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ERROR ESTIMATES FOR EULER DISCRETIZATION OF
HIGH-INDEX SADDLE DYNAMICS\ast 

LEI ZHANG\dagger , PINGWEN ZHANG\ddagger , AND XIANGCHENG ZHENG\S 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . High-index saddle dynamics provide an effective means to compute the any-index
saddle points and construct the solution landscape. In this paper, we prove error estimates for
Euler discretization of high-index saddle dynamics with respect to the time step size, which remains
untreated in the literature. We overcome the main difficulties that lie in the strong nonlinearity of the
saddle dynamics and the orthonormalization procedure in the numerical scheme that is uncommon
in standard discretization of differential equations. The derived methods are further extended to
study the generalized high-index saddle dynamics for nongradient systems and provide theoretical
support for the accuracy of numerical implementations.
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1. Introduction. Finding stationary points of nonlinear multivariable energy
functions E(x) has attracted extensive interest in different scientific communities
during the past few decades. It plays a crucial role in determining many physical
or chemical properties of complex systems, examples of which include the critical nu-
clei in phase transition [5, 37, 34, 35], defects in liquid crystals [11, 24], self-assembly
of polymers [12, 25], molecular clusters [1, 3], and artificial neural networks [9]. Ac-
cording to Morse theory [21], the local stability of stationary points, including both
stable minima and unstable saddle points, can be characterized by the Morse index.
The (Morse) index of a nondegenerate saddle point is the maximal dimension of a
subspace on which its Hessian matrix is negative definite, i.e., the number of neg-
ative eigenvalues of the Hessian matrix. In particular, the stable stationary point
(minimizer) can be regarded as an index-0 saddle point with no unstable direction.

Due to the complex geometric structures of the energy functions and the un-
stable nature of saddle points, how to efficiently compute multiple stationary points
remains a challenging problem [3, 7, 18, 20]. Most existing efforts focus on finding
the index-1 saddle point or transition state, i.e., a stationary point where the Hessian
has one and only one negative eigenvalue. One of the popular approaches is the class
of surface walking methods [37]. In particular, the dimer-type method [15, 33, 36]
and the gentlest ascent dynamics [6], as the representatives of the surface walking
methods, were developed to compute the index-1 saddle points. Recently, inspired by
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2926 LEI ZHANG, PINGWEN ZHANG, AND XIANGCHENG ZHENG

the optimization-based shrinking dimer method [36], the high-index saddle dynamics
(HiSD) were proposed to search for any-index saddle points [31]. The HiSD method
provides an efficient tool to construct the solution landscape of the energy systems,
which describes a pathway map that starts with a parent state (the highest-index sad-
dle point) and then relates the low-index saddle points down to all the minimizers [29].
The solution landscape approach has been applied to study various physical systems
such as liquid crystals [14, 13, 32], polymers [26], and quasicrystals [28]. Moreover,
based on the HiSD method, generalized high-index saddle dynamics (GHiSD) were
further proposed to compute the any-index saddle points and solution landscapes of
dynamical (nongradient) systems [30].

Despite the sustained development of the saddle-point searching algorithms, the
rigorous numerical analysis on them is still far from well developed. Some existing
studies mainly focus on the index-1 saddle points. For instance, in [33], the time
discretization of the shrinking dimer dynamics was studied, and the linear local as-
ymptotic stability analysis and optimal error reduction rates were carried out. Global
convergence and nonlinear asymptotic stability were also illustrated for some specific
systems. In [10], the dimer method with linesearch for the step size and the precondi-
tioning was investigated. Local convergence and error reduction were proved and, in
particular, the O(l2) accuracy between the stationary point of the algorithm and the
saddle was proved where l refers to the dimer length. In [16], the existing local conver-
gence results for dimer-type and gentlest ascent dynamics methods were extended by
developing an improved estimate on the region of attraction of index-1 saddle points
that goes beyond the linearized regime. In [8], a quadratic local convergence rate in
terms of the number of iterations was proved for an iterative minimization scheme for
searching index-1 saddle points of energy functions.

The aforementioned works, which provide asymptotic convergence results of, e.g.,
xn  - x\ast , where xn and x\ast refer to the numerical solution at the nth iteration and
the limit (target saddle point) of the scheme, respectively, made significant progress
on the theoretical foundation of numerical analysis of the saddle-point searching al-
gorithms. In contrast, the error estimate of xn  - x(tn), where x(tn) represents the
exact solution of HiSD at the step tn, gives the dynamical pathway convergence of
numerical solutions to the saddle dynamics, which provides important physical infor-
mation, such as the transition pathway [28], and theoretically ensures the accuracy
of the constructed solution landscape [29]. Inaccurate computations of the dynamical
pathway could lead to missing saddle points and an incomplete solution landscape.
Therefore, it is necessary and meaningful to perform the error estimates of xn - x(tn)
for HiSD, which motivates the investigations in the work. Furthermore, the existing
numerical analysis only focuses on the schemes of finding index-1 saddle points, while
the corresponding results for numerical methods of finding high-index saddle points
in [30, 31] are still unavailable.

Motivated by these discussions, in this paper we aim to prove error estimates for
the Euler discretization of the HiSD method with respect to the time step size, which
focuses more on the dynamics (i.e., the searching pathways between saddle points)
than its limit. We emphasize that there exist some essential differences and chal-
lenges from the standard methods of ODEs. First, the rigorous numerical analysis on
saddle-point searching algorithms is more challenging than gradient descent methods
for finding the minima, which remains untreated for the high-index saddle points in
particular. For instance, in (4.3) the left-hand side of the scheme of the ith eigenvector
vi is not its numerical approximation vi,n at the step tn, but an intermediate quantity
\~vi,n. This is due to the fact that the outcomes \{ \~vi,n\} of the schemes of \{ vi\} may not
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ERROR ESTIMATES FOR SADDLE DYNAMICS 2927

be orthonormal and thus need to be further processed in the third equation of (4.3).
Consequently, in order to generate the error equations by subtracting the schemes
from the reference equations, we will encounter vi(tn)  - \~vi,n instead of vi(tn)  - vi,n
as in the case of ODE discretizations. A natural idea is to split vi(tn)  - \~vi,n as
(vi(tn) - vi,n) + (vi,n  - \~vi,n), which requires an additional estimate of vi,n  - \~vi,n that
is not common in numerical methods of ODEs. Since \{ vi,n\} is generated from \{ \~vi,n\} 
via the orthonormalization, careful estimates are required for this procedure, which
is intricate and not available in the literature. Furthermore, to support this analy-
sis, novel techniques are developed to overcome the strong nonlinearity of the HiSD
to prove several properties of the numerical solutions based on their schemes, which
serves as another highlight. The aforementioned issues are the main contributions of
the current work and distinguish the proposed methods from the standard numerical
analysis of ODEs. By subtle treatments and estimates, we rigorously prove the first-
order accuracy of the numerical scheme, which contributes to the numerical theory of
HiSD and provides theoretical support for the accuracy of numerical computations.

The rest of this paper is organized as follows: In section 2 we present formulations
of HiSD. In section 3 we prove the error estimates for Euler discretization of index-1
saddle dynamics. In section 4 we extend the developed techniques to prove error esti-
mates for the Euler discretization of index-k saddle dynamics. Numerical experiments
are performed in section 5 to substantiate the theoretical findings. In section 6 we
extend the proposed techniques to study the GHiSD of nongradient systems, and we
finally address the concluding remarks in section 7.

