and the octahedral state have energy lower than E(ρ0). Besides, the quarter
state is also a non-axisymmetric solution with D4h symmetry. Together with the square and hexagon states, these five
non-axisymmetric solutions are plotted in spherical coordinates for better illustration in Fig. 6(F).
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Figure 7: The bifurcation diagram for the Onsager potential. The color of each node indicates its axisymmetric property with its index in the
bracket, and the corresponding parameter µ is labelled below. Two bifurcation points of the isotropic state are µ = µ1 and µ = µ2.

To present a full description of the emergence of these critical points, the bifurcation diagram is shown in Fig. 7.
At µ = 10, two axisymmetric states have emerged as a minimum (prolate) and a 1-saddle (prolate′) via a saddle-node
bifurcation. The first bifurcation of the isotropic state ρ0 is a transcritical bifurcation at µ = µ1 where the prolate′

1-saddle becomes an oblate 2-saddle. Then a secondary bifurcation occurs in the primary branch of the oblate state,
leading to the non-axisymmetric square 2-saddle. Successively, another secondary bifurcation occurs in this primary
branch with the appearance of the hexagon 4-saddle. Similar to the pair of prolate states, two octahedral states and
two oblate-prolate (ob+prolate) states also emerge via saddle-node bifurcations (critical points with a higher index
are labelled as octahedral′ and ob+prolate′ in Fig. 7). The isotropic state becomes a 14-saddle after a transcritical
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bifurcation at µ = µ2 when the cubic and double states appear. Then the non-axisymmetric quarter state is generated
from the primary branch of the cubic state via a secondary bifurcation.

For the Onsager potential, our numerical results give positive evidence for the following conjecture.

Conjecture 3.4. Any local minimizer is axisymmetric. For µ > µ1, the global minimizer is a prolate state—an
axisymmetric critical point with two density peaks at two antipodal points.

Meanwhile, we have the following conjecture for the Onsager potential.

Conjecture 3.5. There exists a non-axisymmetric critical point with D2nh symmetry for some µ > 0.

More precisely, as µ increases, we conjecture that successive secondary bifurcations will occur in the oblate
branch, leading to critical points with densities equally distributed on 2n points of a great circle. A similar result
has been obtained that the process of finding solutions of the two-dimensional Onsager free-energy model with the
Onsager potential can also be continued in [37, 38]. However, this conjecture in this three-dimensional case is hard to
prove using the procedure in [11], because the prolate state is an axisymmetric state (thus with D2nh symmetry) with
a lower energy.

 (A) icosahedral (14)  (B) dodecahedral (23)

0 2π

π

0

0 2π

π

0

Figure 8: Three-dimensional plots and expanded two-dimensional plots of non-axisymmetric critical points with icosahedral symmetry at µ = 270
for the Onsager potential. (A) The icosahedral state. (B) The dodecahedral state.

At µ = 270 > µ3, we numerically found non-axisymmetric critical points with icosahedral symmetry, named
an icosahedral state and a dodecahedral state, as shown in Fig. 8 in some coordinates. The isotropic state is a 27-
saddle, and the icosahedral state and the dodecahedral state are index-14 and index-23 saddles, respectively. Here, a
probability density ρ has icosahedral symmetry provided for ∀R ∈ I120,

ρ(p) = ρ(Rp), a.e.p ∈ S 2. (29)

The icosahedral group I120 is the symmetry group of a regular icosahedron with 120 elements, generated by orthogonal
transformations,

R1 =

 −1 0 0
0 1 0
0 0 1

 , R2 =
1
2

 −φ 1/φ 1
1/φ −1 φ
1 φ 1/φ

 , R3 =

 1 0 0
0 −1 0
0 0 1

 , (30)

where φ = (1+
√

5)/2 ≈ 1.618 is the golden ratio. The following theorem shows that non-axisymmetric critical points
with icosahedral symmetry exist in the Onsager model with a wide range of kernel potentials.

Theorem 3.1. There exists a non-axisymmetric critical point of the Onsager model (2) with icosahedral symmetry, if∫ 1

−1
k(t)P6(t)dt < −2, (31)

where P6(·) is the sixth Legendre polynomial.

