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Abstract
We investigate the solution landscape of a reduced Landau–de Gennes model
for nematic liquid crystals (NLCs) on a two-dimensional hexagon at a
fixed temperature, as a function of λ—the edge length. This is a generic
example for reduced approaches on regular polygons. We apply the high-index
optimization-based shrinking dimer method to systematically construct the
solution landscape consisting of multiple solutions, with different defect con-
figurations, and relationships between them. We report a new stable T state with
index-0 that has an interior−1/2 defect; new classes of high-index saddle points
with multiple interior defects referred to as H-class and TD-class saddle points;
changes in the Morse index of saddle points as λ2 increases and novel pathways
mediated by high-index saddle points that can control and steer dynamical path-
ways on the solution landscape. The range of topological degrees, locations and
multiplicity of defects offered by these saddle points can be used to navigate the
complex solution landscapes of NLCs and other related soft matter systems.
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(Some figures may appear in colour only in the online journal)

1. Introduction

Nematic liquid crystals (NLCs) are viscoelastic anisotropic materials that combine the fluidity
of liquids with the long-range orientational order of solids. The electro-optic properties of
NLCs make them the working materials of choice for the multi-billion dollar liquid crystal
display industry. NLCs have tremendous potential in nanoscience, biophysics and material
design, all of which rely on modeling and computational methods for studying stable/unstable
NLC states, switching mechanisms, dynamical processes on energy landscapes etc [1]. These
approaches are useful for soft matter systems in general, for the study of interfacial phenomena,
active matter, polymers, etc [2–5].

As mentioned above, NLCs are partially ordered materials, with locally preferred direc-
tions of averaged molecular alignment, referred to as nematic directors [1]. The existence of
these distinguished directors leads to orientational order and directional physical, electro-optic
and rheological properties. A particularly intriguing feature of experimentally observable NLC
states in prototype geometries are topological defects, which can be interpreted as discontinu-
ities in nematic directors or localised regions of melting or loss of orientational order. Defects
have profound consequences for both static and dynamic phenomena in NLCs and yet several
aspects remain poorly understood. Defects commonly exist as isolated points or disclination
lines in experiments, and are further classified by their topological degrees, such as the two-
dimensional (2D) ±1 and ±1/2 point defects [6]. The topological degree is a measure of the
defect strength, i.e. the rotation of the leading nematic director around the defect core. Defects
can be unavoidable for NLCs in confinement, i.e. confined to 2D and three-dimensional (3D)
geometries with different types of boundary conditions, often due to the external fields [7],
geometrical and boundary constraints [8], and sometimes energetic considerations etc. NLCs
in confinement typically have multiple experimentally observable or stable states, and these
stable states are often distinguished by distinct defect configurations. Recent years have seen
a boom in mathematical studies for confined NLCs, particularly in a variational framework
wherein we study stable observable NLC states as minimizers of an appropriately defined free
energy. The Landau–de Gennes (LdG) theory has been hugely successful in this respect, as
shall be described in the next section and employed in this paper, see [9–11, 34] for studies
on LdG solution landscapes, and [12–15] for sophisticated studies of LdG energy minima that
model experimentally observable stable states.

The confined NLC system can switch between different energy minima or stable states, by
means of an external field, thermal fluctuations, and mechanical perturbations. The switching
requires the system to cross an energy barrier separating the two stable states, with an interme-
diate transition state. The transition state is an index-1 saddle point, i.e. a stationary point of the
energy functional such that the corresponding Hessian matrix has one and only one negative
eigenvalue. The transition state is the highest energy state along the transition pathway con-
necting the two stable states [5]. There are typically multiple transition pathways, with distinct
transition states, and the optimal transition pathway has the lowest energy barrier. The reader is
referred to [16] for transition pathways on a square domain with tangent boundary conditions
and to [17] for transition pathways on a cylindrical domain with homeotropic/normal boundary
conditions.

Transition states are the simplest kind of saddle points of the free energy. The Morse index
of a stationary point of the free energy is the number of negative eigenvalues of its Hessian
matrix. In particular, energy minima or stable states are zero-index stationary points of the
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free energy with no unstable directions [18]. The analysis and numerical computation of high-
index saddle points, with Morse index greater than 1, is very challenging. There are illustrative
numerical results for multiple stationary points, in a 2D LdG framework, on a square domain in
[19]. The authors apply the deflated continuation method to find 81 different stationary points
of a reduced LdG energy, in a large 2D square domain, of which only six are stable states
and the others are unstable saddle points. However, the results in [19] are incomplete and the
relationships between the different solutions are unclear.

Square wells are often used to study confined NLC systems, both experimentally and com-
putationally, to elucidate the effects of geometry, boundary conditions, and material properties
on LdG solution landscapes [20–22]. In [21, 22], the authors numerically discover and rig-
orously analyse the novel well order reconstruction solution (WORS) on a square domain,
featured by a distinctive set of mutually orthogonal defect lines along the two square diago-
nals, with tangent boundary conditions which require the nematic directors to be tangent to
the square edges. The WORS is globally stable, in a reduced LdG framework, for small nano-
scale square domains; remains a stationary point of the free energy, for all square sizes, but
loses stability as the square edge-length increases, i.e. for larger square domains. As the edge
length increases, the diagonal defect lines become longer, and hence the LdG energy of WORS
solution increases. The Morse index of the WORS increases as the edge length increases and
in [23], the authors use the WORS as the parent state (the highest-index saddle point) and
propose a general and efficient numerical method to construct the LdG solution landscape on
a square domain, i.e. a pathway map of connected solutions starting from a parent state, and
connecting to admissible stable energy minima, via intermediate saddle points and transition
states. This numerical study reveals several new saddle point solutions with multiple interior
defects, which were previously unreported in the literature.

The square domain is perhaps the most well studied amongst all regular 2D polygons, but
it is special. For example, the WORS is not generic, with the two mutually orthogonal defect
lines, for 2D polygons. In particular, in [24], the authors show that the Ring solution, with
a unique central point defect, is the generic stable solution for nano-scale regular polygons
with K edges, except for the square with K = 4. Furthermore, for large regular K-polygonal
domains, we have at least [K/2] classes of stable states, distinguished by the locations of a
pair of defects pinned at the polygon vertices. In contrast, for a disc (the limit of a polygon as
K →∞), there is only one observable planar polar solution featured by two interior nematic
point defects along a disc diameter [17]. In other words, the sharp vertices have a key role
in stabilising multiple states, by means of stabilising different defect configurations. On these
grounds, we choose the hexagon as a generic example of a 2D polygon with an even number of
sides: the hexagon supports the generic Ring solution for small domains, does not support the
special symmetric solutions exclusive to a square and is better suited to capture generic trends
of the solution landscape, particularly with respect to geometrical parameters.

