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The nonlinear space-fractional problems often allow multiple stationary solutions, which 
can be much more complicated than the corresponding integer-order problems. In this 
paper, we systematically compute the solution landscapes of nonlinear constant/variable-
order space-fractional problems on one- and two-dimensional rectangular domains. A fast 
approximation algorithm is developed to deal with the variable-order spectral fractional 
Laplacian by approximating the variable-indexing Fourier modes, and then combined with 
saddle dynamics to construct the solution landscape of variable-order space-fractional 
phase field model. Numerical experiments are performed to substantiate the accuracy 
and efficiency of fast approximation algorithm and elucidate essential features of the 
stationary solutions of space-fractional phase field model. Furthermore, we demonstrate 
that the solution landscapes of spectral fractional Laplacian problems can be reconfigured 
by varying the diffusion coefficients in the corresponding integer-order problems.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

Space-fractional partial differential equations (PDEs) provide adequate descriptions for many anomalous processes and 
complex dynamics, and thus have attracted extensive mathematical and numerical investigations in the past decade [1,4,7,
11,12,17,24,31,32,35,36,39,44,51]. For instance, the space-fractional phase field models for two-phase flows were shown to 
achieve sharper interface compared to the classical integer-order model by simply varying the fractional order [14,29]. The 
variable-order space-fractional PDEs, in which the fractional order varies in space to accommodate the influence of variable 
spatial correlation of medium heterogeneity on tracer dynamics [33,34], improves the modeling capability of constant-order 
space-fractional PDEs and draws increasing attention in recent years [10,45,49,50,52].

Apart from focusing on modeling and analysis of nonlinear space-fractional PDEs, how to compute all stationary solu-
tions of the corresponding models, which are the solutions of ∇E(u) = 0 for some energy functional E , is an important but 
challenging problem. According to the Morse theory [26], the local stability of a stationary solution can be characterized 
by its Morse index, which is defined as the maximal dimension of a subspace on which the Hessian operator is negative 
definite. Compared with computing the stable (index = 0) stationary solutions (i.e., minimizers), finding the unstable (index 
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> 0) stationary solutions (i.e., saddle points) are much more difficult because of their unstable nature [16,47]. Extensive nu-
merical algorithms have been developed to compute multiple stationary solutions such as the eigenvector-following method 
[13,47], the deflation technique [22] and the homotopy method [3,25]. Recently, a solution landscape approach was pro-
posed in [40] to efficiently find the stationary solutions, including both stable minimizers and unstable saddle points, and 
their connections. By using the saddle dynamics to compute any-index saddle points [42], the downward and upward search 
algorithms were implemented to construct the solution landscape of the energy systems [40], which provides a hierarchy 
structure that starts with a parent state (the highest-index saddle point) and then relates the low-index saddle points down 
to the minimizers. The solution landscape approach has been successfully applied to study the defect landscape of nematic 
liquid crystals using a Landau–de Gennes model [18,37], Ericksen–Leslie model [19], and the molecular Onsager model [43].

Despite the aforementioned progresses on finding multiple solutions of nonlinear PDEs, to the best of our knowledge, 
there is no investigation on solution landscape of the space-fractional problems involving the constant/variable-order frac-
tional Laplacian and the comparisons with the analogous integer-order models in the literature. Due to the nonlocality of 
the fractional operators and the impact of the variable order, which results in the significant computational consumption, 
the corresponding fast algorithms are critical for the construction of solution landscape. One difficulty is due to the vari-
able fractional order. Discretization of the variable-order space-fractional operator may generate a dense but non-Toeplitz 
coefficient matrix. Thus, the efficient computational methods like the fast Fourier transform (FFT) based algorithms cannot 
be applied directly. In a recent work, Pang and Sun studied a finite difference discretization of a variable-order Riemann-
Liouville fractional advection-diffusion equation in one space dimension and approximated the off-diagonal blocks of the 
resulting stiffness matrices by low-rank matrices [27]. Then a polynomial interpolation based fast algorithm was presented 
to approximate the coefficient matrices, and the matrix-vector multiplication can be implemented in O (kN ln N) complexity 
with N and k being the number of unknowns and the approximant, respectively. Nevertheless, the fast algorithms for the 
variable-order fractional Laplacian in multiple space dimensions, the definition of which is completely different from the 
variable-order Riemann-Liouville fractional derivatives, remain untreated.

Furthermore, a natural but unresolved question lies in the relationship between the variable order and the variable 
coefficient in fractional models [20,33], that is, is that possible to get identical solutions of variable-order fractional problems 
by varying the coefficients in their integer-order analogues? This concern is particularly critical for the spectral fractional 
Laplacian problems as they are defined in terms of the eigenpairs of second-order elliptic operators and may thus exhibit 
similar features of integer-order or local differential operators.