2. Formulation of HiSD. Given a twice Fr\'echet differentiable energy func-
tional E(x) with x \in \BbbR N , we define the corresponding natural force F : \BbbR N \rightarrow \BbbR N

and the negative Hessian J \in \BbbR N\times N by F (x) =  - \nabla E(x) and J(x) =  - \nabla 2E(x). It
is clear that J(x) = J(x)\top . Then the saddle dynamics for an index-k saddle point
(k-SD) of E(x) with 1 \leq k \in \BbbN reads [31]

(2.1)

\left\{           
dx

dt
= \beta 

\biggl( 
I  - 2

k\sum 
j=1

vjv
\top 
j

\biggr) 
F (x),

dvi
dt

= \gamma 

\biggl( 
I  - viv

\top 
i  - 2

i - 1\sum 
j=1

vjv
\top 
j

\biggr) 
J(x)vi, 1 \leq i \leq k,

where x represents a position variable, vi(i = 1, . . . , k) are k directional variables,
and \beta , \gamma > 0 are relaxation parameters. The system (2.1) was formulated by the
minimax optimization framework, and it was shown in [31, Theorem 1] that, under
suitable assumptions, a linearly stable solution of (2.1) is an index-k saddle point of
E(x) associated with k eigenvectors corresponding to the k negative eigenvalues of
its Hessian. Furthermore, it is shown in [31] that if the initial values of \{ vi(t)\} ki=1 for
(2.1) are orthonormal vectors, then

(2.2) \| vi(t)\| = 1, 1 \leq i \leq k \forall t > 0.

In particular, the index-1 saddle points attract much interest as they connect
different minimizers. This corresponds to the simplest case of (2.1) with k = 1, i.e.,
1-SD, which is also equivalent to the gentlest ascent dynamics proposed in [6],

(2.3)

\left\{     
dx

dt
= \beta 

\bigl( 
I  - 2vv\top 

\bigr) 
F (x),

dv

dt
= \gamma 

\bigl( 
I  - vv\top 

\bigr) 
J(x)v.
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2928 LEI ZHANG, PINGWEN ZHANG, AND XIANGCHENG ZHENG

Throughout this paper we make the following regular assumptions on the force
and the Hessian.

Assumption A. There exists a constant L > 0 such that the following linear
growth and Lipschitz conditions hold under the standard l2 norm \| \cdot \| of a vector or
a matrix:

\| J(x2) - J(x1)\| + \| F (x2) - F (x1)\| \leq L\| x2  - x1\| ,

\| F (x)\| \leq L(1 + \| x\| ), x, x1, x2 \in \BbbR N .

Remark 2.1. In many applications, there exist various energy functions E satis-
fying Assumption A, such as the Minyaev--Quapp surface [22]

(2.4) E(x1, x2) = cos(2x1) + cos(2x2) + 0.57 cos(2x1  - 2x2)

and the Eckhardt surface [4]

(2.5)
E(x1, x2) = exp( - x2

1  - (x2 + 1)2)

+exp( - x2
1  - (x2  - 1)2) + 4exp

\biggl( 
 - 3

x2
1 + x2

2

2

\biggr) 
+

x2
2

2
.

We then cite the continuous and discrete Gronwall inequalities that will be fre-
quently used in this paper [2].

Lemma 2.1. Assume z, g, and k are continuous functions on [0, T ], z \geq 0, k \geq 0,
g is nondecreasing, and

z(t) \leq g(t) +

\int t

0

k(s)z(s)ds, t \in [0, T ].

Then the following estimate holds:

z(t) \leq g(t)exp

\biggl( \int t

0

k(s)ds

\biggr) 
, t \in [0, T ].

Assume that the nonnegative sequences \{ zn\} n\geq 1 and \{ kn\} n\geq 1 satisfy

zn \leq \rho +

n - 1\sum 
j=1

kjzj , n \geq 1

for some \rho \geq 0. Then the following estimate holds:

zn \leq \rho exp

\biggl( n - 1\sum 
j=1

kj

\biggr) 
, n \geq 1.

By (2.2), we multiply the first equation in (2.1) by x\top to obtain

(2.6)

1

2

d

dt
\| x\| 2 = x\top dx

dt
= \beta x\top F (x) - 2\beta 

k\sum 
j=1

v\top j F (x)x\top vj

\leq \beta \| x\| \| F (x)\| + 2\beta k\| x\| \| F (x)\| 

\leq (1 + 2k)\beta L\| x\| (1 + \| x\| )

\leq 3(1 + 2k)\beta L

2
\| x\| 2 + (1 + 2k)\beta L

2
,

D
ow

nl
oa

de
d 

10
/1

7/
22

 to
 2

18
.7

0.
25

5.
16

2 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ERROR ESTIMATES FOR SADDLE DYNAMICS 2929

which leads to

(2.7) \| x(t)\| 2 \leq \| x(0)\| 2 + 3(1 + 2k)\beta L

\int t

0

\| x(s)\| 2ds+ (1 + 2k)\beta Lt.

Then for a terminal time T > 0, an application of the Gronwall inequality in Lemma
2.1 yields

(2.8) \| x\| 2 \leq 
\bigl( 
\| x(0)\| 2 + (1 + 2k)\beta LT

\bigr) 
e3(1+2k)\beta LT =: QT .

That is, within any terminal time T , \| x\| can be bounded by some fixed constant\surd 
QT , and we thus assume

JT := max
\| x\| \leq 

\surd 
QT

\| J(x)\| .

3. Numerical analysis for index-1 saddle dynamics. In this section, we
consider the explicit Euler scheme of 1-saddle dynamics (1-SD) (2.3) on the time
interval [0, T ] for some T > 0 equipped with the initial conditions

(3.1) x(0) = x0, v(0) = v0, \| v0\| 2 = 1.

Although this is mathematically a special case of k-SD (2.1), it is indeed the most-
considered case and could elucidate some key ideas of the analysis in a clear manner.

3.1. Explicit Euler scheme. For NT \in \BbbN , we define a uniform temporal par-
tition of [0, T ] by tn = n\tau for 0 \leq n \leq NT , where \tau = T/NT stands for the time step
size. We then approximate the first-order derivative by the backward Euler scheme
at tn as follows:

dg(tn)

dt
=

g(tn) - g(tn - 1)

\tau 
+Rg

n,

where g refers to x or v, and the truncation error \| Rg
n\| = O(\tau ). Plugging this

discretization into (2.3) yields

(3.2)

\Biggl\{ 
x(tn) = x(tn - 1) + \tau \beta 

\bigl( 
I  - 2v(tn - 1)v(tn - 1)

\top \bigr) F (x(tn - 1)) + \tau Rx
n,

v(tn) = v(tn - 1) + \tau \gamma 
\bigl( 
I  - v(tn - 1)v(tn - 1)

\top \bigr) J(x(tn - 1))v(tn - 1) + \tau Rv
n.

Then we drop the truncation errors to obtain the explicit Euler scheme of (2.3)
with the approximations \{ xn, vn\} NT

n=1 to \{ x(tn), v(tn)\} NT
n=1,

(3.3)

\left\{         
xn = xn - 1 + \tau \beta 

\bigl( 
I  - 2vn - 1v

\top 
n - 1

\bigr) 
F (xn - 1),

\~vn = vn - 1 + \tau \gamma 
\bigl( 
I  - vn - 1v

\top 
n - 1

\bigr) 
J(xn - 1)vn - 1,

vn =
\~vn

\| \~vn\| 

for 1 \leq n \leq NT , equipped with the initial conditions (3.1).
From (3.3) we find that although \~vn may not have the unit l2 norm due to the

discretization errors, the normalization procedure in the third equation of (3.3) ensures
\| vn\| = 1 in order to preserve the unit length of v as in the continuous problem (2.3).
We thus multiply x\top 

n on both sides of the first equation of (3.3) to obtain

\| xn\| 2 \leq \| xn\| \| xn - 1\| + \tau \beta \| xn\| \| F (xn - 1)\| + \tau \beta \| xn\| \| F (xn - 1)\| ,
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2930 LEI ZHANG, PINGWEN ZHANG, AND XIANGCHENG ZHENG

which leads to

\| xn\|  - \| xn - 1\| \leq \tau \beta \| F (xn - 1)\| + 2\tau \beta \| F (xn - 1)\| \leq 3\tau \beta L(1 + \| xn - 1\| ).