In this paper, we apply a reduced LdG model to numerically compute the complex solution
landscapes of NLCs inside a regular 2D hexagonal domain, with tangent boundary condi-
tions. The reduced LdG model, which captures the nematic orientational order in terms of
a reduced LdG order parameter with two degrees of freedom, is suitable for 2D domains [25].
The reduced LdG model effectively reduces to the Ginzburg–Landau model [26] for super-
conductors at a fixed temperature, which is representative of temperatures below the NLC
supercooling temperature. In this reduced approach, we have one parameter—the domain size
λ2. We largely vary λ2 to construct a hierarchy of stationary points of the reduced LdG free
energy on the hexagonal domain, including minimizers, transition states and high-index sad-
dle points. The hierarchy includes the previously reported Ring, P, and M solutions. We find
entirely new classes of high-index saddle points, e.g. the TD class (including index-6 saddle

2050



Nonlinearity 34 (2021) 2048 Yucen et al

points) and the H class (including an index-14 saddle point), which cannot be identified on
the square domain. Furthermore, unlike the WORS being the parent state on a square for all
λ2, the parent state on a hexagon changes from the Ring solution, to the T135 saddle point,
and to the index-14 H-type saddle point as λ increases. It is noteworthy that we find a new
type of index-0 stable solution with an interior −1/2 defect, (the director rotates by π radians
around the defect core, and hence the topological degree of −1/2), referred to as the T solu-
tion. We also observe certain numerical trends on how the director profile near the hexagon
vertices (bend-like versus splay-like) affects the Morse index, as does the symmetry group of
the saddle point. A plethora of saddle point solutions gives us diverse possibilities for transition
pathways and indeed, we illustrate the differences between transition pathways with transition
states and transition pathways with high-index saddle points, e.g. two stable T solutions can
be connected by an index-8 H-type saddle point. In some cases, transition pathways mediated
by high-index saddle points can be more efficient for switching processes and this warrants
further investigation.

The paper is organised as follows. In section 2, we briefly review the reduced LdG frame-
work for NLCs on 2D domains. In section 3, we describe the numerical methods for com-
puting index −k saddle points and the algorithm for constructing the solution landscape. In
section 4, we systematically construct the solution landscapes with increasing complexity for
λ2 = 70, 150 and 600 respectively, where the parameter λ2 is a measure of the hexagonal
domain size or the edge length. In section 5, we compare the solution landscapes on square
and hexagonal domains. We finally present our discussion, conclusions and perspectives in
section 6.

2. Landau–de Gennes theory

As a powerful continuum theory for NLCs, the LdG theory describes the NLC state with a
macroscopic order parameter—the Q-tensor, which is a symmetric, traceless 3 × 3 matrix [1].
The NLC is said to be in the isotropic phase if Q = 0, uniaxial if Q has a pair of degenerate
nonzero eigenvalues, and biaxial if Q has three distinct eigenvalues. A uniaxial Q-tensor is
often written compactly as

Q = s

(
n ⊗ n − I

3

)
, (1)

where n is the nematic director (i.e. the eigenvector with the non-degenerate eigenvalue) that
models the single preferred direction of orientational ordering and I is the identity matrix.

We work with a particularly simple form of the LdG energy

I[Q] :=
∫
Ωλ

[
L
2
|∇Q|2 + fb (Q)

]
dA, (2)

where Ωλ is a 2D hexagonal domain with the edge length λ and L is a positive elastic con-
stant. We choose the simplest form of the LdG model by using the isotropic elastic energy for
computational simplifications. fb is the bulk potential that drives the isotropic-nematic phase
transition as a function of the temperature,

fb =
A
2

tr Q2 − B
3

tr Q3 +
C
4

(tr Q2)2, (3)

where B, C are positive material-dependent constants, and A = α(T − T
∗
) is the rescaled tem-

perature. For A < 0, fb favours an ordered bulk uniaxial phase and N := {Q ∈ M
3×3 : Q =
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s+(n ⊗ n − I/3)} is the set of minimizers of fb with

s = s+ :=
B +

√
B2 + 24|A|C

4C
(4)

and n ∈ S
2. We use MBBA as a representative NLC material and use fixed values B = 0.64 ×

104 N m−2 and C = 0.35 × 104 N m−2, which are reported in [27].
We nondimensionlize the system with r̄ = r/λ, and the rescaled LdG energy functional is

Ī[Q̄] :=
∫
Ω

[
1
2

∣∣∇̄Q̄
∣∣2 + λ2

L
fb
(
Q̄
)]

dĀ, (5)

where Ω is a regular polygon with the unit edge length. In what follows, we drop the bars
and all statements are in terms of the rescaled variables. The corresponding Euler–Lagrange
equations are

ΔQ =
λ2

L

(
AQ − B

(
QQ − |Q|2

3
I
)
+ C|Q|2Q

)
. (6)

The physically relevant states are modelled as local or global energy minima subject to the
imposed boundary conditions.

In [25], the authors prove that the physically relevant Q-tensors on 2D domains have a fixed
eigenvector z, the unit vector in the z-direction, and can be written in terms of three variables
q1, q2, q3 as shown below:

Q = q1 (n ⊗ n − m ⊗ m) + q2 (n ⊗ m + m ⊗ n) + q3 (2z ⊗ z − n ⊗ n − m ⊗ m) , (7)

where n and m are orthonormal vectors in the xy-plane [25]. In other words, only three degrees
of freedom out of five remain in a 2D framework. Further, in [28], the authors show that for
A = − B2

3C , q3 is a constant for all physically relevant solutions of (6) of the form (7), subject

to Dirichlet uniaxial tangent boundary conditions on the domain edges. Hence, for A = − B2

3C ,
we have a reduced description in terms of a reduced LdG tensor, P, with only two degrees of
freedom such that

(8)

where I2 is 2 × 2 identity matrix. In what follows, we track defects by using the nodal set or
the zero set of P that is the set of uniaxial Q-tensors with the negative order parameter about
z, as can be seen above, which is consistent with disorder in the plane of Ω.

The corresponding reduced LdG energy is

E[P] :=
∫
Ω

[
1
2
|∇P|2 + λ2

L

(
− B2

4C
tr P2 +

C
4

(
tr P2

)2
)]

dA. (9)

The Euler–Lagrange equations for P of (9) are⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ΔP11 =
2Cλ2

L

(
P2

11 + P2
12 −

B2

4C2

)
P11,

ΔP12 =
2Cλ2

L

(
P2

11 + P2
12 −

B2

4C2

)
P12.

(10)
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Figure 1. Hexagonal domain.

We further define a parameter

λ̄2 =
2Cλ2

L
. (11)

We treat C, L to be fixed material-dependent constants, and therefore λ̄2 is proportional to λ2.
For brevity, we drop the bar over λ and use λ2 to represent 2Cλ2

L , as a measure of the domain
size. Such reduced descriptions have been hugely successful for 2D systems or thin 3D systems,
both for capturing the qualitative properties of physically relevant solutions and for probing into
defect cores [29–33]. In a fully 3D system, there may be other classes of physically relevant
solutions, such as escaped solutions, with additional degrees of freedom [17, 28] and this will
be pursued in further work.