Motivated by these observations and questions, we investigate the solution landscapes of space-fractional problems 
involving both constant- and variable-order fractional Laplacian via saddle dynamics, and discover their similarities and 
differences to analogous integer-order models. The main contributions of the paper are enumerated as follows:

• We develop a fast approximation algorithm to deal with the variable-order spectral fractional Laplacian in multiple 
space dimensions, for which the FFT cannot be applied directly. We approximate the variable-indexing Fourier modes 
of the fractional Laplacian by the series expansion method and prove that high-order accuracy of the Fourier mode 
approximation could be obtained using only O (ln M) terms in the expansion with M being the size of the problems. 
We accordingly prove that computing the corresponding approximation of the variable-order spectral fractional Lapla-
cian only requires O (M ln2 M) operations by employing the FFT, which is much faster than implementing the direct 
discretization schemes of variable-order spectral fractional Laplacian that need O (M2 ln M) operations. We further im-
plement this approximation scheme to saddle dynamics in order to compute any-index saddle points in the solution 
landscape.

• We systematically construct the solution landscapes for both constant- and variable-order space-fractional phase field 
models, and compare them with their integer-order counterparts. Numerical experiments show that new stationary 
solutions emerge when the constant fractional order decreases, resulting in more complex solution landscape than their 
integer-order analogues. Moreover, due to the impact of variable fractional order, the solution landscape of variable-
order fractional model becomes more complicated than the constant-order fractional model. We further demonstrate 
that the solution landscapes of spectral fractional Laplacian problems can be reconfigured by varying the diffusion 
coefficients in corresponding integer-order problems, which indicates the locality of spectral fractional Laplacian as 
integer-order differential operators.

The rest of the paper is organized as follows: In Section 2 we go over preliminaries on fractional Laplacian operators and 
phase field models. In Section 3 we develop and analyze a fast approximation to the variable-order fractional Laplacian and 
carry out numerical experiments to test its accuracy and efficiency. In Section 4 we apply the fast approximation to saddle 
dynamics in order to construct the solution landscape of space-fractional phase field models. In Section 5 numerical exper-
iments are performed to investigate the solution landscapes of space-fractional phase field model and make comparisons 
with their integer-order analogues.

2. Preliminaries

In this section we present brief reviews for the constant-order and variable-order fractional Laplacian operators and the 
corresponding phase field model.
2
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2.1. FFT-based approximation to fractional Laplacian

Let Z be the set of integers, N > 0 be an even number, 0 ≤ m ∈ Z, N := {z ∈ Z : −N/2 ≤ z ≤ N/2 − 1}, � = [0, 1]2, 
L2(�) be the space of square-integrable functions on � with the norm ‖ · ‖L2(�) , and Hm(�) be the space of L2 functions 
with L2 derivatives up to order m [2]. A function u ∈ L2(�) may be expanded as

u(x, y) =
∑

k,l∈Z
uk,le

2π i(kx+ly)

where i stands for the imaginary unit and {uk,l} are the Fourier coefficients of u given as

uk,l =
1∫

0

1∫
0

u(x, y)e−2π i(kx+ly)dydx.

Then the fractional Laplacian (−�)α/2u(x, y) of order 0 < α ≤ 2 is defined by [6,48]

(−�)α/2u(x, y) =
∑

k,l∈Z

[
4π2(k2 + l2)

]α/2
uk,le

2π i(kx+ly). (1)

In practical computations, we only evaluate the truncation (−�)
α/2
N u of (−�)α/2u defined by

(−�)
α/2
N u(x, y) :=

∑
k,l∈N

[
4π2(k2 + l2)

]α/2
uk,le

2π i(kx+ly). (2)

Define a uniform partition of � by 0 = x0 < x1 < · · · < xN = 1 and 0 = y0 < y1 < · · · < yN = 1 with xk = kh and yl = lh
for 0 ≤ k, l ≤ N and h = 1/N . Then the Fourier coefficients {uk,l}k,l∈N could be approximated by

uk,l ≈ ûk,l := h2
∑

0≤i, j<N

u(xi, y j)e−2π i(kxi+ly j). (3)

Then we replace uk,l by ûk,l in (2) to find a further approximation (−�)
α/2
N,h u of (−�)α/2u given by

(−�)
α/2
N,h u(x, y) :=

∑
k,l∈N

[
4π2(k2 + l2)

]α/2
ûk,le

2π i(kx+ly). (4)

The estimates of these discretizations are standard and we refer [30] for details. It is known that either the discrete Fourier 
transform (3) or the inversion procedure (4) could be efficiently carried out by means of FFT, which significantly reduces 
the computational consumption compared with the direct method.

2.2. Variable-order fractional Laplacian

Variable-order fractional Laplacian operator of order 0 < α(x, y) ≤ 2 is defined as [5,21,34,45,52]

(−�)α(x,y)/2u(x, y) :=
∑

k,l∈Z

[
4π2(k2 + l2)

]α(x,y)/2
uk,le

2π i(kx+ly). (5)

Remark 2.1. The definition at (x, y) = (x̃, ỹ) may be rewritten as

(−�)α(x̃, ỹ)/2u(x̃, ỹ) =
( ∑

k,l∈Z

[
4π2(k2 + l2)

]α(x̃, ỹ)/2
uk,le

2π i(kx+ly)
)∣∣∣

(x,y)=(x̃, ỹ)
,

that is, it is equivalent to the constant-order fractional Laplacian (1) with α = α(x̃, ỹ) evaluated at (x, y) = (x̃, ỹ).

