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Liquid crystal is a typical kind of soft matter that is intermediate between
crystalline solids and isotropic fluids. The study of liquid crystals has made
tremendous progress over the last four decades, which is of great importance
on both fundamental scientific researches and widespread applications in in-
dustry. In this paper, we review the mathematical models and their connec-
tions of liquid crystals, and survey the developments of numerical methods
for finding the rich configurations of liquid crystals.

CONTENTS

1 Introduction 2
2 Mathematical models of liquid crystals 6
3 Mathematical analysis for different liquid crystal

models 26
4 Numerical methods for computing stable defects

of liquid crystals 38
5 Numerical methods for computing liquid crystal

hydrodynamics 51
6 Numerical methods for computing transition

pathways and solution landscape of liquid crystals 58
7 Conclusion and future directions 69
8 Appendix 74
References 76

ar
X

iv
:2

10
4.

02
25

0v
1 

 [
m

at
h.

N
A

] 
 6

 A
pr

 2
02

1



2 Acta Numerica

1. Introduction

Liquid crystals (LCs) are classical examples of partially ordered materi-
als that translate freely as liquid and exhibit some long-range order above
a critical concentration or below a critical temperature. The anisotropic
properties lead to anisotropic mechanical, optical and rheological proper-
ties (de Gennes and Prost 1993, Stewart 2004), and make LCs suitable
for a wide range of commercial applications, among which the best known
one is in LC display industry (Stephen and Adrian 2002, Majumdar, New-
ton, Robbins and Zyskin 2007). LCs also have substantial applications in
nanoscience, biophysics, materials design, etc. Furthermore, LC is a typical
system of complex fluids, hence the theoretical approaches or technical tools
of LC systems can be applied in the study beyond the specific field of LCs,
such as surface/interfacial phenomena, active matter, polymers, elastomers
and colloid science (Takashi and Yasumasa 2010, Muller, Smirnova, Marelli,
Fuhrmans and Shi 2012, Cai, Zhang and Shi 2017b).

LCs are mesophases between anisotropic crystalline (Fig. 1.1 (a)) and
isotropic liquid (Fig. 1.1 (e)). There are three major classes of LCs– the
nematic, the cholesteric, and the smectic (Friedel 1922). The simplest phase
is the nematic phase (Fig. 1.1 (d)), where there is a long-range orientational
order, i.e., the molecules almost align parallel to each other, but no long-
range correlation to the molecular center of mass positions. On a local
scale, the cholesteric (Fig. 1.1 (c)) and nematic orders are similar, while,
on a larger scale the director of cholesteric molecules follows a helix with
a spatial period. The nematic liquid crystal is a special cholesteric liquid
crystal with no helix. Smectics (Fig. 1.1 (b)) have one degree of translational
ordering, resulting in a layered structure. As a consequence of this partial
translational ordering, the smectic phases are much more viscous and more
close to crystalline than either nematic phase or cholesteric phase.

smectic nematic isotropiccrystalline

(a) (b) (d) (e)(c)

cholesteric

Figure 1.1. Schematic representation of (a) crystalline, (b) smectic, (c)
cholesteric, (d) nematic, and (e) isotropic phases with rod-like molecules.

The most widely studied system of LCs is rod-like nematic liquid crystal
(NLC), of which molecules are rod-shape and rigid. In such a NLC, the
molecules may move freely like a liquid, but its molecules in a local area
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may tend to align along a certain direction, which makes the liquid being
anisotropic. In order to describe the anisotropic behaviour of NLC, one has
to choose appropriate functions, called order parameters in the community
of physics. There are various ways for choosing order parameters, which
lead to mathematical theories at different levels, ranging from microscopic
molecular theories to macroscopic continuum theories.

The first type of model is the vector model, including the Oseen-Frank the-
ory (Oseen 1933, Frank 1958) and the Ericksen’s theorem (Ericksen 1990).
In these models, it is assumed that there exists a locally preferred direction
n(x) ∈ S2 (the unit sphere in the three dimensional space) for the alignment
of LC molecules at each material point x. This setting is rough but works
very well in many situations, so the vector theory has been widely used in LC
community for its simplicity. However, vector theories have that drawback
that it does not respect the head-to-tail symmetry of rod-like molecular, in
which −n should be equivalent to n (Ball and Zarnescu 2008). This draw-
back may lead to a incorrect description of some systems, especially when
defects are present.

The second one is the molecular model, which was proposed by Onsager
(1949) to characterize the nematic-isotropic phase transition and then devel-
oped by Doi (1981) to study the LC flow. In this theory, the alignment be-
havior is described by an orientational distribution function f(x,m) which
represents the number density of molecules with orientation m ∈ S2 at a
material point x. Since the distribution function f contains much more
information on the molecular alignment, the molecular models can provide
more accurate description. However, the computational cost is usually very
expensive as it often involves solving high dimensional problems.