As illustrated in figure 1, the regular hexagonal domain Ω is centered at the origin with
vertices

wk =

(
cos

(k − 1)π
3

, sin
(k − 1)π

3

)
, k = 1, . . . , 6.

Starting from (1, 0), the edges are labeled counterclockwise as C1, . . . , C6, and the distance
between a point on ∂Ω and the vertices is defined as

dist (w) = min {‖w − wk‖2, k = 1, . . . , 6} , w ∈ ∂Ω.

The Dirichlet boundary conditions P = Pb are imposed on the segments of edges as, away
from the vertices

Pb
11 (w) = αk = − B

2C
cos

(
(2k − 1)π

3

)
,

Pb
12 (w) = βk = − B

2C
sin

(
(2k − 1)π

3

)
,

w ∈ Ck, dist (w) > ε, (12)

where 0 < ε 	 1/2 is the size of the mismatch region. We point out that the corresponding Qb

(associated with Pb in (8)) is in N . The value at the corner is the average of the two boundary
conditions on the two intersecting edges.
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The P-tensor can also be expressed in terms of a scalar order parameter s and an angle
γ as

P = s

(
cos 2γ sin 2γ
sin 2γ − cos 2γ

)
= 2s

(
n ⊗ n − 1

2
I2

)
, (13)

where n = (cos γ, sin γ)
 is the nematic director in the plane, s is a scalar order parameter
that measures the degree of planar order about n. The Dirichlet conditions (12) ensure that n is
tangent to the edges, i.e. either parallel or antiparallel to the edges, so that this is a model 2D
problem with tangent or planar boundary conditions. In particular, one can use this represen-
tation to define the topological degree of Pb above, i.e. γ changes by 2πN radians or n rotates
by 2πN radians around ∂Ω for an integer or half integer N and the corresponding topological
degree of Pb is N.

3. Numerical method

3.1. HiOSD method

It is a numerical challenge to find all stationary solutions, especially those saddle point
solutions, of nonlinear partial differential equations such as the Euler–Lagrange equation
in equation (10). In the past two decades, extensive numerical algorithms have been
developed to compute saddle points, but most existing algorithms are designed to find
index-1 saddle points. There are two popular approaches for searching index −1 saddle
points. One is the path-finding methods, such as the nudged elastic band method [34] and
the string method [35], and the other approach is the surface-walking methods, includ-
ing the gentlest ascent dynamics [36], the dimer type method [37–39], the eigenvector-
following method [40], etc. Furthermore, many algorithms, e.g., the minimax method [41],
the deflation technique [42], and the homotopy method [43, 44] are dedicated to find-
ing multiple stationary points of nonlinear equations, including both saddle points and
minima, usually relying on an initial guess that deterministically leads to a stationary
point.

In a recent work [45], the high-index optimization-based shrinking dimer (HiOSD)
method is proposed to compute any-index saddle points, which can be viewed as a
generalization of the optimization-based shrinking dimer method for searching index
−1 saddle points [39]. A minimax problem for an index −k saddle point is formu-
lated and then the maximal subspace is constructed by minimizing Rayleigh quotients
simultaneously. Thus a dynamical system of the HiOSD is developed for finding an
index −k saddle point, and the stability analysis is performed to show that a linearly
stable steady state of the HiOSD dynamical system is exactly an index −k saddle
point [45].

In what follows, we employ the HiOSD method to efficiently compute the station-
ary points (including both saddle points and minima) for the reduced LdG energy on a
hexagon (9). For a non-degenerate index-k saddle point x̂, the Hessian H(x) = ∇2E(x)
at x̂ has exactly k negative eigenvalues λ̂1 � · · · � λ̂k with corresponding unit eigen-
vectors v̂1, . . . , v̂k satisfying 〈v̂ j, v̂i〉 = δi j, 1 � i, j � k. Define a k-dimensional subspace
V̂ = span {v̂1, . . . , v̂k}, then x̂ is a local maximum on a k-dimensional linear manifold
x̂ + V̂ and a local minimum on x̂ + V̂⊥, where V̂⊥ is the orthogonal complement space
of V̂ .
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The HiOSD dynamics for a k-saddle (k-HiOSD) is given as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

β−1ẋ = −

⎛
⎝I − 2

k∑
j=1

v jv

j

⎞
⎠∇E(x),

γ−1v̇i = −

⎛
⎝I − viv


i − 2
i−1∑
j=1

v jv

j

⎞
⎠H(x)vi, i = 1, . . . , k,

(14)

where the state variable x and k direction variables vi are coupled, I is the identity operator
and β, γ > 0 are relaxation parameters. The k-HiOSD dynamics (14) is coupled with an initial
condition:

x(0) = x0 ∈ R
n, vi(0) = v0

i ∈ R
n, i = 1, . . . , k, (15)

where v0
1, . . . , v0

k satisfy the orthonormal condition
〈
v0

i , v0
j

〉
= δi j, i, j = 1, 2, . . . , k. The first

equation in (14) describes a transformed gradient flow, which allows x to move along an
ascent direction on the subspace V̂ and a descent direction on the subspace V̂⊥. The sec-
ond equation in (14) is used to search for an orthonormal basis of V̂. Because the Hes-
sian H(x) is self-adjoint, we can simply take vi as a unit eigenvector corresponding to the
ith smallest eigenvalue of H(x), which can be obtained from a constrained optimization
problem:

min
vi∈Rn

〈H(x)vi, vi〉, s.t. 〈v j, vi〉 = δi j, j = 1, 2, . . . , i. (16)

Then we minimize the k Rayleigh quotients (16) simultaneously by solving the second equation
in (14). To avoid direction-based calculation of Hessian, we use central difference schemes for
directional derivatives to approximate Hessians by k dimers centered at x. The ith dimer has a
direction of vi with a small dimer length 2l and H(x)vi is approximated by

H(x)vi ≈
∇E(x + lvi) −∇E(x − lvi)

2l
. (17)

HiOSD is a local-search algorithm for the computation of saddle point of arbitrary indices,
driven by a given initial condition. The great advantage of HiOSD is that we can use it as an
efficient tool for constructing the solution landscape, which gives a systematic approach for
the search of saddle points and (local and global) minimizers, without random initial guesses.
The connectivity of saddle points can be well established via the downward search and upward
search methods, both of which are described in next subsection.

3.2. Algorithm for constructing the solution landscape

The solution landscape is a pathway map consisting of all stationary points and their con-
nections. Following the HiOSD dynamics, we construct the solution landscape by means
of two algorithms: a downward search that enables us to search for all connected lower-
index saddles from an index-m saddle; an upward search with a selected direction to find the
higher-index saddles, which drives the entire search to navigate up and down on the energy
landscape [46].