Summing up this equation from n = 1 to n\ast \leq NT yields

\| xn\ast \|  - \| x0\| \leq 3\beta LT + 3\tau \beta L

n\ast \sum 
n=1

\| xn - 1\| .

Then we apply the discrete Gronwall inequality to conclude that there exists a con-
stant \=QT like (2.8) such that \| xn\| \leq 

\sqrt{} 
\=QT for 0 \leq n \leq NT , and we thus assume

(3.4) \=JT := max
\| x\| \leq 

\surd 
\=QT

\| J(x)\| .

3.2. Auxiliary estimate of \~\bfitv \bfitn  - \bfitv \bfitn . If we intend to find the error equation
of evn := v(tn)  - vn by subtracting the second equation of (3.2) from that of (3.3),
the right-hand side of the resulting equation has evn - 1 while the left-hand side is
v(tn) - \~vn instead of evn due to the normalization, which is uncommon in the context
of discretizing differential equations that naturally yields the errors of different time
steps on both sides of the error equations. A potential idea to circumvent this issue
is to split v(tn) - \~vn as (v(tn) - vn)+ (vn  - \~vn) = evn +(vn  - \~vn), which introduces an
additional error vn  - \~vn. In particular, we need to show that the difference vn  - \~vn
has the magnitude of O(\tau 2) in order to preserve the O(\tau ) accuracy of the numerical
scheme (3.3), which motivates the following estimate.

Lemma 3.1. Under Assumption A, the following estimate holds:\bigm| \bigm| \| \~vn\|  - 1
\bigm| \bigm| \leq \bigm| \bigm| \| \~vn\| 2  - 1

\bigm| \bigm| \leq \tau 2\gamma 2 \=J2
T , 1 \leq n \leq NT .

Proof. By \| vn - 1\| = 1 we multiply v\top n - 1 on both sides of the second equation of
(3.3) to obtain

(3.5)
v\top n - 1\~vn = v\top n - 1vn - 1

+\tau \gamma 
\bigl( 
v\top n - 1J(xn - 1)vn - 1  - v\top n - 1vn - 1v

\top 
n - 1J(xn - 1)vn - 1

\bigr) 
= 1.

We then multiply \~v\top n on both sides of the second equation of (3.3) and apply (3.5) to
obtain

(3.6)

\| \~vn\| 2 = \~v\top n \~vn

= \~v\top n vn - 1 + \tau \gamma 
\bigl( 
\~v\top n J(xn - 1)vn - 1  - \~v\top n vn - 1v

\top 
n - 1J(xn - 1)vn - 1

\bigr) 
= 1 + \tau \gamma 

\bigl( 
\~v\top n J(xn - 1)vn - 1  - v\top n - 1J(xn - 1)vn - 1

\bigr) 
= 1 + \tau \gamma 

\bigl( 
\~vn  - vn - 1

\bigr) \top 
J(xn - 1)vn - 1.

Subtracting (3.5) from (3.6) we get

(3.7)
\bigl( 
\~vn  - vn - 1

\bigr) \top 
\~vn = \tau \gamma 

\bigl( 
\~vn  - vn - 1

\bigr) \top 
J(xn - 1)vn - 1.

By \| vn - 1\| = 1 and (3.5) we have\bigl( 
\~vn  - vn - 1

\bigr) \top 
vn - 1 = \~v\top n vn - 1  - v\top n - 1vn - 1 = 1 - 1 = 0,

D
ow

nl
oa

de
d 

10
/1

7/
22

 to
 2

18
.7

0.
25

5.
16

2 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ERROR ESTIMATES FOR SADDLE DYNAMICS 2931

and we apply this equality and (3.7) to obtain

\| \~vn  - vn - 1\| 2 = (\~vn  - vn - 1)
\top (\~vn  - vn - 1)

= (\~vn  - vn - 1)
\top \~vn = \tau \gamma 

\bigl( 
\~vn  - vn - 1

\bigr) \top 
J(xn - 1)vn - 1

\leq \tau \gamma \| \~vn  - vn - 1\| \| J(xn - 1)\| \| vn - 1\| 

\leq \tau \gamma \=JT \| \~vn  - vn - 1\| ,

that is,

(3.8) \| \~vn  - vn - 1\| \leq \tau \gamma \=JT .

Note that (3.6) implies

(3.9) \| \~vn\| 2  - 1 = \tau \gamma 
\bigl( 
\~vn  - vn - 1

\bigr) \top 
J(xn - 1)vn - 1.

We invoke (3.8) in (3.9) to obtain

(3.10)
\bigm| \bigm| \| \~vn\| 2  - 1

\bigm| \bigm| \leq \tau \gamma \| \~vn  - vn - 1\| \| J(xn - 1)\| \| vn - 1\| \leq \tau 2\gamma 2 \=J2
T .

We incorporate this estimate with

(3.11)
\bigm| \bigm| \| \~vn\| 2  - 1

\bigm| \bigm| = \bigl( 
\| \~vn\| + 1

\bigr) \bigm| \bigm| \| \~vn\|  - 1
\bigm| \bigm| \geq \bigm| \bigm| \| \~vn\|  - 1

\bigm| \bigm| 
to complete the proof.

Corollary 3.2. Under Assumption A, the following estimate holds:

\| \~vn  - vn\| \leq \tau 2\gamma 2 \=J2
T , 1 \leq n \leq NT .

Proof. We subtract \~vn from vn to find

\~vn  - vn = \~vn  - \~vn
\| \~vn\| 

=
\~vn

\| \~vn\| 
\bigl( 
\| \~vn\|  - 1

\bigr) 
.

Thus we apply Lemma 3.1 to immediately obtain

\| \~vn  - vn\| =
\| \~vn\| 
\| \~vn\| 

\bigm| \bigm| \| \~vn\|  - 1
\bigm| \bigm| \leq \tau 2\gamma 2 \=J2

T ,

which completes the proof.

3.3. Error estimates. Define the errors by

exn := x(tn) - xn, evn := v(tn) - vn, 1 \leq n \leq NT .

We first bound exn in terms of evn in the following theorem.

Theorem 3.3. Suppose Assumption A holds. Then the following estimate holds:

\| exn\| \leq Q\tau 

n - 1\sum 
m=1

\| evm\| +Q\tau , 1 \leq n \leq NT .

Here Q depends on L, T , and \beta but is independent of \tau , n, and NT .
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Proof. We subtract the first equation of (3.2) from that of (3.3) to obtain

(3.12)

exn = exn - 1 + \tau \beta (F (x(tn - 1)) - F (xn - 1))

 - 2\tau \beta 
\bigl[ 
v(tn - 1)v(tn - 1)

\top F (x(tn - 1))

 - vn - 1v
\top 
n - 1F (xn - 1)

\bigr] 
+ \tau Rx

n

= exn - 1 + \tau \beta (F (x(tn - 1)) - F (xn - 1))

 - 2\tau \beta 
\bigl[ 
evn - 1v(tn - 1)

\top F (x(tn - 1))

+vn - 1(e
v
n - 1)

\top F (x(tn - 1))

+vn - 1v
\top 
n - 1

\bigl( 
F (x(tn - 1)) - F (xn - 1)

\bigr) \bigr] 
+ \tau Rx

n.