The third type of model is the Q-tensor model, including the Landau-de
Gennes (LdG) theory (de Gennes and Prost 1993), which uses a traceless
symmetric 3 × 3 matrix Q(x) to describe the alignment of LC molecules
at the position x. In a physical viewpoint, the order parameter Q-tensor,
is related to the second moment of the orientational distribution function
f(x,m). It does not assume that the molecular alignment has a preferred
direction and thus can describe the biaxiality.

The vector theory and tensor theory are called macroscopic theories, which
are based on continuum mechanics, while the molecular theory is a micro-
scopic one that is derived from the viewpoint of statistical mechanics. Al-
though they were proposed from different physical viewpoints, all of them
play important roles and have been widely used in studies of LCs. Un-
derstanding these models and their relationships becomes an important is-
sue for LC studies. Moreover, the coefficients in macroscopic theories are
phenomenologically determined and their interpretations in terms of basic
physical measurements remain unclear. By exploring their relationships,
one can determine these coefficients in terms of the molecular parameters,
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Figure 1.2. (a-d) are schematic diagrams of ±1 and ±1/2 2D point defects,
respectively.

which provide a clear physical interpretation rather than phenomenological
determination. From the aspect of mathematical modeling, many efforts
have been addressed on their relationships especially on microscopic foun-
dations of macroscopic theories. However, little work has been done from
the analytical side until some progresses have been made during the past
ten years. New experimental works and theoretical paradigms call for major
modeling and analysis efforts.

A particularly intriguing feature of LCs is the topologically induced defects
(Kléman 1989, Ball 2017). Defects are discontinuities in the alignment of
LCs. They are classified as point defects, disclination lines, and surface
defects, and further classified by the topological degree of defects, including
two-dimensional (2D) ±1 and ±1/2 point defects (Fig. 1.2). Defects are
energetically unfavorable because the existence of defects will increase the
elastic energy of the nearby LCs. However, defects are unavoidable due to
the environment such as external fields (electric field and magnetic field)
(Oh-e and Kondo 1995), geometric constraints (boundary condition and
domain) (de Luca and Rey 2007), unsmooth boundary (polygon corner)
(Han, Majumdar and Zhang 2020a), etc. NLC is a typical system to study
defects, rich static structures and dynamic processes relevant to defects.
Defects have the property of being isotropic and are surrounded by NLC
molecules, and hence are able to induce the phase transition between NLC
phases and isotropic (Mottram and Sluckin 2000, Mottram and Hogan 1997).
The multiplicity of defect patterns also guide the design of new multi-stable
LC display device (Willman, Fernández, James and Day 2008).

A topologically confined NLC system can admit multiple stable equilib-
ria, which usually correspond to different defect patterns (Kralj, Virga and
Žumer 1999, Wang, Zhang and Chen 2017, Robinson, Luo, Farrell, Erban
and Majumdar 2017). The energy landscape of the NLC system, upon which
the equilibrium states are located, is determined by the properties of the LC
material as well as the environment, such as temperature, size and shape
of confining space, external field, etc. Tremendous experimental and theo-
retical studies have been made to investigate the defect patterns in NLCs
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(Muševič, Škarabot, Tkalec, Ravnik and Žumer 2006, Lubensky, Pettey,
Currier and Stark 1998, Onsager 1949, Bajc, Hecht and Žumer 2016).

From a numerical perspective, there are two approaches to compute sta-
ble defect patterns. One is the energy-minimization based approach (Cohen,
Hardt, Kinderlehrer, Lin and Luskin 1987, Alouges 1997, Adler, Atherton,
Emerson and MacLachlan 2015, Nochetto, Walker and Zhang 2017, Majum-
dar and Wang 2018, Gartland Jr, Palffy-Muhoray and Varga 1991), which
is often numerically solved by Newton-type or quasi-Newton method. The
other approach is to follow the gradient flow dynamics driven by the free
energy corresponding to individual model of LCs (Fukuda, Stark, Yoneya
and Yokoyama 2004, Ravnik and Žumer 2009, Canevari, Majumdar and
Spicer 2017, Wang, Canevari and Majumdar 2019, MacDonald, Mackenzie
and Ramage 2020). Various efficient numerical methods have been devel-
oped to solve the gradient flow equations, including energy stable numerical
schemes such as convex splitting method (Elliott and Stuart 1993), invari-
ant energy quadratization method (Yang 2016), scalar auxiliary variable
method (J. Shen and Yang 2018), etc. Furthermore, machine learning re-
cently becomes an emerging approach in the field of soft matter including
LCs (Walters, Wei and Chen 2019).