Downward search algorithm: given an index-m saddle point x̂ and m unit eigenvectors
v̂1, . . . , v̂m corresponding to the m negative eigenvalues λ̂1 � · · · � λ̂m of the Hessian H(x̂)
respectively, we search for a lower index-k (k < m) saddle point using HiOSD dynamics (14).
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For the initial condition, we choose x(0) = x̂ ± εu for x, where we perturb the high-index sad-
dle x̂ along the direction u with a small ε to push the system away from the index-m saddle
x̂. The direction u is a linear combination of (m − k) vectors in the set of unstable directions
{v̂k+1, . . . , v̂m}, whose negative eigenvalues have the smallest magnitudes. The other k eigen-
vectors v̂1, . . . , v̂k are the initial unstable directions vi(0). A typical choice of initial conditions
in a downward search is (x̂ ± εv̂k+1, v̂1, . . . , v̂k). Normally, a pair of index-k saddles can be
found, corresponding to the ± sign in the initial guess. If the dynamics does not converge, a
new initial condition is needed or another Morse index k is attempted.

Upward search algorithm: we can also search for a higher index-k saddle from an index-m
saddle x̂ (m < k) by using the HiOSD dynamics. The index-m saddle is x̂ with eigenvec-
tors v̂1, . . . , v̂m corresponding to m negative eigenvalues. To search for a higher-index saddle,
(k − m) other unit eigenvectors v̂m+1, . . . , v̂k corresponding to the smallest k − m positive
eigenvalues of the Hessian H(x̂) are required. The initial state x(0) is set as x̂ ± εu where
u is a linear combination of {v̂m+1, . . . , v̂k}, and a typical initial condition for k-HiOSD in an
upward search is (x̂ ± εv̂k, v̂1, . . . , v̂k).

Each downward and upward search represents a pseudodynamics between a pair of saddle
points, which presents valuable insights into transition pathways between stable and unstable
solutions and the corresponding energy barriers. By repeating the downward search or upward
search, we are able to systematically find saddle points of various indices and uncover the
connectivity of the complex solution landscape. In [24], the authors identify stable reduced
equilibria in different regimes and use arc continuation methods to trace the corresponding
solution branches. This method misses several solution branches, particularly disconnected
branches and saddle point solutions.

In the next sections, we use the HiOSD method to study the solution landscape for different
values of λ2, and as such, discover new stable solutions, saddle point solutions, e.g. TD and H
solutions with multiple interior defects.

3.3. Spatial discretization on a hexagonal domain

To maintain the symmetric properties of the hexagonal domain, we apply finite difference
schemes over triangular elements to approximate the spatial derivatives, by analogy with the
conventional discretization of a square domain [47]. The hexagonal domain is divided into
regular triangles with the edge length h. We choose the edge length of a regular triangle mesh
to be h = 1/50 for a fixed re-scaled regular hexagonal domain Ω, centered at the origin with
the first vertex pinned at w1 = (1, 0). We have tested the stability of the numerical results by
refining the mesh size and the solutions are not sensitive to smaller choices of h. The variable
of interest φ is measured at the vertices. The 2D Laplacian operator is

Δ =
∂2

∂x2
+

∂2

∂y2
=

2
3

(
∂2

∂r2
1

+
∂2

∂r2
2

+
∂2

∂r2
3

)
, (18)

where r1 = (1, 0), r2 = ( 1
2 ,

√
3

2 ), r3 = (− 1
2 ,

√
3

2 ), and the Laplacian can be approximated by

Δφ(x0) ≈ 1
h2

(
2
3

3∑
i=1

(φ(x0 + hri) + φ(x0 − hri)) − 4φ(x0)

)
. (19)

The elastic potential |∇φ|2 in (9) can also be approximated by
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|∇φ(x0)|2 ≈ 1
3h2

3∑
i=1

(
(φ(x0 + hri) − φ(x0))2 + (φ(x0 − hri) − φ(x0))2

)
. (20)

We present our numerical results in the next section.

4. Results

4.1. Typical solutions on the regular hexagon

We plot some typical solutions of the reduced LdG model on a 2D hexagon in figure 2, all of
which were reported in [24]. For small enough λ, we get the Ring solution with a +1 point
defect at the centre, with a high degree of symmetry. The Ring solution exists for all λ and
is globally stable in the reduced framework, in the λ→ 0 limit [24]. The boundary distortion
(BD) solution has two opposite +1/2 point defects near a pair of opposite edges, and this
branch bifurcates from the Ring solution when the Ring solution loses stability, as λ increases.
There is an analogous bifurcation in a disc when the planar radial solution with a central +1
point defect bifurcates into planar polar solutions with two +1/2 point defects located along a
diameter [48]. The M solutions have two point defects at vertices, which are separated by one
vertex. The P solutions are featured by a pair of diagonally opposite point defects and both the
P and M solutions are stable for large enough λ. There are no interior defects in the M and P
solutions. The stable ortho (O) solutions, with two adjacent point defects at adjacent vertices,
only exist for very large values of λ [24], and they will not be studied in this paper.

4.2. Solution landscape at λ2 = 70

When λ2 is sufficiently small, the Ring solution is the unique stable solution [24]. We perform
an increasing λ sweep for the Ring branch using Newton’s method, the eigenvalues of the
Ring solution monotonically decrease and we observe a pitchfork bifurcation at approximately
λ2 ≈ 10, when we observe a transition from the unique stable Ring solution to multiple solu-
tions [49]. For λ2 ≈ 10, the Ring solution transitions from being a zero-index solution to a
saddle point solution with index 2 (with two equal negative eigenvalues), and we additionally
have index-1 BD solutions and index-0 P solutions. In general, we track bifurcations by track-
ing the indices of solutions; a change in the index is a signature of a bifurcation and a possible
change of stability properties. The solution landscape for λ2 = 70 is illustrated in figure 3,
showing the relationships between Ring, BD, and P solutions. The Ring solution is the parent
state, i.e. the highest-index saddle point solution. Following each unstable eigendirection of
the Ring solution shown in figure 3, the central +1 point defect splits into two defects that
relax around a pair of opposite edges, i.e. the BD solutions. The two BD defects move from
opposite edges to opposite vertices, following the unstable eigenvector of the BD solution and
converging to the corresponding P solution.

4.3. Solution landscape at λ2 = 150

We obtain new saddle points in figure 4 for λ2 = 150. The index-3 T135 replaces the index-2
Ring as a new parent state with two degenerate negative eigenvalues and one negative eigen-
value close to zero. The new index-2 T solution has two degenerate negative eigenvalues and
we deduce that these two saddle point solutions emerge from a saddle-node bifurcation, i.e.
they appear suddenly without connecting with other branches in the bifurcation diagram.
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Figure 2. Four typical solutions: Ring, BD, M, and P at λ2 = 600. The color encodes
the 2D nematic order, P2

11 + P2
12, and blue represents low nematic order manifested as

defects. The white lines follow the planar nematic director. All subsequent figures have
the same color bar for nematic order.

Figure 3. Solution landscape at λ2 = 70. Index-2 Ring is the parent state and connects
to three index-1 BD solutions along its unstable directions. Each BD solution connects
to two P minima along BD’s single unstable direction.