We then apply Assumption A to find

(3.13)

\| exn\| \leq \| exn - 1\| + \tau \beta \| F (x(tn - 1)) - F (xn - 1)\| 
+2\tau \beta 

\bigl[ 
\| evn - 1\| \| v(tn - 1)\| \| F (x(tn - 1))\| 

+ \| vn - 1\| \| evn - 1\| \| F (x(tn - 1))\| 
+ \| vn - 1\| \| vn - 1\| \| F (x(tn - 1)) - F (xn - 1)\| 

\bigr] 
+ \tau \| Rx

n\| 
\leq \| exn - 1\| + \tau \beta L\| exn - 1\| + 2\tau \beta 

\bigl[ 
\| evn - 1\| L(1 +

\sqrt{} 
QT )

+\| evn - 1\| L(1 +
\sqrt{} 
QT ) + L\| exn - 1\| 

\bigr] 
+ \tau \| Rx

n\| 
\leq (1 + 3\tau \beta L)\| exn - 1\| + 4\tau \beta L(1 +

\sqrt{} 
QT )\| evn - 1\| + \tau \| Rx

n\| .

Adding this equation from n = 1 to n\ast leads to

\| exn\ast 
\| \leq 3\tau \beta L

n\ast \sum 
n=1

\| exn - 1\| +
n\ast \sum 
n=1

\Bigl[ 
4\tau \beta L(1 +

\sqrt{} 
QT )\| evn - 1\| + \tau \| Rx

n\| 
\Bigr] 
.

Then an application of the discrete Gronwall inequality yields

\| exn\ast 
\| \leq Q

n\ast \sum 
n=1

\Bigl[ 
\tau \| evn - 1\| + \tau \| Rx

n\| 
\Bigr] 
.

We incorporate this estimate with \| Rx
n\| = O(\tau ) to complete the proof.

Based on the derived results, we prove the error estimates of the explicit Euler
scheme (3.3) in the following theorem.

Theorem 3.4. Suppose Assumption A holds. Then the following estimate holds:

\| exn\| + \| evn\| \leq Q\tau , 1 \leq n \leq NT .

Here Q depends on L, T , and \beta but is independent of \tau , n, and NT .

D
ow

nl
oa

de
d 

10
/1

7/
22

 to
 2

18
.7

0.
25

5.
16

2 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ERROR ESTIMATES FOR SADDLE DYNAMICS 2933

Proof. We subtract the second equation of (3.2) from that of (3.3) to obtain

v(tn) - \~vn = evn - 1 + \tau \gamma 
\bigl( 
J(x(tn - 1))v(tn - 1) - J(xn - 1)vn - 1

\bigr) 
 - \tau \gamma 

\bigl[ 
v(tn - 1)v(tn - 1)

\top J(x(tn - 1))v(tn - 1)

 - vn - 1v
\top 
n - 1J(xn - 1)vn - 1

\bigr] 
+ \tau Rv

n

= evn - 1 + \tau \gamma 
\bigl[ 
(J(x(tn - 1)) - J(xn - 1))v(tn - 1) + J(xn - 1)e

v
n - 1

\bigr] 
 - \tau \gamma 

\bigl[ 
evn - 1v(tn - 1)

\top J(x(tn - 1))v(tn - 1)

+ vn - 1(e
v
n - 1)

\top J(x(tn - 1))v(tn - 1)

+ vn - 1v
\top 
n - 1(J(x(tn - 1)) - J(xn - 1))v(tn - 1)

+ vn - 1v
\top 
n - 1J(xn - 1)e

v
n - 1

\bigr] 
+ \tau Rv

n,

which leads to

(3.14)
\| v(tn) - \~vn\| \leq \| evn - 1\| + \tau \gamma 

\bigl[ 
L\| exn - 1\| + \=JT \| evn - 1\| 

\bigr] 
+ \tau \gamma 

\bigl[ 
2JT \| evn - 1\| + L\| exn - 1\| + \=JT \| evn - 1\| 

\bigr] 
+ \tau Rv

n.

We split v(tn) - \~vn as (v(tn) - vn) + (vn  - \~vn) = evn + (vn  - \~vn) and apply Corollary
3.2 and Theorem 3.3 for (3.14) to get

(3.15)

\| evn\| \leq \| evn - 1\| + \| vn  - \~vn\| +Q\tau 
\bigl( 
\| exn - 1\| + \| evn - 1\| 

\bigr) 
+ \tau \| Rv

n\| 

\leq \| evn - 1\| +Q\tau \| evn - 1\| +Q\tau 2
n - 1\sum 
m=1

\| evm\| +Q\tau 2.

Adding this equation from n = 1 to n\ast for 1 \leq n\ast \leq NT and using

\tau 2
n\ast \sum 
n=1

n - 1\sum 
m=1

\| evm\| = \tau 2
n\ast  - 1\sum 
m=1

n\ast \sum 
n=m+1

\| evm\| \leq T\tau 

n\ast  - 1\sum 
m=1

\| evm\| 

we get

(3.16) \| evn\ast 
\| \leq Q\tau 

n\ast  - 1\sum 
n=1

\| evn\| +Q\tau .

Then an application of the discrete Gronwall inequality leads to

\| evn\| \leq Q\tau , 1 \leq n \leq NT .

Plugging this estimate back to the conclusion of Theorem 3.3 yields the estimate of
\| exn\| and we thus complete the proof.

4. Numerical analysis for index-\bfitk saddle dynamics. In this section, we
consider the explicit Euler approximation of k-SD (2.1) for some k > 1 on the time
interval [0, T ] for some T > 0 equipped with the initial conditions

(4.1) x(0) = x0, vi(0) = vi,0 with v\top i,0vj,0 = \delta i,j for 1 \leq i, j \leq k,

where \delta i,j = 1 if i = j and \delta i,j = 0 otherwise.
Compared with the 1-SD (2.3), which has only one eigenvector in the system and

thus only requires the normalization at each time step, the k-SD has k eigenvectors and
thus needs an additional orthogonalization process, which significantly complicates the
analysis.
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4.1. Explicit Euler scheme. Similar to section 3.1, a reference equation for
k-SD (2.1) reads

(4.2)

\left\{                   

x(tn) = x(tn - 1) + \tau \beta 

\biggl( 
I  - 2

k\sum 
j=1

vj(tn - 1)vj(tn - 1)
\top 
\biggr) 
F (x(tn - 1)) + \tau Rx

n,

vi(tn) = vi(tn - 1) + \tau \gamma 

\biggl( 
I  - vi(tn - 1)vi(tn - 1)

\top 

 - 2

i - 1\sum 
j=1

vj(tn - 1)vj(tn - 1)
\top 
\biggr) 
J(x(tn - 1))vi(tn - 1) + \tau Rvi

n , 1 \leq i \leq k.