There are also extensive numerical developments for the LC hydrodynam-
ics to simulate LC flows, LC droplets, colloid LC composites, etc (Badia,
Guillén-Gónzalez and Gutiérrez-Santacreu 2011b, Foffano, Lintuvuori, Tiri-
bocchi and Marenduzzo 2014). Various numerical studies of the NLC dy-
namics are performed by applying the Ericksen–Leslie equations (Liu and
Walkington 2000, Becker, Feng and Prohl 2008), the hydrodynamic Q-tensor
models (Beris and Edwards 1994, Zhao and Wang 2016), and the molecu-
lar models based on the extended Doi kinetic theory (Doi, Edwards and
Edwards 1988, Ji, Yu and Zhang 2008).

With the existence of multiple stable or metastable states in the LC sys-
tems, it may transit from one stable equilibrium to another under thermal
fluctuation or external perturbation, causing the position and topology of
defect to change drastically (Kusumaatmaja and Majumdar 2015, Gupta,
Sivakumar, Caruso and Abbott 2009). Thus it is important, both experi-
mentally and theoretically, to determine when and how such phase transition
occurs. In the zero-temperature limit, the phase transition connecting two
stable defects follows the so called minimal energy path (MEP), which has
the lowest energy barrier among all possible paths. The transition state cor-
responds to the state with the highest energy along the MEP, i.e., index-1
saddle point (Zhang, Du and Zheng 2016a). Finding accurate critical nuclei
and transition pathways is a challenging problem due to the anisotropic na-
ture of the problems and the existence of a number of length scales. There
are two typical approaches to compute transition states and transition path-
ways. One is the surface-walking method, such as the gentlest ascent dy-
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namics (E and Zhou 2011) and the dimer type method (Henkelman and
Jónsson 1999), the other is path-finding method, such as the string method
(E, Ren and Vanden-Eijnden 2002) and the nudged elastic band method
(Jónsson, Mills and Jacobsen 1998).

Besides local minimizers and transition states, there is substantial recent
interest in high-index saddle points with multiple unstable directions on the
LC energy landscape, which are stationary solutions of the Euler-Lagrange
equation corresponding to the LC free energy, and the Morse index is the
number of negative eigenvalues of the corresponding Hessian of the free en-
ergy (Milnor, Spivak and Wells 1969). In recent years, a number of numerical
algorithms have been developed to find multiple solutions of nonlinear equa-
tions, including the minimax method (Li and Zhou 2001), the deflation tech-
nique (Farrell, Birkisson and Funke 2015), the eigenvector-following method
(Doye and Wales 2002), and the homotopy method (Mehta 2011). Despite
substantial progress in this direction, the relationships between different so-
lutions are unclear. In a recent work (Yin, Zhang and Zhang 2019), the
high-index saddle dynamics was proposed to efficiently compute any-index
saddle points. By applying the high-index optimization-based shrinking
dimer method, a solution landscape, which is a pathway map of all con-
nected solutions, can be constructed for the NLCs confined on a square
domain (Yin, Wang, Chen, Zhang and Zhang 2020a).

The rest of the paper is organized as follows. The mathematical models
of LC, including molecular models, vector models, and tensor models, will
be introduced in Section 2. Mathematical analysis and connections between
different LC models will be discussed in Section 3. For the numerical compu-
tation of LCs, we will review numerical methods for computing stable defects
of LC in Section 4 and LC hydrodynamics in Section 5. In Section 6, we
will introduce the numerical algorithms to compute the transition pathways
between difference LCs and the solution landscapes of LC systems. Section
7 will conclude with an outlook for trends and future developments of LCs.

2. Mathematical models of liquid crystals

In this section, we review the three typical theories of LCs, i. e., molecular
models, vector models, and tensor models separately.

2.1. Molecular model

2.1.1. The static Onsager theory

Onsager (1949) proposed a classical model which can predict the isotropic-
nematic phase transition for rod-like LCs. The theory is based on a orien-
tational distribution function f(m) which represents the number density of



7

molecules with orientation m. The free energy can be written as

A[f ] =

∫
S2

{
f(m) ln f(m) +

1

2
f(m)U(m)

}
dm. (2.1)

The first term comes from the Brownian motion of the rod-like molecules,
and the second term is the interaction term where U(m) is the mean-field
interaction potential

U(m) = (U [f ])(m) :=

∫
S2
B(m,m′)f(m′)dm′, (2.2)

where B(m,m′) is the interaction potential between two molecules with
orientation m and m′. Onsager introduced the potential B(m,m′) with the
form

B(m,m′) = α |m×m′|, (2.3)

which is calculated based on the excluded volume potential. Maier and
Saupe (1958) proposed a similar interaction potential, now known as the
Maier-Saupe potential:

B(m,m′) = α |m×m′|2. (2.4)

The parameter α represents the density (for lyotropic LCs) or the inverse of
absolute temperature (for thermotropic LCs).