Both T and T135 solutions have a central −1/2 point defect and three defects around
alternate corners, with triangular symmetry. The configurations of T and T135 have subtle dif-
ferences near the vertices. The defects of the T solution are closer to/pinned at the vertices of
the hexagonal domain. We can distinguish between the T and T135 solutions by examining the
order parameter profiles near the vertices (bend-like vertex or splay-like vertex in figure 4(b)).
In the T solution, the+1/3 defect (around which the director n, defined in (13), rotates by 120◦)
is pinned to the vertex w1 and n has a splay profile around w1. We refer to such vertices with a
pinned defect as a splay-like vertex. In T135, the +1/3 defect splits into a +1/2 interior defect
and a −1/6 defect at w1 (around which n exhibits a 60◦ rotation), with a high order interme-
diate region between the interior +1/2 defect and w1. We refer to w1 in T135 as a bend-like
vertex. Regarding nomenclature, we use ‘T’ for triangular symmetry and the indices 135 to
label the bend-like vertices in T135. In T135, the bend-like vertices are located at w1,w3 and
w5 respectively. We deduce that solutions with bend-like vertices have a higher Morse index
than those with splay-like vertices. The bend-like vertices have associated interior defects and
we conjecture that this results in multiple unstable directions, and hence a higher Morse index.

2058



Nonlinearity 34 (2021) 2048 Yucen et al

Figure 4. (a) Solution landscape at λ2 = 150. The colors of the nodes specify the Morse
indices of saddle points. The number in the parentheses indicates the number of solutions
without taking symmetry into account. The height of a node approximately corresponds
to its energy (14). (b) The six configurations of solutions in (a).

The index-2 T solution has no bend-like vertices whereas the index-3 T135 solution has three
bend-like vertices. More examples are given for the H and TD solutions in the next subsection.

In comparison to λ2 = 70, we also have new connections in figure 4(a) from T135 to T, BD
and Ring respectively. The index-1 BD saddle solution bifurcates into an index-2 BD solution
and an index-1 M saddle point. We have new connections between the BD, M and P solutions
and the stable P solutions are connected by the index-1 M solutions in this case. For λ2 = 150,
we obtain a total of 17 solutions, without taking symmetry into account. If we take symmetry
into account, there are only six solutions and seven connections in figure 4. In terms of com-
putational cost, by using Matlab 2018a on a Lenovo T450s laptop, the total CPU time needed
for the construction of the complete solution landscape at λ2 = 150 is 46 min, and the average
time for finding a new connection between two critical points is 6.5 min.

4.4. Solution landscape at λ2 = 600

The solution landscape is quite complicated at λ2 = 600 as shown in figure 5(a). There are
three notable numerical findings in this regime: a new stable T solution with an interior −1/2
defect; new classes of saddle point solutions, H and TD, with high symmetry and high indices;
new saddle points with asymmetric defect locations. We recover the T135 as an index-3 saddle
point; the index-2 T solution bifurcates into an index-0 T and an index-1 T0; we also observe
the new index-3 T130 solution and an index-2 solution, labelled as T10.

Regarding nomenclature, the 0 at the end of saddle point solutions T130, T10 and T0 indi-
cates that the−1/2 defect is displaced from the centre and the other numbers label the bend-like
vertices as before. We illustrate these configurations in figures 5(a) and (b), and the number
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Figure 5. (a) Solution landscape at λ2 = 600. (b) The configurations corresponding to
(a). (c) The triangle part of T solution on a hexagonal domain Ω and stable Ring solution
on a triangle domain with λ2 = 450.

in parentheses is simply the number of such configurations related to each other by symmetry.
The T135 and T solutions have three axes of reflection symmetry from the origin to w1, w3

and w5 respectively; T130 is symmetric with respect to reflections about the line connecting
the origin to w2 and T0 is symmetric with respect to reflections about the line connecting the
origin to the vertex w3. The T10 saddle point has no axis of symmetry and there are 12 distinct
T10 solutions, which are related to each other by symmetry considerations.

The stable index-0 T solution is our first stable solution with an interior −1/2 defect at the
centre of the hexagon, for λ2 > 250. The competing stable states, P and M, have defects pinned
to vertices [19, 24], and these vertex defects are a natural consequence of the tangent boundary
conditions and topological considerations (the total topological degree of the boundary condi-
tion is zero). We speculate that there may be other stable solutions with interior point defects,
particularly on polygons with a greater number of sides, since the disc has stable planar polar
solutions with two interior +1/2 defects. We also remark that the T solution on a hexagon
(for large λ) is strongly reminiscent of the Ring solution on a regular triangle (figure 5(c)), as
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Figure 6. (a) Solution landscape of the H class. (b) The corresponding configurations
and plots of |P − PH|, where P is any solution in the H class, and PH is the index-8 H
solution. (c) From index-8 H solution to index-2 Ring solution following the HiOSD
dynamics (14). (d) From index-8 H solution to index-3 T135 solution following the
HiOSD dynamics (14).

reported in [24], which suggests that we can build new solutions by tessellating solutions on
simpler building block-type polygons, such as the triangle and the square.

In the next paragraphs, we discuss saddle point solutions in the H class (figure 6) and TD
class (figure 7) that emerge from saddle-node bifurcations and pitchfork bifurcations, with high
Morse indices and multiple interior defects.

Solution landscape of the H class: we numerically find a new class of saddle point solutions,
labelled as H-class solutions, which have Morse indices ranging from 8 to 14. We plot the
connectivity of these solutions in figure 6(a), and the corresponding configurations and their
defect profiles in figure 6(b).

The parent state is the index-14 H∗ saddle point solution connecting to the lowest index-8
saddle point solution, labelled as H. Both of these states belong to the symmetry group
G6 := {S ∈ O(2) : SΩ ∈ Ω} (same as the Ring solution). Regarding nomenclature, we follow
the same convention as before, i.e. H135 is an H-class saddle point with bend vertices at
w1,w3,w5 respectively. The subscript ∗ labels the splay-like vertices (complement of bend-
like vertices) so that H∗ has no splay-like vertices whereas H has 6 splay-like vertices. Other
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Figure 7. (a) Solution landscape of the TD class. (b) The corresponding configurations
of the TD class and plots of |P − PTD|, where P is any solution in the TD class, and PTD

is the index-3 TD solution.

examples include the index-13 H1∗ with one splay-like vertex w1, and the index-9 H1 solution
has one bend-like vertex w1; the index-12 H12∗ has two splay-like vertices w1 and w2, and the
index-10 H12 solution has two bend-like vertices at w1 and w2; the index-11 H123 solution
has three bend-like vertices pinned at w1, w2 and w3 respectively.

The H-class saddle points look similar at first glance and we illustrate the subtle differences
by plotting |P − PH|, where P is a solution of equation (10) in H-class and PH is the index-8 H
solution. The differences concentrate on the vertices with conspicuous red or white points in
the dark blue background (figure 6(b)). These conspicuous points are localised near or at the
bend-like vertices. Numerically, we find that an index-m solution in the H class has (m − 8)
bend-like vertices, e.g. the index-8 H solution has no bend-like vertices whereas the index-14
H∗ solution has 6 bend-like vertices.