Proof. Analogous to Proof of Theorem 3.5 in [11], the Onsager model E can attain a minimizer ρc ∈ L1(S 2) among
the probability density functions with icosahedral symmetry,

A =

{
ρ ∈ L1(S 2) :

∫
S 2
ρ(p)dp = 1, ρ(p) > 0,

ρ(p) = ρ(Rp), a.e.p ∈ S 2,∀R ∈ I120
}
, (32)
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and ρc is also a critical point of the Onsager model E. If ρc is axisymmetric, we would have ρc = ρ0 from the
icosahedral symmetry. Therefore, we only prove ρc , ρ0 if (31) holds.

An example of a sixth-order (not normalized) spherical harmonic with icosahedral symmetry is [39],

u(p) =
(
φ2 p2

1 − p2
2

) (
φ2 p2

2 − p2
3

) (
φ2 p2

3 − p2
1

)
+

2 +
√

5
21

. (33)

It can be verified by direct calculations that ∆u(p) = −42u(p),
∫

S 2 u(p)dp = 0 and u(p) = u(Rip) for i = 1, 2, 3. The
Funk–Hecke Theorem [40] implies that,∫

S 2
k(p · q)u(q)dq = 2πu(p)

∫ 1

−1
k(t)P6(t)dt, p ∈ S 2, (34)

where P6(·) is the sixth Legendre polynomial. From

δ2E
δρ2 (ρ0)[u] =

∫
S 2

[
4πu2(p) + u(p)

∫
S 2

k(p · q)u(q)dq
]

dp

= 2π
∫

S 2
u2(p)dp

(
2 +

∫ 1

−1
k(t)P6(t)dt

)
, (35)

ρ0 is not a local minimizer ofA if (31) holds, and consequently ρc , ρ0.

For the Onsager potential, the condition (31) is equivalent to µ > µ3, which is consistent with our numeri-
cal results. In fact, there exist non-constant spherical harmonics with icosahedral symmetry of order r ∈ RI =

{6, 10, 12, 15, 16, 18, 20, 21, 22, 24–28, · · · } [41]. Therefore, by taking u as an r-th-order spherical harmonic with
icosahedral symmetry, it can be proved that there exists a non-axisymmetric critical point of the Onsager model (2)
with icosahedral symmetry, if ∫ 1

−1
k(t)Pr(t)dt < −2, (36)

for some r ∈ RI where Pr(·) is the r-th Legendre polynomial.

4. Conclusions and discussions

In this article, we studied the solution landscapes of the Onsager model which involves the effects of nonlo-
cal molecular interactions [42]. The solution landscape provides a systematical numerical approach to find mul-
tiple critical points and reveal a global structure of the Onsager model. Special attention is paid to identify non-
axisymmetric critical points, which are difficult to obtain analytically and numerically. We first computed the solution
landscapes for the dipolar potential and the Maier–Saupe potential and showed all critical points are axisymmetric.
Next, we constructed the solution landscapes for the coupled dipolar/Maier–Saupe potential and identified a novel
non-axisymmetric critical point—the tennis state. The solution bifurcations and the existence region of the tennis
state are discussed based on the numerical results. Finally, the solution landscapes are investigated for the Onsager
potential. We found multiple non-axisymmetric critical points, including square, hexagon, octahedral, cubic, quarter,
icosahedral, and dodecahedral states.

The primary bifurcations of the isotropic state ρ0 for the Onsager potential have attracted much attention of ana-
lytical studies [11, 13]. Here, the bifurcation diagram of critical points for the Onsager potential is computed based on
the solution landscape in order to show a full description of the emergence of the critical points. First, the bifurcation
of the isotropic state at µ = µ1 is shown to lead to an axisymmetric critical point branch, which is consistent with
the analytical results in [13]. It has been conjectured that the other bifurcations of the isotropic state could lead to
non-axisymmetric critical points [11]. The existence of the cubic state at µ > µ2 and the dodecahedral state at µ > µ3
accords with this conjecture. Furthermore, we believe the larger bifurcation points of the isotropic state can also lead
to non-axisymmetric critical points. It should be pointed out that the kernel k(p · q) in (2), which is proportional to
the number density and the average excluded volume [10, 12, 43], cannot become unconditionally large. Therefore,
an overlarge value of µ can be unphysical, and the results for larger parameters are not presented here.
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An open question of the Onsager functional is whether local or global minimizers for the Onsager potential are ax-
isymmetric [11]. For instance, there could be secondary bifurcation from a primary branch of axisymmetric solutions
to a non-axisymmetric minimizer. We systematically constructed the solution landscapes of the Onsager functional
with the Onsager potential for µ 6 100 and demonstrated that secondary bifurcations indeed occur and lead to non-
axisymmetric saddle points, not minimizers. Therefore, our numerical results support the conjecture that all local
minimizers are axisymmetric for the Onsager potential.
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Appendix A. Reduced Onsager model