The energy functional (2.1)-(2.2) with (2.3) or (2.4) are called the Onsager
energy or the Maier-Saupe energy respectively. Both of them characterize
the competition between the entropy and interaction energy and can effec-
tively describe the nematic-isotropic phase transition. If the temperature
is high or the density is dilute, the entropy term dominates the energy and
the minimizer is the constant distribution f(m) = 1/4π, which describes
the isotropic phase. On the contrary, if the temperature is low or the den-
sity is large, the energy is dominated by the interaction term and will be
minimized by an axially symmetric distribution f(m) = f0(m · n). This
case corresponds to the nematic phase in which molecules prefer a uniform
alignment. The rigorous proof for the Maier-Saupe energy is given indepen-
dently by Liu, Zhang and Zhang (2005) and Fatkullin and Slastikov (2005).
Another proof is given in (Zhou, Wang, Forest and Wang 2005). Precisely,
in these papers, the following theorem was proved:

Theorem 2.1. All the critical points of the Maier-Saupe energy ((2.1)-
(2.2) with (2.4)) are given by

hη,n(m) =
eη(m·n)2∫

S2 eη(m·n)2dm
,
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where n is an arbitrary unit vector, and η equals to 0 or satisfies∫ 1
0 eηz

2
dz∫ 1

0 z
2(1− z2)eηz2dz

= α. (2.5)

Furthermore, there exists

α∗ = min
η∈R

∫ 1
0 eηz

2
dz∫ 1

0 z
2(1− z2)eηz2dz

≈ 6.731393,

such that

1 For α < α∗, (2.5) has no solution. While for α = α∗, it has a unique
solution η = η∗.

2 For α > α∗, (2.5) has exactly two solutions η = η1(α), η2(α) satisfying

• η1(α) > η∗ > η2(α), limα→α∗ η1(α) = limα→α∗ η2(α) = η∗;
• η1(α) is an increasing function of α, while η2(α) is a decreasing

function;
• η2(7.5) = 0.

The above theorem gives a complete classification on all critical points of
the Maier-Saupe energy functional. The three kinds of solutions for η =
η1, η2, 0 are named as prolate, oblate, isotropic solutions. Their stabilities
are summarized in the following proposition. The proof can be found in
(Zhang and Zhang 2007, Wang, Zhang and Zhang 2015b):

Proposition 2.1. h = 1
4π (η = 0) is a stable critical point of A[f ] if and

only if α < 7.5; If α > α∗, for any n ∈ S2, hη1,n is stable, while hη2,n is
unstable. Therefore, for α > 7.5, hη1,n are the only minimizers.

Theorem 2.1 and Proposition 2.1 inform us that: the oblate soltion is
always unstable; if α > 7.5, the prolate solution is the only stable solution,
which corresponds to the nematic phase; if α < α∗, the isotropic solution is
the only solution; for α ∈ (α∗, 7.5), the prolate and isotropic solutions are
both stable, which indicates that the isotropic phase and nematic phase can
coexist in this parameter region.

Classification of minimizers of the Onsager energy functional is much more
difficult, since the interaction potential is irregular and all even order mo-
ments of the orientation distribution function are involved in the interaction
part of the energy. The axial symmetry of all solutions to the 2D problem
is proved by Chen, Li and Wang (2010). We refer to (Vollmer 2017) and
(Ball 2020) for some recent progresses on the 3D problem.

2.1.2. Dynamic Doi theory and its inhomogeneous extension

The molecular theory has been developed by Doi (1981) to study the homo-
geneous LC flow. Under a given velocity gradient ∇v, the evolution of the
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distribution function is given by the following equation:

∂f(t,m)

∂t
=

1

De
R · (Rf + fRU)−R ·

(
m× κ ·mf

)
. (2.6)

Here De is the Deborah number which characterizes the average time tend-
ing to local equilibrium state, R = m × ∇S2 is the rotational gradient
operator on the unit sphere and κ = (∇v)T is the transpose of the veloc-
ity gradient. The molecular alignment field in turn induces an extra stress
tensor to the bulk fluids which is given by

σDe =
1

2
D : 〈mmmm〉f −

1

De
〈mm×Rµ〉f , (2.7)

where D = (∇v + (∇v)T )/2 is the strain rate tensor, 〈(·)〉f =
∫
S2(·)fdm

denotes the average under the distribution f , and µ is the chemical potential:

µ =
δA[f ]

δf
= ln f + U(m).

The equation (2.6) has been very successful in describing the properties of
LC polymers in a solvent. This model takes into account the effects of hydro-
dynamic flow, Brownian motion, and intermolecular forces on the molecular
orientation distribution. However, it does not include effects such as distor-
tional elasticity and thus valid only in the limit of spatially homogeneous
flows.

Marrucci and Greco (1991) extended Doi’s theory to the inhomogeneous
case by incorporating the long-range interaction into the theory. By using a
truncated Taylor series expansion to approximate the nonlocal potential, the
elastic energy is then described by gradients of the second moments of the
distribution function. This method was subsequently developed by many
people (Feng, Sgalari and Leal 2000, Wang 2002) to study the inhomoge-
neous LC flow. However, instead of using the distribution as the sole order
parameter, these works used a combination of the tensorial order parameter
and the distribution function, and spatial variations are described by the
spatial gradients of the tensorial order parameter, which departs from the
original motivation of the kinetic formulation.