We follow the HiOSD dynamics in figures 6(c) and (d). In figure 6(c), the unstable direc-
tion corresponding to the largest negative (closest to zero) eigenvalue of the H saddle point
drives the corresponding director, n in (13), to rotate clockwise or anticlockwise. Each −1/2
interior point defect merges with an adjacent splay-like vertex defect and disappears to give
a defect-free profile around the vertex. The spiral transient state finally converges to the Ring
solution. In figure 6(d), the unstable direction corresponding to the fifth largest negative eigen-
value of index-8 H saddle point, drives three alternate −1/2 defects (in small triangles) and
the +1 defect in the center of the hexagon to combine and annihilate, yielding a −1/2 defect.
The remaining alternate −1/2 defects are pushed to the edges, when the splay-like vertices
disintegrate into bend-like vertices and from topological considerations, we are left with one
central −1/2 defect and three symmetrically placed interior +1/2 defects. The final state is
the T135 solution.

Solution landscape of the TD class: we use TD as an abbreviation for ‘triangle double’ since
TD solutions appear to be a superposition of two Ring solutions on a regular triangle, with two
interior −1/2 point defects and an interior +1/2 point defect. The lowest-index saddle point
solution in this class is the index-3 TD solution with no bend-like vertices. In general, a TD-
type saddle point with m bend-like vertices is index-(m + 3), so that the highest-index saddle
point is TD∗ with three bend-like vertices (the subscript ∗ has no vertex label attached to it
which implies that there are no splay-like vertices). All saddle points in this class have three
defective vertices, either bend-like or splay-like, as suggested by our numerical results and we
illustrate the connectivity of this class in figure 7(a). The TD class can also be connected to the
T130, Ring and T135 saddle points as displayed in figure 5(a).
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Figure 8. The transition pathways between stable states including two T, six M and three
P solutions at λ2 = 600.

4.5. Transition pathways between stable states

We illustrate a comprehensive network of transition pathways between stable states including
two T, six M and three P solutions at λ2 = 600 in figure 8. For clarity, we add subscripts to label
the defect locations, since the hexagon is fixed and we need to cross energy barriers to switch
between rotationally equivalent solutions (e.g. two different P or M solutions). In figure 8, the
T solution with defects pinned at w2,w4,w6 is labelled as Tleft and the T solution with defects
pinned atw1,w3,w5 is labelled as Tright. The subscripts in T0i simply identify the vertex closest
to the displaced interior −1/2 defect. We use the label M1 to identify a class of index-1 saddle
points, configurationally close to the M solutions, with one splay-like vertex and one bend-like
vertex. We use two subscripts, i.e. M1a,b to identify the location of the bend-like and splay-like
vertices respectively. In contrast, the stable M and P solutions have two splay-like vertices and
we use subscripts, e.g. Ma,b, to locate the splay-like vertices.

Firstly, we remark that some stable and configurationally-close solutions are connected by
a single transition state (index-1 saddle point) in figure 8. For example, the transition state
between Tleft and M26 is T04. The −1/2 center point defect in Tleft moves towards the vertex
w4 and merges with the defect near w4, as the configuration converges to M. The transition
state between M26 and P25 is M162. The defect at w6 moves towards w5 along the edge C5

(between w5 and w6), and settles at w5 yielding the stable P25 state.
Secondly, two different M or P solutions cannot be connected by means of a single tran-

sition state, i.e. the transition pathway is typically composed of at least two transition path-
ways with an intermediate P or M state. From a practical perspective, this means that there
is a high probability for the system to be trapped into the intermediate stable M or P state.
For instance, one transition pathway between P25 and P36 is P25–M135–M35–M153–P36. The
defect at w2 moves towards w3, yielding the stable M35 and then the defect at w5 moves
towards w6, yielding the stable P36. Similarly, one transition pathway between M26 and M35

is M26–M126–P36–M153–M35, with an intermediate stable P36 state. The transient dynamics
involves the migration of the defect at w2 towards w3, which converges to P36, followed by the
motion of the defect at w6 towards the vertex w5 to yield the final stable state M35.

2063



Nonlinearity 34 (2021) 2048 Yucen et al

Figure 9. Solution landscape starting from the H solution. All local minima such as Tleft,
P36, M26, M35, P25, and Tright are connected by the index-8 H solution.

The most complicated transition pathway appears to be the pathway between the two T
solutions: Tleft and Tright. Although Tleft and Tright are two symmetric solutions related by a 60◦

rotation, the switching process between Tleft and Tright cannot be achieved by a simple rotation
because the hexagonal domain is fixed. In fact, one numerically computed transition pathway
between Tleft and Tright is Tleft –T04–M26–M162–P25–M115–M15–T03–Tright, where T04, M162,
M115 and T03 are transition states (index-1 saddle points). This shows that a transition between
two energetically-close but configurationally-farT solutions may have to overcome four energy
barriers and could be easily trapped by the stable M or P solutions.

In figure 8, each transition state can connect two stable minima by following its
single unstable direction. This necessarily suggests that transition states cannot connect
configurationally-far stable solutions, and hence multiple transition states are needed to con-
nect configurationally-far stable states. This is computationally expensive and as suggested
before, is not a reliable way of achieving switching because of the intermediate stable states. An
alternative approach is to use higher-index saddle points with multiple unstable directions, to
connect configurationally-far stable solutions. The multiple unstable directions give us greater
control on the dynamical pathways and offer diverse possibilities, all of which give greater
insights into the design and control of solution landscapes.

Figure 9 shows how the different P, M, and T solutions are connected by high-index saddles.
For instance, the index-1 M1 solution connects the M and P solutions and the index-1 T0
solution connects the stable M and T solutions. However, two M solutions or two P solutions
can be connected by the index-2 BD solution, e.g. M26 ← M162 ← BD25 → M153 → M35 and
P25 ← M162 ← BD25 → M153 → P36. The benefit of this pathway mediated by a high-index
saddle point as opposed to a pathway with an intermediate stable state is that the system will not
be trapped by the transient local minima along this pathway. Similarly, the M (or P) solutions
and T solutions are connected by the index-2 T10 solution as follows: Tleft ← T04 ← T1042 →
M126 → P36 or M26. Tleft and Tright solutions are configurationally far away from each other and
are thus connected by an index-8 H solution: Tleft ← T135left ← H → T135right → Tright.

Figure 9 shows that the index-8 H solution is the stationary point in the intersection of the
smallest closures of two T, three P and six M solutions on the energy landscape. The H solu-
tion is connected to every stable solution and we can thus construct dynamical pathways from
the H solution to every individual stable solution. Our numerical results highlight the differ-
ences between transition pathways mediated by index-1 saddle points and pathways mediated
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Figure 10. Comparison of the parent states of the solution landscapes on the square (a)
and the hexagon (b). The domain size λ2 = 5, 70, 150, and 600, respectively.

by high-index saddle points. We deduce that index-1 saddle points are efficient for connecting
configurationally-close stable solutions. For configurationally-far stable states, they are gener-
ally connected by multiple transition states and intermediate stable states, or in another way,
connected by a high-index saddle point.