Then we drop the truncation errors to obtain the explicit Euler scheme of (2.1) with

the approximations \{ xn, vi,n\} NT ,k
n=1,i=1 to \{ x(tn), vi(tn)\} NT ,k

n=1,i=1,

(4.3)

\left\{                               

xn = xn - 1 + \tau \beta 

\biggl( 
I  - 2

k\sum 
j=1

vj,n - 1v
\top 
j,n - 1

\biggr) 
F (xn - 1),

\~vi,n = vi,n - 1 + \tau \gamma 

\biggl( 
I  - vi,n - 1v

\top 
i,n - 1

 - 2

i - 1\sum 
j=1

vj,n - 1v
\top 
j,n - 1

\biggr) 
J(xn - 1)vi,n - 1, 1 \leq i \leq k,

vi,n =
1

Yi,n

\biggl( 
\~vi,n  - 

i - 1\sum 
j=1

(\~v\top i,nvj,n)vj,n

\biggr) 
, 1 \leq i \leq k,

for 1 \leq n \leq NT and

Yi,n : =

\bigm\| \bigm\| \bigm\| \bigm\| \~vi,n  - 
i - 1\sum 
j=1

(\~v\top i,nvj,n)vj,n

\bigm\| \bigm\| \bigm\| \bigm\| 
=

\biggl( 
\| \~vi,n\| 2  - 2

i - 1\sum 
j=1

(\~v\top i,nvj,n)
2 +

i - 1\sum 
j=1

(\~v\top i,nvj,n)v
\top 
j,n \cdot 

i - 1\sum 
j=1

(\~v\top i,nvj,n)vj,n

\biggr) 1/2

=

\biggl( 
\| \~vi,n\| 2  - 

i - 1\sum 
j=1

(\~v\top i,nvj,n)
2

\biggr) 1/2

,

equipped with the initial conditions (4.1). The third equation of (4.3) is indeed
the Gram--Schmidt normalized orthogonalization procedure in order to preserve the
orthonormal property of the vectors as in the continuous problem (2.1). Similar to
the derivation of \=JT in (3.4), we could conclude from the first equation of (4.3) that
there exists a positive constant \^JT independent of NT and \tau such that max1\leq n\leq NT

\| J(xn)\| \leq \^JT .

4.2. Auxiliary estimates. We prove several auxiliary estimates to support the
error estimates. We will see that, compared with the numerical analysis of 1-SD, the
orthogonality procedure in the Euler scheme (4.3) of k-SD brings additional difficulties
that require subtle estimates.

Lemma 4.1. Under Assumption A, the following estimates hold for 1 \leq n \leq NT :\bigm| \bigm| (\~vm,n)
\top \~vi,n

\bigm| \bigm| \leq M\tau 2, 1 \leq m < i \leq k;\bigm| \bigm| \| \~vi,n\|  - 1
\bigm| \bigm| \leq \bigm| \bigm| \| \~vi,n\| 2  - 1

\bigm| \bigm| \leq M\tau 2, 1 \leq i \leq k.
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Here the positive constant M is independent of n, NT , and \tau .

Proof. To prove the first estimate, we directly calculate the product \~v\top m,n\~vi,n for
1 \leq m < i \leq k,
(4.4)
\~v\top m,n\~vi,n

=

\biggl[ 
vm,n - 1 + \tau \gamma 

\biggl( 
I  - vm,n - 1v

\top 
m,n - 1  - 2

m - 1\sum 
j=1

vj,n - 1v
\top 
j,n - 1

\biggr) 
J(xn - 1)vm,n - 1

\biggr] \top 
\biggl[ 
vi,n - 1 + \tau \gamma 

\biggl( 
I  - vi,n - 1v

\top 
i,n - 1  - 2

i - 1\sum 
j=1

vj,n - 1v
\top 
j,n - 1

\biggr) 
J(xn - 1)vi,n - 1

\biggr] 
= \tau \gamma 

\biggl( 
v\top m,n - 1J(xn - 1)

\top vi,n - 1 + v\top m,n - 1J(xn - 1)vi,n - 1  - 2v\top m,n - 1J(xn - 1)vi,n - 1

\biggr) 
+\tau 2\gamma 2

\biggl[ \biggl( 
I  - vm,n - 1v

\top 
m,n - 1  - 2

m - 1\sum 
j=1

vj,n - 1v
\top 
j,n - 1

\biggr) 
J(xn - 1)vm,n - 1

\biggr] \top 
\biggl[ \biggl( 

I  - vi,n - 1v
\top 
i,n - 1  - 2

i - 1\sum 
j=1

vj,n - 1v
\top 
j,n - 1

\biggr) 
J(xn - 1)vi,n - 1

\biggr] 
= \tau 2\gamma 2

\biggl[ \biggl( 
I  - vm,n - 1v

\top 
m,n - 1  - 2

m - 1\sum 
j=1

vj,n - 1v
\top 
j,n - 1

\biggr) 
J(xn - 1)vm,n - 1

\biggr] \top 
\biggl[ \biggl( 

I  - vi,n - 1v
\top 
i,n - 1  - 2

i - 1\sum 
j=1

vj,n - 1v
\top 
j,n - 1

\biggr) 
J(xn - 1)vi,n - 1

\biggr] 
,

where we have used

v\top m,n - 1J(xn - 1)
\top vi,n - 1 + v\top m,n - 1J(xn - 1)vi,n - 1  - 2v\top m,n - 1J(xn - 1)vi,n - 1 = 0

by the symmetry of J . Therefore, we apply the boundedness of J to obtain for some
constant Q

(4.5)
\bigm| \bigm| \~v\top m,n\~vi,n

\bigm| \bigm| \leq Q\tau 2, 1 \leq m < i \leq k.

We then turn to estimate the case m = i, that is, the norm \| \~vi,n\| 2. By \| vi,n - 1\| =
1, we multiply v\top i,n - 1 on both sides of the second equation of (4.3) to obtain for
1 \leq i \leq k,

(4.6)

v\top i,n - 1\~vi,n = v\top i,n - 1vi,n - 1 + \tau \gamma 

\biggl( 
v\top i,n - 1  - v\top i,n - 1vi,n - 1v

\top 
i,n - 1

 - 2

i - 1\sum 
j=1

v\top i,n - 1vj,n - 1v
\top 
j,n - 1

\biggr) 
J(xn - 1)vi,n - 1 = 1.

We then multiply \~v\top i,n on both sides of the second equation of (4.3) and apply (4.6)

and the orthogonality of \{ vi,n - 1\} ki=1 as well as

\~v\top i,nvj,n - 1 = (\~vi,n  - vi,n - 1)
\top vj,n - 1, 1 \leq j < i,
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to obtain

(4.7)

\~v\top i,n\~vi,n = \~v\top i,nvi,n - 1 + \tau \gamma 

\biggl( 
\~v\top i,n  - \~v\top i,nvi,n - 1v

\top 
i,n - 1

 - 2

i - 1\sum 
j=1

\~v\top i,nvj,n - 1v
\top 
j,n - 1

\biggr) 
J(xn - 1)vi,n - 1

= 1 + \tau \gamma 

\biggl( 
\~v\top i,n  - v\top i,n - 1

 - 2

i - 1\sum 
j=1

(\~vi,n  - vi,n - 1)
\top vj,n - 1v

\top 
j,n - 1

\biggr) 
J(xn - 1)vi,n - 1.

Subtracting (4.6) from (4.7) and using
\bigl( 
\~vi,n  - vi,n - 1

\bigr) \top 
vi,n - 1 = 0 we get

\| \~vi,n  - vi,n - 1\| 2 =
\bigl( 
\~vi,n  - vi,n - 1

\bigr) \top 
\~vi,n

= \tau \gamma 

\biggl( 
\~v\top i,n  - v\top i,n - 1  - 2

i - 1\sum 
j=1

(\~vi,n  - vi,n - 1)
\top vj,n - 1v

\top 
j,n - 1

\biggr) 
J(xn - 1)vi,n - 1

\leq \tau \gamma \^JT
\bigl( 
1 + 2(i - 1)

\bigr) 
\| \~vi,n  - vi,n - 1\| ,

which gives

\| \~vi,n  - vi,n - 1\| \leq \tau \gamma \^JT
\bigl( 
1 + 2(i - 1)

\bigr) 
.