Wang, E, Liu and Zhang (2002) set up a formalism in which the inter-
action between molecules is treated more directly by using the position-
orientation distribution function via interaction potentials. They extended
the free energy (2.1) to include the effects of nonlocal intermolecular inter-
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actions through an interaction potential as follows:

Aε[f ] =

∫
Ω

∫
S2
f(x,m, t)(ln f(x,m, t)− 1) +

1

2
Uε(x,m, t)f(x,m, t)dmdx,

Uε(x,m, t) = Uεf :=

∫
Ω

∫
S2
Bε(x,m; x′,m′)f(x′,m′, t)dm′dx′,

(2.8)

where Bε(x,m; x′,m′) is the interaction potential between two molecules in
the configurations (x,m) and (x′,m′), which depends on the non-dimensional

small parameter ε = L2

L2
0

(here L is the length of the rods and L0 is the typical

size of the flow region). There are two typical choices:

1 Hard-core excluded volume potential:

Bε(x,m; x′,m′) =

{
1, molecule (x,m) is joint with molecule (x′,m′),
0, disjoint with each other.

(2.9)

2 Long-range Maier-Saupe interaction potential:

Bε(x,m; x′,m′) =
1

ε3/2
g
(x− x′√

ε

)
α|m×m′|2, (2.10)

where g(x) is a smooth function on R3 with
∫
R3 g(x)dx = 1, and the

small parameter
√
ε represents the typical interaction distance.

Both the potentials are capable to capture the nonlocal interaction be-
tween molecules, and thus can describe distortion effects of the molecu-
lar alignment. The hard-core potential indeed coincides with Onsager’s
choice adopted in (Onsager 1949). Note that different geometric shapes
of molecules will lead to different energy forms. For NLC, the molecules
are commonly assumed to be prolate ellipsoids or spherocylinders. The long
range Maier-Saupe interaction potential (2.10), proposed in Yu and Zhang
(2007), can be viewed as a smooth approximation for the hard-core poten-
tial, which is easier to analyze and simulate.

Based on the nonlocal energy, Wang et al. (2002) presented a inhomoge-
neous model for the LC flow. Define the chemical potential as

µε = ln f(x,m, t) + Uε(x,m, t).

Then the inhomogeneous (non-dimensional) system reads as:

∂f

∂t
+ v · ∇f =

ε

De
∇ ·
{(
γ‖mm + γ⊥(I−mm)

)
· f∇µε

}
+

1

De
R · (fRµε)−R · (m× κ ·mf), (2.11)

∂v

∂t
+ v · ∇v = −∇p+

1

Re

{
∇ · (τ s + τ e) + Fe

ε

}



11

Here v is the fluid velocity, p is the pressure, and γ‖, γ⊥ are, respectively, the
translational diffusion coefficients parallel to and normal to the orientation
of the LCP molecule. Re is the Reynolds number. The viscous stress τ s,
the elastic stress τ e and the body force Fe are given by

τ s = 2γD +
1− γ

2
D : 〈mmmm〉f ,

τ e = −1− γ
De
〈mm×Rµε〉f , Fe = −1− γ

De
〈∇µε〉f .

System (2.11) has the following energy-dissipation relation:

d

dt

(∫
Ω

Re

2(1− γ)
|v|2dx +

1

De
Aε[f ]

)
= −

∫
Ω

( γ

1− γ
|D|2 +

1

2

〈
(mm : D)2

〉
f

+
1

De2

〈
|Rµε|2

〉
f

+
ε

De2(1− γ)

〈
∇µε · (γ‖mm + γ⊥(I−mm)) · ∇µε

〉
f

)
dx, (2.12)

We refer to Yu and Zhang (2007) for the numerical study and Zhang and
Zhang (2008) for the well-posedness of the system (2.11).

2.2. Vector Theories

2.2.1. Static vector models: the Oseen-Frank theory

The molecular theories provide a detailed description for LCs, however, it
is not convenient to use. The simplest model to study the equilibrium con-
figuration for NLCs is the Oseen-Frank model, which is proposed by Oseen
(1933) and Frank (1958). It neglects the molecular details and use a unit
vector n(x) to describe the average orientation of LCs molecules at position
x. Then the distortion energy, which is called as Oseen-Frank energy, takes
the following form:

EOF (n,∇n) =
k1

2
(∇ · n)2 +

k2

2
|n · (∇× n)|2 +

k3

2
|n× (∇× n)|2

+
(k2 + k4)

2

(
tr(∇n)2 − (∇ · n)2

)
. (2.13)

The constants k1, k2, k3 represent modules for three different kinds of pure
deformation respectively: splay, twist and bending, which are illustrated in
Figure 2.2.1. For prolate nematics, one often has

k3 > k1 > k2 > 0.