We could follow (1)-(4) to approximate (−�)α(x,y)/2u as

(−�)
α(x,y)/2
N,h u(x, y) =

∑
k,l∈N

[
4π2(k2 + l2)

]α(x,y)/2
ûk,le

2π i(kx+ly). (6)

However, due to the variability of the fractional order, we could no longer apply the FFT for the efficient implementation, 
while the direct method is computationally expensive. To circumvent this difficulty, we develop a fast approximation for 
the variable-order fractional Laplacian operator based on the series expansion of the variable Fourier multiplier 

[
4π2(k2 +

l2)
]α(x,y)/2

in Section 3.
3
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2.3. Space-fractional phase field model

Phase field models have been developed for modeling the microstructure evolution precesses and interfacial problems 
such as grain growth, dislocation dynamics and phase transformation [8,9,46]. For a mixture of two fluids, an order param-
eter −1 ≤ u ≤ 1 is introduced to identify the regions occupied by the two fluids. A simple form of the Ginzburg-Laudau free 
energy with a double-well potential is given by

E(u) =
∫
�

κ

2
|∇u(x)|2 + 1

4

(
1 − u2(x)

)2
dx, (7)

and the related phase field (Allen-Cahn) equation is

u̇ = −δE

δu
= κ�u + u − u3, (8)

where κ is the diffusion coefficient, a critical parameter determining the complexity of the system.
In this paper, we consider the following variable-order space-fractional phase field equation

u̇ = F (u) := −κ(−�)α(x,y)/2u + u − u3 (9)

equipped with the periodic boundary condition, in which the Laplace operator −� in the classical phase field model (8) is 
replaced by the variable-order space-fractional Laplace operator (5) to accommodate the heterogeneity of the surroundings. 
It is worth mentioning that when the order α is not a constant, the dynamical system (9) is a non-gradient system without 
the energy functional E(u).

3. Fast approximation to variable-order fractional Laplacian

We propose and analyze a fast scheme to the variable-order fractional Laplacian (5), and test its accuracy and efficiency 
in this section.

3.1. One-dimensional illustration

We propose the key idea of the fast approximation by the one-dimensional (1D) analogue of (5)

(−�)α(x)/2u(x) =
∑
k∈Z

(
4π2k2)α(x)/2

uke2π ikx (10)

where the Fourier coefficients {uk} and their discretizations {ûk} are given by

uk =
1∫

0

u(x)e−2π ikxdx, ûk = h
N−1∑
i=0

u(xi)e−2π ikxi . (11)

Then we follow (1)-(4) to approximate (−�)α(x)/2u as

(−�)
α(x)/2
N,h u(x) =

∑
k∈N

(
4π2k2)α(x)/2

ûke2π ikx. (12)

We treat 
(
4π2k2

)α(x)/2
as a power function gk(z) := (

4π2k2
)z/2

for k �= 0 and 0 < z ≤ 2 such that gk(α(x)) = (
4π2k2

)α(x)/2
, 

and expand gk at z = 1 as follows

gk(z)=
S∑

s=0

g(s)
k (1)

�(s + 1)
(z − 1)s + g(S+1)

k (ξ)

�(S + 2)
(z − 1)S+1

=
S∑

s=0

(
4π2k2

)1/2

�(s + 1)

lns(4π2k2)

2s
(z − 1)s

+
(
4π2k2

)ξ/2

�(S + 2)

lnS+1(4π2k2)

2S+1 (z − 1)S+1 =: Gk(z) + Rk(z).

(13)

Here ξ lies in between 1 and z and �(·) represents the Gamma function. Then we could substitute gk(α(x)) by Gk(α(x))
for k ∈N/{0} in (12) and notice that g0(α(x)) = 0 to reach a further approximation
4
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(−�)
α(x)/2
N,h,F u(x) =

∑
k∈N/{0}

Gk(α(x))ûke2π ikx

=
S∑

s=0

(α(x) − 1)s
∑

k∈N/{0}

(
4π2k2

)1/2

�(s + 1)

lns(4π2k2)

2s
ûke2π ikx.

(14)

To derive error estimates, we first analyze the truncation error Rk(z) in the following theorem.

Theorem 3.1. For 0 < m ∈Z, let S = ⌈
eμ+1 ln(π N) − 1

⌉
with μ satisfying

μeμ+1 ≥ m + 2. (15)

Then the truncation error in (13) can be bounded by

|Rk(z)| ≤ N−m, k ∈ N/{0}, 0 < z ≤ 2.

Remark 3.2. This theorem implies that by selecting S = O (ln N), the truncation error Rk(z) could be sufficiently small with 
high-order decay.

Proof. We apply |k| ≤ N/2, |z − 1| ≤ 1 and the Stirling’s formula

�(S + 2) >
(S + 1)S+3/2

eS+1

to bound the truncation error as follows

|Rk(z)|=
∣∣∣∣
(
4π2k2

)ξ/2

�(S + 2)

lnS+1(4π2k2)

2S+1 (z − 1)S+1
∣∣∣∣

≤ 4π2k2

(S + 1)S+3/2e−(S+1)

lnS+1(4π2k2)

2S+1

≤ 4π2k2
(

e ln(4π2k2)

2(S + 1)

)S+1

≤ π2N2
(

e ln(π2N2)

2(S + 1)

)S+1

.