5. Comparison with the solution landscape on a square

The reduced LdG solution landscape on a square domain with tangent boundary conditions
has been studied in [23] and it is known that the WORS is the unique stable LdG equilib-
rium for small domain sizes, exists as a stationary point for all domain sizes, and is unstable
for large domain sizes [21, 22]. The WORS is special in the sense that it is characterized
by two isotropic defect lines along the square diagonals. In figure 10(a), the Morse index of
the WORS increases with the domain size and the WORS is always the parent state for the
solution landscapes on a square domain. Intuitively, this is because the length of the diago-
nal defect lines increases as the domain size increases, and thus the WORS has an increasing
number of unstable directions and an increasing Morse index, with the increasing square edge
length. The Ring solution, which is the analogue of the WORS on a hexagon, is index-0 for
λ small enough, and is an index-2 saddle point solution for larger λ, i.e. the Morse index
does not increase with increasing λ. The parent state with the highest index for the solution
landscapes on a hexagon changes from the Ring solution to the index-3 T135 and index-
14 H∗ when λ2 = 70, 150, 600 (see figure 10(b)) respectively, where T135 and H∗ solutions
emerge through saddle-node bifurcations. For the reduced LdG model on a hexagon, we have
saddle-node bifurcations, stable solutions with interior point defects, and novel T, TD- or
H-class states which cannot be found for any numerically tested value of λ2 for the square
domain.

Although the solution landscapes between a square domain and a hexagonal domain are
quite different, there are some analogies. The WORS and the Ring solution are unique stable
solutions when λ2 (the domain size) is small enough on a square and hexagon, respectively.
The BD on a square or hexagon is the first unstable solution which bifurcates from the parent
state, the WORS or the Ring solution respectively. The D and R solutions are stable solutions
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on a square [19] analogous to P and M solutions on a hexagon, when λ2 is large enough [24].
For the solution landscape on a square, WORS → BD → D is analogous to Ring → BD → P
connections on a hexagon at λ2 = 70 in figure 3. We believe that the hexagon is a more generic
example of a regular polygon with an even number of sides than a square and hence, we expect
the qualitative aspects of our numerical study to extend to other regular polygons with an even
number of sides.

6. Discussion and conclusion

We investigate the solution landscape of a reduced LdG model on a regular 2D hexagon with
tangent boundary conditions, as a prototype problem concerning nematic equilibria on regular
2D domains. We study reduced LdG energy minima in [24], and report the Ring solution for
nano-scale hexagons, and the P and M stable states for larger micron-scale hexagons, including
a bifurcation diagram for the solution branches as a function of λ2, i.e. we trace the continua-
tion of these solution branches as a function of the hexagon size. We go much further in this
manuscript in the sense that we focus on the solution landscape including both minima and sad-
dle points, and their relationships. We first present illuminating numerical results on how the
Morse index of solutions changes with λ, i.e. the Ring solution with a stable central +1 defect
is index-0 for small λ and is index-2 for large λ. Similarly, the BD solution branch changes
from index-1 to index-2 as λ increases. This is an interesting numerical example on how a
given solution becomes more unstable as a function of the geometry. We observe new solu-
tion branches, e.g. TD- and H-class saddle points through saddle-node bifurcations, and quite
importantly, we report two new stable T solutions with a central −1/2 defect, surrounded by
three splay-like vertices. In fact, the T solution gains stability as λ increases, with a transition
from index-2 to index-0 as λ increases, and is reminiscent of the Ring solution for a regular
triangle superimposed on a hexagonal domain [24]. This raises the pertinent question—can
we construct reduced solutions on complex geometries by using reduced solutions on simpler
geometries as a building block? We illustrate the solution landscapes at three representative
values of λ2 and strongly speculate that there are more stable solutions, symmetric and asym-
metric saddle point solutions, tessellated solutions as λ increases. Further, since the Dirichlet
boundary condition is either topologically trivial or has a unit degree, we could build a fur-
ther hierarchy of exotic reduced solutions by exploiting the topological degree of the tangent
boundary condition.

A further innovative aspect of our study are insightful numerical results on dynamical path-
ways. We present several informative examples of transition pathways with a single transition
state, multiple transition states and pathways mediated by higher-index saddle points. We
believe that pathways mediated by high-index saddle points give greater possibilities for tran-
sition pathways, without the risk of being trapped into metastable states, and we can control the
dynamical pathways by manipulating different unstable directions. The selective mechanism
for dynamical pathways, in other words, how a system chooses between multiple dynamical
pathways connecting a pair of equilibria, remains an open problem of practical significance for
liquid crystal devices.

There are deep analytic issues associated with saddle points of nonlinear and non-convex
functionals, such as the reduced LdG free energy. We speculate that the saddle points of the
reduced LdG model can be interpreted as minimizers of constrained problems or appropri-
ately defined Dirichlet problems, as the WORS in [22]. Advances in this direction would lead
to new control strategies for confined NLC systems, since we could propose conditions that
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would stabilise the saddle point solutions, some of which have multiple interior and bound-
ary defects. Secondly, the hexagon is a generic regular polygon with an even number of sides.
Our numerical results, at least from qualitative aspects, will carry over to arbitrary regular
polygons with an even number of sides, and indeed to a large number of phase field mod-
els on 2D polygons with planar boundary conditions. Our results are indeed a consequence
of the symmetry of the domain and the mathematical formulation, and as such, reveal certain
universal trends of complex solution landscapes with regards to geometry, confinement and
defects.

For a regular hexagonal domain, the critical points obtained are isolated, i.e. the corre-
sponding Hessian has no zero eigenvalues. However, if the domain is a disc [17], the solu-
tion like the planar polar solution, has rotational invariance, hence its Hessian has one zero
eigenvalue, so that it is a degenerate critical point (i.e. not an isolated critical point). The
degeneracy of a critical point will certainly affect its numerical computation. In practice, the
HiOSD method can compute such degenerate critical points by including the zero eigenvec-
tors into the unstable directions. For example, a k-saddle with m zero eigenvalues can be
found using (k + m)-HiOSD. In a very recent work [50], we apply this approach to search
for critical points that are not isolated and the HiOSD method performs very well for identi-
fying the degenerate critical points. Furthermore, because of the hierarchical structure of the
solution landscape, each HiOSD is independent of the others and the downward or upward
search algorithms can naturally be parallelized, which can reduce the computational time
greatly.