The last term is actually a null Lagrangian which can be reduced to
boundary terms. A simplest reduction for the Oseen-Frank energy is the
case k1 = k2 = k3 = k and k4 = 0, referred as one-constant approximation,
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splay bendtwist

(a) (b) (c)

Figure 2.3. Three kinds of distortion: (a) splay, (b) twist, and (c) bend.

which leads to the Dirichlet energy

E(∇n) =
k

2
|∇n|2.

For given boundary data on a bounded domain, the observed configuration
usually corresponds to a minimizer of the Oseen-Frank energy. Applying
the method of calculus of variation, a minimizer should satisfies, at least
formally, the following Euler-Lagrange equations:

n× div
( ∂

∂∇n
EOF (n,∇n)− ∂

∂n
EOF (n,∇n)

)
= 0,

or equivalently

div
( ∂

∂∇n
EOF (n,∇n)− ∂

∂n
EOF (n,∇n)

)
= λn. (2.14)

Note that n need to satisfy the unit-norm condition: |n| = 1, which gives a
nonlinear constraint and induces a Lagrange multiplier λ ∈ R, in the above
equation. In the one-constant approximation case, the equation reduces to
the harmonic map equation:

∆n = −|∇n|2n.

Defects in vector theories are described by singularities in ∇n. For in-
stance, the configuration n(x) = x

|x| (x ∈ R3) is a solution to (2.14), which

is called the hedgehog solution. It is a typical and important example of
point defects. In a 2D region, n(x) = x

|x| is formally a solution to (2.14).

However, the energy blows up near the singular point x = 0. That is, the
energy of a 2D point defect in vectorial description is infinite. Moreover, the
following theorem has been proved by Hardt, Kinderlehrer and Lin (1986).

Theorem 2.2. If n ∈ H1(Ω,S2) is a minimizer of the Oseen–Frank energy
EOF , then n is analytic on Ω \Z, where Z is a relatively closed subset of Ω
which has one dimensional Hausdorff measure zero.

This fundamental result excludes the possibility of line defects, which have
dimension one, under the framework of the Oseen-Frank theory. To resolve
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this problem, Ericksen (1990) proposed a vector model with an extra scalar
order parameter s ∈ [−1

2 , 1], which represents the degree of orientation.
Under the one-constant approximation, the Ericksen free energy takes the
form

E(s,n) =

∫
Ω
ψ(s) + k|∇s|2 + s2|∇n|2dx, (2.15)

where k > 0 is a parameter, ψ(s) is the potential function satisfying:

• lims→1 ψ(s) = lims→−1/2 ψ(s) = +∞,
• there exists s∗ ∈ (0, 1) such ψ(0) > ψ(s∗) = mins∈[−1/2,1]ψ(s),
• ψ′(0) = 0.

In Ericksen’s theory, the defects are defined as zero set of s, which permits
the line defect or a 2D point defect (Lin 1991, Ambrosio 1990). We refer to
Ericksen (1990) for details.

2.2.2. Dynamical vector models: the Ericksen-Leslie theory
The dynamic continuum theory for LC flows was established by (Leslie 1968)
and (Ericksen 1961). The full system, which is called Ericksen-Leslie system,
takes the form 

vt + v · ∇v = −∇p+∇ · σ,
∇ · v = 0,

n×
(
h− γ1N− γ2D · n

)
= 0.

(2.16)

Here v is the fluid velocity, p is the pressure, and the stress σ is given by
the phenomenological constitutive relation

σ = σL + σE ,

where σL is the viscous (Leslie) stress

σL = α1(nn : D)nn + α2nN + α3Nn + α4D + α5nn ·D + α6D · nn
(2.17)

with D = 1
2(κT + κ), κ = (∇v)T , and

N = nt + v · ∇n + Ω · n, Ω =
1

2
(κT − κ).

The constants α1, · · · , α6 in (2.17) are called the Leslie coefficients. While,
σE is the elastic (Ericksen) stress which is given by

σE = − ∂EOF
∂(∇n)

· (∇n)T , (2.18)

and the molecular field h is given by

h = −δEOF
δn

= ∇ · ∂EOF
∂(∇n)

− ∂EOF
∂n

,



14 Acta Numerica

The Leslie coefficients and γ1, γ2 satisfy the following relations

α2 + α3 = α6 − α5, (2.19)

γ1 = α3 − α2, γ2 = α6 − α5, (2.20)

where (2.19) is called Parodi’s relation derived from the Onsager reciprocal
relation (Parodi 1970). These two relations ensure that the system has a
basic energy dissipation law:

d

dt

(∫
R3

1

2
|v|2dx + EOF

)
=−

∫
R3

(
(α1 +

γ2
2

γ1
)(D : nn)2 + α4|D|2

+ (α5 + α6 −
γ2

2

γ1
)|D · n|2 +

1

γ1
|n× h|2

)
dx.