(16)

Therefore, S may be chosen such that the following inequality holds

π2N2
(

e ln(π2N2)

2(S + 1)

)S+1

≤ N−m, (17)

which is equivalent to

lnπ2 + (S + 1) ln
e ln(π2N2)

2(S + 1)
≤ −(m + 2) ln N

= −m + 2

2
ln(π2N2) + m + 2

2
ln(π2).

(18)

Thus it suffices to find S such that

(S + 1) ln
e ln(π2N2)

2(S + 1)
≤ −m + 2

2
ln(π2N2). (19)

To further simplify this equation, we introduce the substitution

S + 1 = eμ+1

2
ln(π2N2) for S >

e2

2
ln(π2N2) − 1 (20)

and for some μ > 1. Invoking this transformation in (19) yields

(S + 1)(−μ) ≤ −m + 2

2
ln(π2N2). (21)

Combining (20) and (21) leads to

eμ+1

2
ln(π2N2) ≥ m + 2

2μ
ln(π2N2), (22)

that is, μeμ+1 ≥ m + 2, which is exactly (15). We thus conclude that by selecting
5
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S =
⌈

eμ+1

2
ln(π2N2) − 1

⌉

with μ satisfying (15), the truncation error in (13) can be bounded by |Rk(z)| ≤ N−m , which completes the proof. �
Based on Theorem 3.1, we bound the error between the fast approximate scheme (14) and the standard approximate 

scheme (12) as∥∥(−�)
α(x)/2
N,h u − (−�)

α(x)/2
N,h,F u

∥∥
L∞(�)

=
∥∥∥∥

∑
k∈N/{0}

Rk(α(x))ûke2π ikx

∥∥∥∥
L∞(�)

≤ N−m
∑

k∈N/{0}
|ûk|.

We invoke (11) to further estimate the error in terms of the discrete L1 norm ‖u‖L̂1(�)
:= h 

∑N−1
i=0 |u(xi)| as

∥∥(−�)
α(x)/2
N,h u − (−�)

α(x)/2
N,h,F u

∥∥
L∞(�)

≤ N−mh
∑

k∈N/{0}

N−1∑
i=0

|u(xi)| = N−(m−1)‖u‖L̂1(�)
.

We then present the computational costs of two approximate schemes in the following theorem.

Theorem 3.3. The implementation of (14) at x = xi for 0 ≤ i < N requires O (N ln2 N) operations via the FFT, which is much faster 
than the evaluation of (12) at x = xi for 0 ≤ i < N that needs O (N2 ln N) operations.

Proof. For the direct implementation by (12), although {ûk}N/2−1
k=−N/2 could be efficiently computed via the FFT and stored, 

at each xi all Fourier modes in (12) should be updated and the inverse FFT needs to be performed due to the varying of 
the fractional order α(x). Therefore, totally N ln N + N · O (N ln N) = O (N2 ln N) operators are required, which proves the 
computational cost of (12).

We then consider the computational cost of the fast scheme (14). By Theorem 3.1, S has only the magnitude of O (ln N)

and for each 0 ≤ s ≤ S , the inner summation with 0 ≤ i < N can be evaluated efficiently via the FFT and inverse FFT, which 
requires O (N ln N) operators. Therefore, the total computational cost of the fast scheme (14) is O (N ln2 N), which completes 
the proof. �
Remark 3.4. If we directly evaluate the sum on the right-hand side of (12) for each i without using the inverse Fourier 
transform, the total computational cost of (12) for 0 ≤ i < N is O (N2), which is a bit smaller than O (N2 ln N) proved in 
the above theorem. However, this could introduce numerical inaccuracies and inconveniences compared with employing the 
inverse Fourier transform. Furthermore, improving the computational efficiency by a logarithmic factor ln N does not bring 
essential differences.

3.2. Accuracy and efficiency tests

We numerically test both the accuracy and the computational consumptions (i.e., the CPU times) of the fast method 
(14) by comparing it with the direct method in both constant-order and variable-order cases. Here the direct method 
for constant-order fractional Laplacian means evaluating the 1D analogue of (4) by the FFT and its inversion, and for the 
variable-order case, the direct method means evaluating it pointwisely like a constant-order fractional Laplacian.

For the accuracy test, we choose u(x) = x2(1 − x)2 or u(x) = sin(6πx) under N = 212 or N = 218 and α(x) = 1.5 or 
α(x) = 1.5 + 0.4 sin(2πx), and the L2 errors between the fast method and the direct method are presented in Fig. 1. We 
find that the machine accuracy was reached in all three plots when S > 25, and a significant increment of N (e.g., N
becomes 218 from 212 in Fig. 1(B)) only has slight affects on the threshold value of S (that is, S should be bigger than 25
in Fig. 1(B) instead of 22 in Fig. 1(A) such that the machine accuracy could be reached). These observations are consistent 
with the analysis in Theorem 3.1 in that the S does not heavily depend on N and demonstrate the effectiveness of the fast 
method (14).