Invoking this in (4.7) leads to\bigm| \bigm| \| \~vi,n\| 2  - 1
\bigm| \bigm| 

\leq \tau \gamma 

\biggl( 
\| \~vi,n  - vi,n - 1\| + 2

i - 1\sum 
j=1

\| \~vi,n  - vi,n - 1\| 
\biggr) 
\| J(xn - 1)\| 

\leq \tau 2
\bigl[ 
\gamma \^JT

\bigl( 
1 + 2(k  - 1)

\bigr) \bigr] 2
, 1 \leq i \leq k, 1 \leq n \leq NT ,

which completes the proof.

Lemma 4.2. Under Assumption A, the following estimate holds for 1 \leq n \leq NT

and \tau sufficiently small:

\| vi,n  - \~vi,n\| \leq Q\tau 2, 1 \leq i \leq k.

Here the positive constant Q is independent of n, NT , and \tau .

Proof. We first estimate \~v\top i,nvm,n for 1 \leq m < i \leq k and 1 \leq n \leq NT . By the
definition of vm,n in the third equation of (4.3), for a fixed 1 \leq m < k the estimates
of \~v\top i,nvm,n for m < i \leq k require those of \~v\top i,nvj,n for 1 \leq j < m and m \leq i \leq k.

That is, we could estimate \~v\top i,nvm,n step by step with respect to m. There are various
ways to perform the estimate with different constraints on \tau , and we present a simple
choice for illustration.

Let G > M be a fixed positive number where M is defined in Lemma 4.1. Then
we intend to prove that if \tau satisfies the constraint

(4.8)
M + \tau 2(k  - 1)G2\bigl( 

1 - M\tau 2  - \tau 4(k  - 1)G2
\bigr) 1/2 \leq G,

D
ow

nl
oa

de
d 

10
/1

7/
22

 to
 2

18
.7

0.
25

5.
16

2 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ERROR ESTIMATES FOR SADDLE DYNAMICS 2937

then the following estimates hold:

(4.9) | \~v\top i,nvm,n| \leq G\tau 2, 1 \leq m < i \leq k.

Note that the condition (4.8) holds true if \tau is sufficiently small. We prove this
argument by induction on the subscription m. For m = 1 we apply Lemma 4.1 and
the definition of \~v1,n in (4.3) as well as (4.8) to obtain

(4.10)

| \~v\top i,nv1,n| =
| \~v\top i,n\~v1,n| 

(\| \~v1,n\| 2)1/2
\leq M\tau 2

(1 - M\tau 2)1/2
=

M

(1 - M\tau 2)1/2
\tau 2

\leq M + \tau 2(k  - 1)G2\bigl( 
1 - M\tau 2  - \tau 4(k  - 1)G2

\bigr) 1/2 \tau 2 \leq G\tau 2, 1 < i \leq k.

Thus, (4.9) holds with m = 1. Suppose (4.9) holds for 1 \leq m < m\ast for some
1 \leq m\ast < k  - 1. Then we invoke (4.9) with 1 \leq m < m\ast and Lemma 4.1 into the
expression of \~v\top i,nvm\ast ,n to obtain for m\ast < i \leq k,

| \~v\top i,nvm\ast ,n| =

\bigm| \bigm| \bigm| \bigm| \~v\top i,n\~vm\ast ,n  - 
m\ast  - 1\sum 
j=1

(\~v\top m\ast ,nvj,n)(\~v
\top 
i,nvj,n)

\bigm| \bigm| \bigm| \bigm| \biggl( 
\| \~vm\ast ,n\| 2  - 

m\ast  - 1\sum 
j=1

(\~v\top m\ast ,nvj,n)
2

\biggr) 1/2

\leq M\tau 2 + (m\ast  - 1)(G\tau 2)2

(1 - M\tau 2  - (m\ast  - 1)(G\tau 2)2)1/2

\leq M + \tau 2(k  - 1)G2\bigl( 
1 - M\tau 2  - \tau 4(k  - 1)G2

\bigr) 1/2 \tau 2 \leq G\tau 2, m\ast < i \leq k.

That is, (4.9) holds for m = m\ast and thus holds for any 1 \leq m < k by mathematical
induction, which proves (4.9).

Based on (4.9) and Lemma 4.1, we bound Yi,n for 1 \leq i \leq k and 1 \leq n \leq NT as
follows:

(4.11)

| Yi,n| =
\biggl( 
\| \~vi,n\| 2  - 

i - 1\sum 
j=1

(\~v\top i,nvj,n)
2

\biggr) 1/2

\left\{         
\leq 

\biggl( 
1 +M\tau 2 + (i - 1)G2\tau 4

\biggr) 1/2

\leq (1 +Q\tau 2)1/2;

\geq 
\biggl( 
1 - M\tau 2  - (i - 1)G2\tau 4

\biggr) 1/2

\geq (1 - Q\tau 2)1/2 > 0.

Then it remains to estimate vi,n  - \~vi,n for 1 \leq i \leq k. According to the definition of
vi,n we have

(4.12) vi,n  - \~vi,n =
1

Yi,n

\biggl( 
(1 - Yi,n)\~vi,n  - 

i - 1\sum 
j=1

(\~v\top i,nvj,n)vj,n

\biggr) 
,
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which, together with (4.9), (4.11), and Lemma 4.1, implies

(4.13)

\| vi,n  - \~vi,n\| 

\leq 1

| Yi,n| 

\biggl( 
| 1 - Yi,n| \| \~vi,n\| +

i - 1\sum 
j=1

| \~v\top i,nvj,n| 
\biggr) 

\leq | 1 - Yi,n| (1 +M\tau 2) + (i - 1)G\tau 2

(1 - Q\tau 2)1/2
\leq Q| 1 - Yi,n| +Q\tau 2

\leq Qmax\{ 1 - (1 - Q\tau 2)1/2, (1 +Q\tau 2)1/2  - 1\} +Q\tau 2.

We bound 1 - (1 - Q\tau 2)1/2 and (1 +Q\tau 2)1/2  - 1 by

1 - (1 - Q\tau 2)1/2 =
Q\tau 2

1 + (1 - Q\tau 2)1/2
\leq Q\tau 2,

(1 +Q\tau 2)1/2  - 1 =
Q\tau 2

(1 +Q\tau 2)1/2 + 1
\leq Q\tau 2.

Thus we complete the proof.

4.3. Error estimates. Define the errors

exn := x(tn) - xn, evi,n := vi(tn) - vi,n, 1 \leq n \leq NT , 1 \leq i \leq k.

We then perform the error estimates for the explicit Euler scheme (4.3) of k-SD (2.1)
in the following theorem.

Theorem 4.3. Suppose Assumption A holds. Then the following estimate holds
for \tau sufficiently small:

\| exn\| +
k\sum 

i=1

\| evi,n\| \leq Q\tau , 1 \leq n \leq NT .

Here Q depends on k, L, T , and \beta but is independent of \tau , n, and NT .

Proof. Similar to the derivations in Theorem 3.3 we could bound exn in terms of
evi,n for 1 \leq i \leq k as follows:

(4.14) \| exn\| \leq Q\tau 

n - 1\sum 
m=1

k\sum 
j=1

\| evj,m\| +Q\tau , 1 \leq n \leq NT .