(2.21)

Besides the lack of ability to describe line defects, vector models have
some other drawbacks. For example, from the physical viewpoint, n(x) is
not distinguishable to −n(x). This is referred as the head-to-tail symmetry
of LCs, which can not be inherently revealed by the vectorial description.
Indeed, there are some configurations cannot be described by a vector field.
For example, consider the point defect in 2D with degree 1/2 (see Fig. 1.2(c))
and a circle near the defect point. The alignment on the circle is a smooth
line field. However, one can not define a continuous vector field n ∈ S1 on
this circle. This problem is carefully discussed in (Ball and Zarnescu 2011)
for more general domains.

In addition, in vector theories, it is assumed that the orientation of the
LC molecules has a preferred alignment at a material point. In most cases
this assumption is reasonable. However, there are some situations that a
preferred alignment can not be defined, for example, near the core of a
defect. So vector models fail to give accurate descriptions for molecular
alignments near the core of defects.

2.3. Tensor Theories

Despite its successes in predicting the phase transition and rheological pa-
rameters for LCs, the molecular theory is not convenient in practice since it
always leads to a high-dimensional problem with expensive costs. Therefore,
it is natural to explore alternative models to simulate LC flow or complex
patterns. A common method to reduce the molecular theory is to consider
the second order moment of the probability distribution function f(x,m):

Q(x) =

∫
S2

(mm− 1

3
I)f(x,m)dm ∈ Q =

{
Q ∈M3×3,Q = QT , tr Q = 0

}
,

which is called Q-tensor, as the concerned order parameters. Apparently, Q
has five independent components. Let λ1, λ2, λ3 be the three eigenvalues of
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Q, then we can write

Q = λ1n1n1 + λ2n2n2 + λ3n3n3,

where n1,n2,n3 are unit norm vectors with ni ·nj = 0 (1 ≤ i < j ≤ 3). The
definition (2.22) gives a constraint for the eigenvalues of Q:

Q ∈ Qphy =
{

Q ∈ Q : λ1, λ2, λ3 ∈
(
− 1

3
,
2

3

)}
.

One can classify Q into three classes:

• If Q has three equal eigenvalues, i.e. Q = 0, we say Q is isotropic.
• If the eigenvalues have two distinct value, then there exist s ∈ R, n ∈
S2, such that

Q = s(nn− 1

3
I).

In this case, we say Q is uniaxial;
• If the three eigenvalues are distinct, we say Q is biaxial; In this case

we can find s, λ ∈ R, n,m ∈ S2, such that s 6= λ, m⊥n and

Q = s(nn− 1

3
I) + λ(mm− 1

3
I).

If the LC material retains at the liquid state, i.e., the alignment are disorder,
then the distribution function f(x,m) is the uniform distribution on S2,
which implies Q = 0, or equivalently Q is isotropic; If the material retains
at the LC state, i.e., f(x,m) is axially symmetric function on S2, that is
f(x,m) = f(n(x) ·m), then

Q = s(nn− 1

3
I) with s =

∫
S2

3(n ·m)2 − 1

2
f(n ·m)dm,

which means that Q is uniaxial.

2.3.1. Static Q-tensor models

For LC materials, the total energy FLG(Q,∇Q) consists of two parts: the
bulk energy Fb(Q) which dictates the preferred state of the material, and the
elastic energy Fe(Q,∇Q) which comes from the distortion of LCs:

FLG(Q,∇Q) = Fb(Q) + Fe(Q,∇Q).

The energy should be frame indifference, that is, for any P ∈ O(3),

FLG(Q̃, Ψ̃) = FLG(Q, Ψ̃),

where Ψ = ∇Q with Ψijk = Qij,k and Q̃ = PQPT , Ψ̃ijk = Pii′Pjj′Pkk′Ψijk.
The bulk energy is a function of the tensor Q which should predict the

isotropic-nematic phase transition for LCs. Therefore, at high temperatures,
the bulk energy should arrive its minimum at the isotropic state, while at
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Table 2.1. Stability/instability of critical points for LdG energy

Temperature
Critical points

s0 s− s+

T < T∗ unstable unstable global minimizer
T∗ < T < Tc local minimizer unstable global minimizer
Tc < T < TII global minimizer unstable local minimizer
TII < T global minimizer not exist not exist

low temperature, its minimizers should be uniaxial which represents the
nematic phase. In addition, due to the frame indifference, the bulk energy
should depend only on the eigenvalues of Q.

A simplest form meets these requirements takes the following polynomial
form:

Fb(Q) =
a

2
|Q|2 − b

3
trQ3 +

c

4
|Q|4, (2.22)

where

|Q|2 =

3∑
i,j=1

Q2
ij , trQ3 =

∑
i,j,k

QijQjkQki, |Q|4 = (|Q|2)2.

Here a, b, c are constants depending on materials and temperature in general
with b, c > 0. In particular, the parameter a plays key roles to the isotropic-
nematic phase transition, which is usually assumed by a = A(T −T∗), where
T is the temperature and T∗ is the critical temperature at which the isotropic
phase loses stability.