We then test the efficiency of the fast method. Motivated by the observations, we take S = 25 and choose u(x) =
x2(1 − x)2 and α(x) = 1.5 or α(x) = 1.5 + 0.4 sin(2πx), and the results are presented in Fig. 2. In Fig. 2(A), in which the α
is a constant, the CPU times of both the direct method and the fast method grow linearly as their operations are O (N ln N)

and O (N ln2 N), respectively. In particular, the CPU times of the fast method are roughly S multiples of the corresponding 
CPU times of the direct method due to the series expansion. However, in the case of variable fractional order in Fig. 2(B), 
the CPU times of the direct method grow quadratically while the fast method still keeps a linear growth of the CPU time, 
as their operations are O (N ln2 N) and O (N2 ln N), respectively, as proved in Theorem 3.3. These tests fully substantiate the 
efficiency of the fast method.
6
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Fig. 1. Plots of L2 errors under (A) α = 1.5 and N = 212; (B) α = 1.5 and N = 218 and (C) α = 1.5 + 0.4 sin(2πx) and N = 212.

Fig. 2. Plots of CPU times under (A) α = 1.5 and (B) α = 1.5 + 0.4 sin(2πx).

3.3. Two-dimensional (2D) extension

For the 2D approximated operator (6), we could similarly consider the mode 
(
4π2(k2 + l2)

)α(x,y)/2
as a power function 

gk,l(z) := (
4π2(k2 + l2)

)z/2
for (k, l) �= (0, 0) and expand this function at z = 1 like (13) to find the following approximation 

to (−�)
α(x,y)/2
N,h u(x, y)

(−�)
α(xi ,y j)/2
N,h,F u(xi, y j) :=

S∑
s=0

(α(xi, y j) − 1)s

×
∑

k,l∈N,(k,l) �=(0,0)

(
4π2(k2 + l2)

)1/2

�(s + 1)

lns(4π2(k2 + l2))

2s
ûkle

2π i(kxi+ly j)

(23)

for 0 ≤ i, j < N , where, similar to the derivations in Section 3.1, we require

S = ⌈
eμ+1 ln(

√
2π N) − 1

⌉

with μ satisfying (15) in order that the error of approximating 
(
4π2(k2 + l2)

)α(x,y)/2
can be bounded by N−m .

It is worth mentioning that the higher dimension of the problem is, the more computational cost we could save. This 
is due to the fact that the number of performing FFT and its inversion could be reduced from M in the direct method to 
S = O (ln M) in the fast method where M represents the size of the problem. Therefore, the high dimension will lead to a 
very large M and consequently the fast method will significantly reduce the computational costs.

4. Construction of solution landscape

In this section we combine the saddle dynamics with fast approximation algorithm of the variable-order fractional Lapla-
cian to construct the solution landscapes of the variable-order space-fractional problem.
7
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4.1. Saddle dynamics

The saddle dynamics is designed for searching the saddle points of a dynamical system u̇ = F (u), where F :RM →RM

for 0 < M ∈ Z is a twice continuously differentiable function and u ∈ RM [38]. For a gradient system with an energy 
function E(u), F equals to the negative gradient of E(u), and the Morse index of a stationary solution u∗ is equal to 
the number of negative eigenvalues of the Hessian G(u∗) = ∇2 E(u∗). Denote the eigenvectors corresponding to negative 
eigenvalues as {v i}k

i=1 and define the unstable subspace as Wu := span{v1, · · · , vk}. Then u∗ is a local maximum on the 
linear manifold u∗ +Wu and a local minimum on u∗ + (Wu)⊥ . Based on this property, the saddle dynamics for an index-k
saddle point of the gradient system [42] is written as⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u̇ =
(

I − 2
k∑

j=1

v j v�
j

)
F (u),

v̇ i = −
(

I − v i v�
i − 2

i−1∑
j=1

v j v�
j

)
G(u)v i, i = 1, · · · ,k,

(24)

with initial conditions

u(0) = u0 ∈RM , v i(0) = v0
i ∈RM , v�

i v j = δi j, i, j = 1, · · · ,k. (25)

Here u is a state variable and {v i}k
i=1 are k direction variables that are used to approximate an orthogonal basis of the 

unstable subspace W(u). The dynamics of u in (24) represents a transformed gradient flow

u̇ = −PWu(u) F (u) +P(Wu(u))⊥ F (u) = (I − 2PWu(u))F (u), (26)

while the dynamics of v i in (24) is to find the unit eigenvector of the i-th smallest eigenvalue of G(u) with the knowledge 
of v1, · · · , v i−1.

For a general non-gradient system, the Jacobian J (u) = ∇ F (u) should be used to substitute the self-joint Hessian in a 
gradient system. The index of a stationary point should be defined as the number of eigenvalues with positive real parts. 
The corresponding saddle dynamics for the non-gradient system [41] reads⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u̇ =
(

I − 2
k∑

j=1

v j v�
j

)
F (u),

v̇ i = (
I − v i v�

i

)
J (u)v i −

i−1∑
j=1

v j v�
j

(
J (u) + J�(u)

)
v i, i = 1, · · · ,k.