Generally speaking, the Onsager free-energy model (2) is an infinite-dimensional problem. However, for the
coupled dipolar/Maier–Saupe potential (including the dipolar potential and the Maier–Saupe potential), the Onsager
model (2) can be reduced to a finite-dimensional model. For the Onsager potential, this reduced model cannot work.

Supposing that ρ is a critical point for the coupled dipolar/Maier–Saupe potential, we rewrite the Euler–Lagrange
equation (7) as,

log φ(p) := log ρ(p) − ξ = −

∫
S 2

k(p · q)ρ(q)dq. (A.1)

The dipolar potential −σ(p · q) and the Maier–Saupe potential −κ(p · q)2 are eigenfunctions of the Laplace–Beltrami
operator ∆ with respect to p on S 2, and the corresponding eigenvalues are −2 and −6 [15], so we have,

(∆ + 2)(∆ + 6) log φ(p) = −

∫
S 2

(∆ + 2)(∆ + 6)k(p · q)ρ(q)dq = 0. (A.2)

Since the corresponding eigenspaces Λ1 and Λ2 are three- and five-dimensional subspaces spanned by spherical
harmonics of the first and second orders respectively, φ(p) in (A.1) can be expressed as a simple form of,

exp(m1 p1 + m2 p2 + m3 p3 + m4(p2
1 − p2

3) + m5(p2
2 − p2

3) + m6 p1 p2 + m7 p2 p3 + m8 p1 p3). (A.3)

Furthermore, by properly choosing the coordinate system to diagonalize the second-order term in (A.3), φ can be
expressed as

φr(p; m) = exp
(
m1 p1 + m2 p2 + m3 p3 + m4(p2

1 − p2
3) + m5(p2

2 − p2
3)
)
, (A.4)

with only five parameters. Therefore, we consider a reduced finite-dimensional Onsager model,

Er(m) = E (ρr(m)) , ρr(p; m) = Zr(m)−1φr(p; m), (A.5)

where Zr(m) =
∫

S 2 φr(p; m)dp is the partition function of φr. The gradient of the reduced model (A.5) is

∂Er

∂m
=

∫
S 2

∂ρr

∂m
δE
δρ

(ρr)dp, (A.6)

where
∂ρr

∂m
=

1
Zr

∂φr

∂m
+
ρr

Zr

∂Zr

∂m
. (A.7)

Therefore, any critical point of the Onsager model (2) can also be found as a critical point (with an orthogonal
transformation) in the reduced Onsager model (A.5). However, there may exist extraneous solutions in the reduced
Onsager model (A.5), so each critical points of (A.5) should be verified. The Hessian of (A.5) is

∂2Er

∂m2 [v] =

∫
S 2

∂2ρr

∂m2 [v]
δE
δρ

(ρr) +
∂ρr

∂m
δ2E
δρ2 (ρr)

[
∂ρr

∂m
· v

]
dp, (A.8)
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where
∂2ρr

∂m2 =
1
Zr

∂2φr

∂m2 −
ρr

Zr

∂2Zr

∂m2 +
2ρr

Z2
r

∂Zr

∂m
∂Zr

∂m

>

−
1

Z2
r

(
∂φr

∂m
∂Zr

∂m

>

+
∂Zr

∂m
∂φr

∂m

>
)
. (A.9)

It can be easily observed that for a critical point of both models, its index in the Onsager model (2) is no less than that
in (A.5).
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