We subtract the second equation of (4.2) from that of (4.3) and apply vi(tn) - \~vi,n as
(vi(tn) - vi,n) + (vi,n  - \~vi,n) = evi,n + (vi,n  - \~vi,n) to obtain

evi,n = evi,n - 1 + \tau \gamma 
\bigl( 
J(x(tn - 1))vi(tn - 1) - J(xn - 1)vi,n - 1

\bigr) 
 - \tau \gamma 

\bigl[ 
vi(tn - 1)vi(tn - 1)

\top J(x(tn - 1))vi(tn - 1)

 - vi,n - 1v
\top 
i,n - 1J(xn - 1)vi,n - 1

\bigr] 
 - 2\tau \gamma 

i - 1\sum 
j=1

\bigl[ 
vj(tn - 1)vj(tn - 1)

\top J(x(tn - 1))vi(tn - 1)

 - vj,n - 1v
\top 
j,n - 1J(xn - 1)vi,n - 1

\bigr] 
 - (vi,n  - \~vi,n) + \tau Rvi

n ,
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which, together with (4.14), Lemma 4.2, and the similar derivation as (3.14), leads to

\| evi,n\| \leq \| evi,n - 1\| +Q\tau 
\bigl[ 
\| exn - 1\| + \| evi,n - 1\| 

\bigr] 
+Q\tau 

i - 1\sum 
j=1

\| evj,n - 1\| +Q\tau 2

\leq \| evi,n - 1\| +Q\tau \| evi,n - 1\| +Q\tau 2
n - 1\sum 
m=1

k\sum 
j=1

\| evj,m\| +Q\tau 

i - 1\sum 
j=1

\| evj,n - 1\| +Q\tau 2.

Adding this equation from i = 1 to k and denoting

Ev
n :=

k\sum 
i=1

\| evi,n\| , 1 \leq n \leq NT ,

yield an estimate in terms of Ev
n

(4.15) Ev
n \leq Ev

n - 1 +Q\tau Ev
n - 1 +Q\tau 2

n - 1\sum 
m=1

Ev
m +Q\tau 2.

Adding this equation from n = 1 to n\ast and using

\tau 2
n\ast \sum 
n=1

n - 1\sum 
m=1

Ev
m = \tau 2

n\ast  - 1\sum 
m=1

n\ast \sum 
n=m+1

Ev
m \leq T\tau 

n\ast  - 1\sum 
m=1

Ev
m,

we get

(4.16) Ev
n\ast 

\leq Q\tau 

n\ast  - 1\sum 
n=1

Ev
n +Q\tau .

Then an application of the discrete Gronwall inequality leads to

Ev
n \leq Q\tau , 1 \leq n \leq NT .

Plugging this estimate back to (4.14) yields the estimate of \| exn\| and we thus complete
the proof.

5. Numerical experiments. In this section, we carry out numerical experi-
ments to substantiate the accuracy of the explicit Euler schemes (3.3) and (4.3) and
the pathway convergence of the numerical solutions to the real searching pathway of
HiSD. For the applications of these schemes, we refer the reader to [30, 31] for various
physical examples and detailed discussions. We denote the following errors:

Err(x) := max
1\leq n\leq NT

\| x(tn) - xn\| ,

Err(v) := max
1\leq n\leq NT

\| v(tn) - vn\| ,

Err(vi) := max
1\leq n\leq NT

\| vi(tn) - vi,n\| , 1 \leq i \leq k,

and test their convergence rates. As the exact solutions to HiSD are not available,
numerical solutions computed under \tau = 2 - 13 serve as the reference solutions for the
first two examples, and we set \beta = \gamma = T = 1 for simplicity.

Example 1. Accuracy test under Minyaev--Quapp surface. We consider
the saddle dynamics for the Minyaev--Quapp surface (2.4) and compute its index-1
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saddle point via scheme (3.3) with the initial conditions x(0) = (1, 1)\top and v(0) =
(0, 1)\top and index-2 saddle point via scheme (4.3) with the initial conditions x(0) =
(1, 1)\top , v1(0) = (0, 1)\top , and v2(0) = (1, 0)\top . Numerical results are presented in Tables
5.1--5.2, which demonstrate the first-order accuracy of the explicit Euler schemes (3.3)
and (4.3) as proved in Theorems 3.4 and 4.3.

Table 5.1
Convergence rates of scheme (3.3) in Example 1.

\tau Err(x) Conv. rate Err(v) Conv. rate
1/32 2.19E-02 1.72E-02
1/64 1.03E-02 1.09 8.29E-03 1.05
1/128 4.95E-03 1.05 4.05E-03 1.03
1/256 2.40E-03 1.04 1.98E-03 1.03

Table 5.2
Convergence rates of scheme (4.3) in Example 1.

\tau Err(x) Conv. rate Err(v1) Conv. rate Err(v2) Conv. rate
1/32 1.50E-02 1.31E-02 1.31E-02
1/64 7.41E-03 1.02 6.52E-03 1.01 6.52E-03 1.01
1/128 3.66E-03 1.02 3.23E-03 1.01 3.23E-03 1.01
1/256 1.79E-03 1.03 1.59E-03 1.02 1.59E-03 1.02

Example 2: Accuracy test under Eckhardt surface. We consider the saddle
dynamics for the Eckhardt surface (2.5) and compute its index-1 saddle point via
scheme (3.3) with the initial conditions

x(0) = ( - 2, 1)\top , v(0) =
1\surd 
2
( - 1, 1)\top 

and index-2 saddle point via scheme (4.3) with the initial conditions

x(0) = ( - 2, 1)\top , v1(0) =
1\surd 
10

( - 1, 3)\top , v2(0) =
1\surd 
10

(3, 1)\top .

Numerical results are presented in Tables 5.3--5.4, which again show the first-order
accuracy of the explicit Euler schemes (3.3) and (4.3) as proved in Theorems 3.4 and
4.3.

Table 5.3
Convergence rates of scheme (3.3) in Example 2.

\tau Err(x) Conv. rate Err(v) Conv. rate
1/32 1.41E-02 2.16E-03
1/64 6.98E-03 1.01 1.09E-03 0.98
1/128 3.45E-03 1.01 5.46E-04 1.00
1/256 1.70E-03 1.02 2.70E-04 1.02

Table 5.4
Convergence rates of scheme (4.3) in Example 2.

\tau Err(x) Conv. rate Err(v1) Conv. rate Err(v2) Conv. rate
1/32 5.78E-03 2.25E-03 2.25E-03
1/64 2.86E-03 1.02 1.11E-03 1.01 1.11E-03 1.01
1/128 1.41E-03 1.02 5.51E-04 1.02 5.51E-04 1.02
1/256 6.95E-04 1.03 2.71E-04 1.03 2.71E-04 1.03
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Example 3: Convergence of dynamics under Eckhardt surface. In this
example we aim to observe the numerical convergence of dynamics for HiSD. As
the exact dynamics of HiSD is not available in practice, we approximate it by the
numerical solutions under the very fine mesh size \tau = 2 - 8. The initial conditions are
given as

x(0) = (1.5, 1.2)\top , v(0) =
1\surd 
5
( - 1, 2)\top .

Figure 5.1 (left) indicates that the HiSD reaches a saddle point under both T = 10
and T = 5 and thus it suffices to take T = 5. Figure 5.1 (right) shows that not only
can the saddle point be achieved under different step sizes, but the dynamics of HiSD
globally converges to the exact one (i.e., the curve under \tau = 2 - 8) as the step size
\tau decreases. These observations justify the theoretical results and demonstrate that
the proposed schemes are appropriate methods in computing the dynamic pathways
for constructing the solution landscapes, e.g., [14, 26, 30].