(27)

It was shown in [41, Theorem 2.1] that a linearly stable solution of (27) is an index-k stationary point of the system 
u̇ = F (u).

The numerical discretizations for (24) and (27) could have a uniform form as follows⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

um+1 = um + τ
(

I − 2
k∑

j=1

vm
j (vm

j )�
)

F (um),

ṽm+1
i = ṽm

i + σ
F (um+1 + lvm

i ) − F (um+1 − lvm
i )

2l
, i = 1, · · · ,k,

[
vm+1

1 , · · · , vm+1
k

] = orth
[

ṽm+1
1 , · · · , ṽm+1

k

]
.

(28)

Here l > 0 is a small constant and τ , σ > 0 are step sizes. A dimer centered at um+1 with the direction v i and length 2l

F (um+1 + lvm
i ) − F (um+1 − lvm

i )

2l
(29)

is applied to approximate J (um+1)v i , and orth(·) represents the normalized orthogonalization function, which could be 
realized by a Gram-Schmidt procedure.

When F involves the variable-order fractional Laplacian (5), we can implement the fast evaluation schemes (14) or (23)
in the numerical discretization of saddle dynamics (28). For instance, in the space-fractional phase field model (7), we could 
formulate the corresponding saddle dynamics and apply (23) to evaluate

F (u)|(x,y)=(xi ,y j) ≈ F̂ i, j

:= −κ(−�)
α(xi ,y j)/2

u(xi, y j) + u(xi, y j) − u3(xi, y j), 0 ≤ i, j < N.
N,h,F

8
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4.2. Algorithm of solution landscape

Using the saddle dynamics in Section 4.1, solution landscape of the aforementioned dynamical system can be constructed 
systematically via the downward and upward search algorithms [41].

The downward search algorithm enables us to search lower-index saddles and stable states from a high-index saddle 
point. Given an index-k saddle point and its k unstable directions denoted by (û, v̂1, · · · , v̂k) as a parent state, we could 
choose index-m saddles with 0 ≤ m < k as our targets. In practice, a perturbed û along the direction v̂ i for some m < i ≤ k
with the directions {v̂ j}m

j=1, that is, (û ± ε v̂ i, v̂1, · · · , v̂m), will serve as the initial conditions in (25) in the implementation 
of the discrete saddle dynamics (28). By repeating this procedure on the newly found saddles, the pathway map under the 
given index-k saddle could be constructed completely.

Inversely, the upward searching is adopted when the parent state is unknown or multiple parent states exist. To search 
an index-m saddle point (m > k) from an index-k saddle point (û, v̂1, · · · , v̂k), we need to compute m eigendirections by 
the dynamics of vi in (28) as ascent searching directions, where the first k directions have been given by the index-k saddle. 
Then we could start from the initial states (û ± ε v̂ i, v̂1, · · · , v̂m) for some k < i ≤ m to search the index-m saddle point. 
Combining the downward and upward search algorithms, we could navigate up and down on the solution landscape and 
find all connected saddle points and stable states.

Remark 4.1. Intuitively, we may solve F (u) = 0 as a numerical differential equation by iteration solvers, e.g., the Newton 
method. However, such methods depend heavily on the selection of the initial values and neglect the relations among 
different saddle points, which may lead to significant computational costs and incomplete solution landscapes. The proposed 
method accommodates these issues and is thus more efficient and accurate in practical computations.

5. Numerical experiments

We perform numerical simulations to construct the solution landscapes of constant-order and variable-order space-
fractional phase field models (8) in one and two space dimensions and compare them with their integer-order analogues.

5.1. One-dimensional problem

We first consider 1D space-fractional phase field equation (9) to understand the global structures of this model. The 
problem is restricted on the space interval [0, 1] and the mesh size h = 2−7 is chosen for spatial discretization. For any 
κ > 0 and periodic fractional order α(x), three homogeneous phases, namely, u1 ≡ 1, u−1 ≡ −1 and u0 ≡ 0, remain to be 
stationary solutions of (9). By analyzing the linear stability of the corresponding Jacobian operator, both u1 and u−1 are 
steady states of (8), while u0 is a saddle point and its index increases as κ or α decreases. Using u0 as the parent state, we 
construct the solution landscape by downward search via saddle dynamics in Section 4.

5.1.1. Constant-order case
First, we fix the diffusion coefficient κ = 0.02 and vary the fractional order α to compute the corresponding solution 

landscapes in Fig. 3. Each image in Fig. 3 denotes a stationary solution, and each column shows the solution landscape with 
different α. Each solid arrow represents a saddle dynamics. Because of the periodic boundary condition, a translation of an 
inhomogeneous stationary solution is still a stationary solution, and only one phase is shown in the solution landscape. In 
addition, if û is a stationary solution of (8), so is −û. As we can see in Fig. 3, u1 ≡ 1 and u−1 ≡ −1 remain to be steady 
states with the changing of α. The index-1 saddle points at different α show a single peak, but the interface becomes 
sharper as α is smaller. Furthermore, when α decreases, the index of the homogeneous state u0 becomes larger, leading to 
the emergence of more high-index saddle points.