We also remark that our results, though restricted to a 2D setting, will exist in a 3D setting
too, for example on a well with a 2D hexagon as cross-section [28]. In other words, these
critical points exist as translationally invariant 3D critical points e.g. on 3D domains with free
boundary conditions on the top and bottom surfaces, but they may not be energy minimizing in
a 3D framework or the index of a 2D saddle point may be different in the 3D setting. In fact, the
Ring solution will exist as a translationally invariant solution on a 3D well, for arbitrary well
heights, and will be globally stable for λ small enough, independently of the well height. It is
not clear if the Morse index of the saddle points will increase in a 3D setting and we expect
this to be strongly dependent on the boundary conditions in a 3D setting. A reduced LdG
tensor only has two degrees of freedom whereas the full LdG tensor in 3D has five degrees of
freedom, allowing for more instabilities and on these grounds, we speculate that the T solution
on a hexagon may not be stable in a fully 3D framework.

The results in this paper pose several challenging analytic and numerical questions. Can
we obtain bounds for the Morse index as a function of λ? Is there an upper bound indepen-
dent of λ, which would also impose restrictions on the complexity of the solution landscape
with increasing λ? How can we check if the constructed solution landscape is complete? Is it
possible that there exist isolated saddle points that are unconnected with the current solution
landscape? Such questions warrant comprehensive theoretical and numerical studies in the
future. Other natural generalizations include the effects of the asymmetry in geometry, elastic
anisotropy, and the boundary conditions. Preliminary work shows that elastic anisotropy per-
turbs the symmetry of the problem so that we may lose the Ring solution and the WORS with
elastic anisotropy. In [51], the authors consider both strong and weak anchoring for planar liq-
uid crystal wells with square cross-sections. Certain stable solutions (e.g. the rotated solutions)
only exist for anchoring strengths larger than a critical anchoring strength. This suggests that
the boundary conditions affect the solution landscapes, both in terms of the stable states and
the saddle points. We defer these investigations of the dimensionality, geometrical features and
material anisotropy to future work.
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[47] Fabero J C, Bautista A and Casasús L 2001 An explicit finite differences scheme over hexagonal

tessellation Appl. Math. Lett. 14 593–8
[48] Hu Y, Qu Y and Zhang P 2016 On the disclination lines of nematic liquid crystals Commun. Comput.

Phys. 19 354–79
[49] Troger H and Steindl A 2012 Nonlinear Stability and Bifurcation Theory: An Introduction for

Engineers and Applied Scientists (Berlin: Springer)
[50] Yin J Y, Jiang K, Shi A C, Zhang P W and Zhang L 2020 Transition pathways connecting crystals

and quasicrystals (arXiv:2007.15866)
[51] Luo C, Majumdar A and Erban R 2012 Multistability in planar liquid crystal wells Phys. Rev. E 85

061702

2069

https://doi.org/10.1103/physrevlett.124.090601
https://doi.org/10.1103/physrevlett.124.090601
https://doi.org/10.1137/19m1293156
https://doi.org/10.1137/19m1293156
https://doi.org/10.1137/19m1293156
https://doi.org/10.1137/19m1293156
https://doi.org/10.1007/s00332-017-9390-5
https://doi.org/10.1007/s00332-017-9390-5
https://doi.org/10.1007/s00332-017-9390-5
https://doi.org/10.1007/s00332-017-9390-5
https://doi.org/10.1016/j.ijnonlinmec.2019.103342
https://doi.org/10.1016/j.ijnonlinmec.2019.103342
https://doi.org/10.5488/cmp.13.33601
https://doi.org/10.5488/cmp.13.33601
https://doi.org/10.1103/PhysRevE.101.022706
https://doi.org/10.1103/PhysRevE.101.022706
https://doi.org/10.1016/j.carbon.2005.01.009
https://doi.org/10.1016/j.carbon.2005.01.009
https://doi.org/10.1016/j.carbon.2005.01.009
https://doi.org/10.1016/j.carbon.2005.01.009
https://doi.org/10.1039/b714250a
https://doi.org/10.1039/b714250a
https://doi.org/10.1039/b714250a
https://doi.org/10.1039/b714250a
https://doi.org/10.1126/science.1129660
https://doi.org/10.1126/science.1129660
https://doi.org/10.1126/science.1129660
https://doi.org/10.1126/science.1129660
https://doi.org/10.1103/physrevb.66.052301
https://doi.org/10.1103/physrevb.66.052301
https://doi.org/10.1088/0951-7715/24/6/008
https://doi.org/10.1088/0951-7715/24/6/008
https://doi.org/10.1063/1.480097
https://doi.org/10.1063/1.480097
https://doi.org/10.1063/1.480097
https://doi.org/10.1063/1.480097
https://doi.org/10.1137/110843149
https://doi.org/10.1137/110843149
https://doi.org/10.1137/110843149
https://doi.org/10.1137/110843149
https://doi.org/10.1137/140972676
https://doi.org/10.1137/140972676
https://doi.org/10.1137/140972676
https://doi.org/10.1137/140972676
https://doi.org/10.1063/1.1436470
https://doi.org/10.1063/1.1436470
https://doi.org/10.1063/1.1436470
https://doi.org/10.1063/1.1436470
https://doi.org/10.1137/s1064827599365641
https://doi.org/10.1137/s1064827599365641
https://doi.org/10.1137/s1064827599365641
https://doi.org/10.1137/s1064827599365641
https://doi.org/10.1137/140984798
https://doi.org/10.1137/140984798
https://doi.org/10.1137/140984798
https://doi.org/10.1137/140984798
https://doi.org/10.1103/physreve.84.025702
https://doi.org/10.1103/physreve.84.025702
https://doi.org/10.1016/j.cam.2013.09.007
https://doi.org/10.1016/j.cam.2013.09.007
https://doi.org/10.1016/j.cam.2013.09.007
https://doi.org/10.1016/j.cam.2013.09.007
https://doi.org/10.1137/19m1253356
https://doi.org/10.1137/19m1253356
https://doi.org/10.1137/19m1253356
https://doi.org/10.1137/19m1253356
https://arxiv.org/abs/2002.10690
https://doi.org/10.1016/s0893-9659(00)00199-3
https://doi.org/10.1016/s0893-9659(00)00199-3
https://doi.org/10.1016/s0893-9659(00)00199-3
https://doi.org/10.1016/s0893-9659(00)00199-3
https://doi.org/10.4208/cicp.210115.180515a
https://doi.org/10.4208/cicp.210115.180515a
https://doi.org/10.4208/cicp.210115.180515a
https://doi.org/10.4208/cicp.210115.180515a
https://arxiv.org/abs/2007.15866
https://doi.org/10.1103/physreve.85.061702
https://doi.org/10.1103/physreve.85.061702

	Solution landscape of a reduced Landau–de Gennes model on a hexagon
	1.  Introduction
	2.  Landau–de Gennes theory
	3.  Numerical method
	3.1.  HiOSD method
	3.2.  Algorithm for constructing the solution landscape
	3.3.  Spatial discretization on a hexagonal domain

	4.  Results
	4.1.  Typical solutions on the regular hexagon
	4.2.  Solution landscape at 
	4.3.  Solution landscape at 
	4.4.  Solution landscape at 
	4.5.  Transition pathways between stable states

	5.  Comparison with the solution landscape on a square
	6.  Discussion and conclusion
	Acknowledgments
	References