-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

x
1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

x
2

τ = 2
−8

τ = 2
−5

τ = 2
−4

τ = 2
−3

Fig. 5.1. (Left) Numerical solution of x(t) with \tau = 2 - 8 and different terminal time T . (Right)
Numerical solution of x(t) with T = 5 and different \tau . The symbols on the curves indicate the time
steps.

6. Extension to generalized HiSD for dynamical systems. In many auton-
omous dynamical systems \.x = F (x), the force F (x) is not derived from the variation
of some energy function/functional E(x), which does not follow the formulations of
the HiSD proposed in section 2. In this case, the following GHiSD was developed in
[30] to compute the high-index saddle points for nongradient systems:

(6.1)

\left\{           
dx

dt
=

\biggl( 
I  - 2

k\sum 
j=1

vjv
\top 
j

\biggr) 
F (x),

dvi
dt

= (I  - viv
\top 
i ) \~J(x)vi  - 

i - 1\sum 
j=1

vjv
\top 
j ( \~J(x) + \~J\top (x))vi, 1 \leq i \leq k.

Here \~J refers to the Jacobian of F , which is, in general, not symmetric. Compared
with the HiSD (2.1), which works for the gradient systems with the symmetric Hessian
J(x), \~J(x) + \~J\top (x) is used to replace 2J(x) in the dynamics of \{ vi\} ki=1.

Similar to (4.3), we could propose the explicit Euler scheme of (6.1) for 1 \leq n \leq 
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NT as follows:

(6.2)

\left\{                             

xn = xn - 1 + \tau 

\biggl( 
I  - 2

k\sum 
j=1

vj,n - 1v
\top 
j,n - 1

\biggr) 
F (xn - 1),

\~vi,n = vi,n - 1 + \tau 
\bigl( 
I  - vi,n - 1v

\top 
i,n - 1

\bigr) 
\~J(xn - 1)vi,n - 1

 - 
i - 1\sum 
j=1

vj,n - 1v
\top 
j,n - 1

\bigl( 
\~J(xn - 1) + \~J\top (xn - 1)

\bigr) 
vi,n - 1, 1 \leq i \leq k,

vi,n =
1

Yi,n

\biggl( 
\~vi,n  - 

i - 1\sum 
j=1

(\~v\top i,nvj,n)vj,n

\biggr) 
, 1 \leq i \leq k.

Intuitively, we may extend the developed methods and results in previous sections
to GHiSD (6.1) for nongradient systems. Although there are differences between (2.1)
and (6.1) as mentioned above, we notice that the derivations could be performed
similarly. After carefully checking the preceding estimates, a key step lies in the
quantification of \~v\top m,n\~vi,n in (4.4). We thus calculate this product for m < i for the
case of generalized saddle dynamics (6.1) as follows:

\~v\top m,n\~vi,n =

\biggl[ 
vm,n - 1 + \tau 

\bigl( 
I  - vm,n - 1v

\top 
m,n - 1

\bigr) 
\~J(xn - 1)vm,n - 1

 - \tau 

m - 1\sum 
j=1

vj,n - 1v
\top 
j,n - 1

\bigl( 
\~J(xn - 1) + \~J\top (xn - 1)

\bigr) 
vm,n - 1

\biggr] \top 
\biggl[ 
vi,n - 1 + \tau 

\bigl( 
I  - vi,n - 1v

\top 
i,n - 1

\bigr) 
\~J(xn - 1)vi,n - 1

 - 
i - 1\sum 
j=1

vj,n - 1v
\top 
j,n - 1

\bigl( 
\~J(xn - 1) + \~J\top (xn - 1)

\bigr) 
vi,n - 1

\biggr] 
= \tau 

\bigl( 
v\top m,n - 1

\~J(xn - 1)vi,n - 1 + v\top m,n - 1
\~J\top (xn - 1)vi,n - 1

 - v\top m,n - 1

\bigl( 
\~J(xn - 1) + \~J\top (xn - 1)

\bigr) 
vi,n - 1

\bigr) 
+ \tau 2[\cdot \cdot \cdot ] = \tau 2[\cdot \cdot \cdot ],

where we used the fact that

v\top m,n - 1
\~J(xn - 1)vi,n - 1 + v\top m,n - 1

\~J\top (xn - 1)vi,n - 1

 - v\top m,n - 1

\bigl( 
\~J(xn - 1) + \~J\top (xn - 1)

\bigr) 
vi,n - 1 = 0.

Note that this nice property stems from the symmetrization \~J(x) + \~J\top (x) in the
GHiSD (6.1). By virtue of this symmetrization, we could derive the error estimates
for explicit Euler scheme (6.2) in parallel with the proofs in previous sections, and
thus show the numerical accuracy of GHiSD (6.1) for nongradient systems.

7. Conclusions. In this paper we develop novel techniques to overcome the
strong nonlinearity and the difficulties caused by the orthonormalization procedure
to prove error estimates for Euler discretization of HiSD with respect to the time step
size, which serves as an important compensation for the gap between the continuous
problem and the numerical implementation. The developed methods and results are
further extended to study the GHiSD for nongradient systems, and thus provide
theoretical supports for the accuracy of numerical computations.
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There are several other potential extensions of the current work. For instance, the
ideas and techniques could be employed and improved to analyze implicit schemes or
high-order methods like the backward difference formulas of HiSD in order to retain
high-order accuracy. How to relax the linear growth and Lipschitz conditions on the
force F and the Hessian J (or Jacobian in nongradient systems) in the error estimates
is also an important but challenging topic as many energy surfaces do not enjoy these
properties. We may further extend the methods to study the numerical schemes of
the dimer-type methods such as the shrinking dimer dynamics [33]. However, as the
multiplication of the Hessian and the vector is approximated by dimer methods in or-
der to reduce the computational costs, the current Hessian-based proofs do not apply,
and additional investigations will be carried out in the near future. Recently, a con-
strained high-index saddle dynamics (CHiSD) was developed to compute high-index
saddle points of an energy functional subject to equality constraints [27]. Applying the
Riemannian gradients and Hessians, the CHiSD is derived as the dynamical system
with a transformed gradient flow. In the numerical implementation, the retraction
operator and vector transport are introduced to discretize the CHiSD. Thus, it will
be very interesting to study the error estimates for numerical schemes of CHiSD in
the future.

It is also worth mentioning that in the current work we focus on the dynamics of
HiSD on the finite interval t \in [0, T ] and prove error estimates to show the pathway
convergence of numerical solutions of HiSD. For most applications, numerical schemes
of HiSD could reach the target saddle point within a certain number of iterations (e.g.,
the observations in the left plot of Figure 5.1), and thus the derived error estimate
results in this work could apply by setting a suitable T . Nevertheless, the convergence
to the saddle point is theoretically determined by the rate of x(t) \rightarrow x\ast as t \rightarrow \infty ; thus
it is desirable to perform the error estimate of xn - x\ast for n \rightarrow \infty as in the literature of
optimization algorithms [17, 23]. In a very recent work [19] the convergence analysis
of HiSD is performed to determine the convergence rate of xn  - x\ast for n \rightarrow \infty . It
should be pointed out that the result in the current work that v1,n  - v1(tn) has the
first-order accuracy with respect to the time step size was borrowed in [19] in order to
prove the approximation of eigenvector, which again shows the importance of novel
techniques proposed in this work.
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