The bifurcation graph in Fig. 4(A) is plotted to explain the jump of the index of u0 and the appearance of new stationary 
solutions. With the order α decreasing, the non-homogeneous states with larger wave number will appear one by one 
through pitchfork bifurcations (denoted by dash lines), and then amplify their amplitudes. We also present the index of u0
against α at different κ = 0.02, 0.015, 0.01 in Fig. (4)(B). The three curves show similar behaviors. Decreasing α leads to the 
increase of the index of u0, and smaller κ results in the higher-index of u0. Furthermore, a coarse graph of the index of u0
on the parameter space (κ, α), shown in Fig. 4(C), demonstrates how α and κ affect the index of u0. It is worth mentioning 
that decreasing α and κ has similar affects on the index of u0.

Motivated by the finding in Fig. 4(C), we can choose suitable κ in the integer-order phase field model (8) by matching the 
index of u0 at different α and compare their solution landscapes to reveal the relationship between the fractional Laplacian 
and the integer-order Laplacian. In Fig. 5(A), we compute the solution landscapes with different κ at the integer-oder α = 2. 
By matching the index order of u0, the solution landscapes with different κ are very similar to the solution landscapes with 
different α in Fig. 3. To be more specific, we compare the index-1 saddle points with different κ and α in Fig. 5(B) and (C), 
respectively. It shows similar interfaces between two phases and they become sharper with κ or α decreasing. There is a 
subtle difference between the fractional order and the integer order. The maxima (minima) of saddle points with fractional 
order α could not reach +1(−1), which is different from their integer-order analogues. Nevertheless, comparison of these 
solution landscapes shows that the spectral fractional Laplacian operator exhibits similar properties as the integer-order 
9
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Fig. 3. Solution landscapes of 1D space-fractional phase field model (9) with different constant fractional order α at κ = 0.02.

Fig. 4. (A) Bifurcation graph with respect to the fractional order α at κ = 0.02. (B) Index of u0 against α at κ = 0.02, 0.015, 0.01. (C) Index of u0 on the 
space (κ, α). (For interpretation of the colors in the figures, the reader is referred to the web version of this article.)

Laplacian by choosing the suitable diffusion coefficient. In fact, because the spectral fractional Laplacian is defined in terms 
of the eigenfunctions of the integer-order Laplacian, it may perform similar locality properties as integer-order differential 
operators.
10
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Fig. 5. (A) Solution landscapes of 1D integer-order phase field model (8) with different κ at α = 2. (B) The index-1 saddle points with different κ at α = 2. 
(C) The index-1 saddle points with different α at κ = 2 × 10−2.

5.1.2. Variable-order case
We next compute the solution landscapes of the variable-order space-fractional phase field model. The following three 

trigonometric functions with different amplitudes

1.2 + 0.1 cos(2πx),1.3 + 0.2 cos(2πx),1.55 + 0.45 cos(2πx)

are used as the variable fractional order α(x) (cf. the top line of Fig. 6). Due to the loss of symmetry of the variable fractional 
order α(x), translations of saddle points are no longer stationary solutions as in the constant fractional order case in general.

In Fig. 6(A)-(C), α(x) varies from the constant order α = 1.2 gradually and thus the corresponding solution landscapes 
differ from that of the constant order α = 1.2. More low-index saddle points emerge through pitchfork bifurcations, and the 
interfaces in the region of smaller α(x) are sharper than others. Furthermore, the index of u0 decreases when the amplitude 
of α(x) becomes larger, resulting in some high-index saddle points disappear, which is consistent to the constant order case 
by increasing α (cf. Fig. 3).

To answer the question that whether it is possible to get similar solutions of variable-order fractional problems by 
varying the coefficients in their integer-order analogues, we compute the following variable-coefficient phase field model,

u̇ = κ(x)�u + u − u3, (30)

with
11
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Fig. 6. (A)-(C) Solution landscapes of 1D variable-order phase field model with different α(x). (D) Solution landscape of the integer-order phase field model 
(30) with variable coefficient.

κ(x) = 3 × 10−3 + 2 × 10−3 cos(2πx).

This specific κ(x) is chosen by matching the index of u0 under the α(x) in Fig. 6(B) for comparison. In Fig. 6(D), we 
compute the solution landscape for the variable-coefficient case. Comparing the solution landscapes in Fig. 6 (B) and (D), we 
find that all solutions of the variable-order fractional phase field model could be approximately reconstructed by adjusting 
the variable coefficient in the integer-order phase field model. In a similar manner, the solution landscapes in Fig. 6(A) 
and (C) can be reconstructed from the model (30) by choosing κ(x) = 1.25 × 10−3 + 2.5 × 10−4 cos(2πx) and 1.05 ×
10−2 + 9.5 × 10−3 cos(2πx), respectively. Numerical simulations show that, similar to the constant fractional order case, 
the variable-order spectral fractional Laplacian operator exhibits similar behaviors as the integer-order Laplacian with a 
suitable variable-coefficient. This again demonstrates that the variable-order spectral fractional Laplacian is close to a local 
differential operator from the view point of solution landscape.

5.2. Two-dimensional problems

To show the efficiency of numerical methods, we further test 2D space-fractional phase field model (8) on a square 
domain [0, 1]2 with the mesh grid N = 26 in each direction for spatial discretization.

The solution landscapes for both constant-order and variable-order cases are shown in Fig. 7. When α = 2 in Fig. 7(A), 
which is an integer-order case, the homogeneous state u0 ≡ 0 is an index-5 saddle point of the system, and connects a 
12
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Fig. 7. Solution landscapes of 2D space-fractional phase field model with the constant order α = 2 (A), α = 1.7 (B), α = 1.5 (C), and the variable-order 
α(x, y) = 1.6 + 0.1 cos(2πx) cos(2π y) (D).

2-saddle square state, two 1-saddle stripe states and two homogeneous steady states u1 ≡ 1 and u−1 ≡ −1. In Fig. 7(B) and 
(C), when α decreases, the index of u0 increases and various states, which are some mixtures of 1D solutions in some way, 
appear through pitchfork bifurcations. We need to point out that, similar stationary solutions in Fig. 7(B) and (C) could be 
discovered with κ = 0.01, 0.006 at integer order α = 2 [41], which again demonstrates that the parameters α and κ have 
comparable affects on the solution landscapes of the space-fractional phase field model.

Furthermore, we choose the variable fractional order as

α(x, y) = 1.6 + 0.1 cos(2πx) cos(2π y),

and the corresponding solution landscape is shown in Fig. 7(D). More interesting saddle points are identified in the solution 
landscape of the variable-order phase field model. The results indicate that, by designing suitable variable fractional orders, 
specific stationary solutions may be achieved for particular applications.

5.3. Extension to logarithmic double-well potential

In previous examples, we presented the phase field model with classical double-well potential 1
4 (1 − u2)2. Now we 

investigate the phase field model with the logarithmic double-well potential, e.g., the reaction-diffusion equation with the 
Flory–Huggins potential function and the Peng–Robinson equation of state [15,28], a widely used realistic equation of state 
for hydrocarbon fluid in the petroleum industry. The logarithmic double-well potential takes the following form

f log(u) = (1 + u) ln(1 + u) + (1 − u) ln(1 − u) − cu2, u ∈ (−1,1), (31)

where the constant c > 1 determines the shape of the potential function as presented in Fig. 8(A). With this potential, the 
fractional phase field model in 1D reads

u̇ = −κ(−�)α(x)/2u + ln
1 − u

1 + u
+ 2cu. (32)

In Fig. 8(B), we display the index-3 saddle points with different c at constant order α = 1.3 and κ = 0.02. Compared with 
those under the classical double-well potential, f log introduces a new parameter c to adjust the tilt of the interface of 
saddles and the position of the homogeneous phases.
13
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Fig. 8. (A) Plots of flog(u) with different c. (B) The index-3 saddle points with different c (α = 1.3, κ = 0.02). (C) Solution landscapes of 1D fractional phase 
field model with the logarithmic double-well potential with α = 1.3 and κ = 0.02 (left), variable order α(x) = 1.3 + 0.2 cos(2πx) and κ = 0.02 (middle) 
and variable coefficient κ(x) = 3 × 10−3 + 2 × 10−3 cos(2πx) and α = 1.3 (right).

Fig. 8(C) presents three solution landscapes under different parameters. We find that the solution landscape of fractional 
phase field models with logarithmic double-well potential is similar with the one with classical double-well potential. And 
one could recover the solution landscape of the variable-order fractional phase field model by adjusting the variable coeffi-
cient in the constant-order fractional phase field model. This again demonstrates that the variable-order spectral fractional 
Laplacian is close to a local differential operator from the view point of solution landscape.

6. Conclusions

In this paper we develop and analyze a fast approximation algorithm for the variable-order space-fractional Laplacian, 
and implement it in saddle dynamics for efficient construction of the solution landscapes of nonlinear variable-order space-
fractional phase field model. By approximating the variable-indexing Fourier modes of the fractional Laplacian by the series 
14
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expansion method, we prove that the high-order accuracy of the Fourier mode approximation could be obtained using only 
O (ln M) terms in the expansion. We then construct the solution landscape of both constant- and variable-order nonlinear 
space-fractional evolution problems via saddle dynamics. Numerical experiments are performed to substantiate the accuracy 
and the efficiency of fast approximation algorithm and elucidate the global structures of the stationary solutions of nonlinear 
space-fractional problems. We further demonstrate the similarities and differences between the spectral fractional Laplacian 
problems and their integer-order analogues from the viewpoint of solution landscape. We conclude from the perspective 
of the solution landscapes that the stationary solutions of spectral fractional Laplacian problems can be reconfigured by 
choosing the suitable diffusion coefficients in corresponding integer-order problems, which indicates the locality of the 
spectral fractional Laplacian operator as the integer-order differential operators. In the future, we may extend the developed 
approach to investigate the variable-order fractional problems defined in terms of singular integrals on a general multi-
dimensional domain via the methods in, e.g., [23], and compare the properties of different definitions of variable-order 
fractional operators through the solution landscape.
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