All the (possible) critical points of the bulk energy fb are given by

Q = s

(
nn− 1

3
I

)
, s ∈

{
s0 = 0, s± =

−b±
√
b2 − 24ac

4c

}
.

Stability or instability of the critical points are shown in Table 2.1, where
the three critical temperatures are given by:

Tc =
b2

27Ac
+ T∗, TII =

b2

24Ac
+ T∗. (2.23)

These assertions can be proved straightforwardly. When the temperature
T < T∗, the isotropic state loses stability and the bulk energy is minimized
by tensors in the minimal manifold

M =
{
s+

(
nn− 1

3
I
)

: s+ =
−b+

√
b2 − 24ac

4c
,n ∈ S2

}
. (2.24)

One should note that the polynomial energy is phenomenological, that
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is, the precise physical meaning of coefficients a, b, c are not very clear and
not easy to be a prior determined. Moreover, there is no term force the
tensor being in the physical space Qphy, and thus Q may have eigenvalues
greater than 2/3 or less than −1/3. Another point should to be minded is
that, the polynomial bulk energy is a finitely truncated Taylor expansion
of a real bulk energy around Q = 0. Therefore, it is only valid near the
isotropic-nematic transition temperature T∗.

To obtain a reliable tensorial model for low temperature materials (far
from the transition point), a natural method is by taking the minimal en-
tropy approximation from the molecular energy, which has been applied by
Ball and Majumdar (2010). More precisely, one can define the energy as

Fb(Q) = min
f∈AQ

∫
S2
f(m) ln f(m)− α|Q|2,

where f ∈ AQ =
{
f : f ≥ 0,

∫
S2
f = 1,

∫
S2

(mm− 1

3
I)f = Q

}
.

(2.25)

The above energy can also be obtained by replacing the orientation distribu-
tion function by the Bingham distribution of given second momentum Q. In
other words, for given Q ∈ Qphy, let BQ be the unique trace-free symmetric
matrix (see Li, Wang and Zhang (2015) for a proof) which satisfies∫

S2(mm− 1
3I)exp(BQ : mm)dm∫

S2 exp(BQ : mm)dm
= Q, (2.26)

and the Bingham distribution fQ be given as:

fQ(m) =
exp(BQ : mm)

ZQ
, ZQ =

∫
S2

exp(BQ : mm). (2.27)

Then the minimum in (2.25) is attained by fQ, i.e.,

Fb(Q) =

∫
S2
fQ(m) ln fQ(m)− α|Q|2 = BQ : Q− lnZQ − α|Q|2.

Indeed, note that for fixed second moment, the minimum is achieved by the
distribution satisfying

ln f −B : mm = c,

for some constant c and trace-free symmetric matrix B, which implies f
must take the form (2.27) with B given by (2.26).

On the other hand, for any B ∈ Q, let ω(B) = ln
∫
S2 exp(B : mm)dm be

a convex function for B, then the entropy part BQ : Q− lnZQ equals to

max
B∈Q
{B : Q− ω(B)},

which is the Legendre’s transform of the function ω(B). We refer to Li et
al. (2015) for detailed discussions.
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To capture the inhomogeneity of the alignment of LC molecules, one has
to take into consideration the elastic energy. The formulation of the elastic
energy should be frame indifferent and usually it is assumed to be quadratic
in ∇Q. Some examples are Vi = Vi(Q,∇Q):

V1 = Qij,kQij,k, V2 = Qij,jQik,k, V3 = Qij,kQik,j , V4 = QijQik,lQjk,l.

The difference V2 − V3 can be written as ∂k(QikQij,j −QijQik,j) which is a
null Lagrangian. The following energy form is commonly used as the elastic
part energy for NLCs:

F (e)[Q] = L1|∇Q|2 + L2Qij,jQik,k + L3Qik,jQij,k + L4QlkQij,kQij,l. (2.28)

The L2–L4 terms correspond to the anisotropic elasticity of LC materials.
Formally, if we brutally let Q(x) minimizes the bulk energy in the LdG

energy at each point x, then Q(x) = s(n(x)n(x) − I
3), and the full energy

reduces to the Oseen-Frank energy (2.13) with the coefficients given by

k1 = 2s2(2L1 + L2 + L3 − 2sL4), k2 = 4s2(L1 − sL4),

k3 = 2s2(2L1 + L2 + L3 + 4sL4), k4 = 2s2(2L1 + L3 − sL4).
(2.29)

When L4 = 0, the energy (2.28) is coercive (Longa, Monselesan and Trebin
1987), i.e.,

F (e)[Q] ≥ c0|∇Q|2, for some c0 > 0,

provided that

L1 > 0, − L1 < L3 < 2L1, L1 +
5

3
L2 +

1

6
L3 > 0.

On the other hand, if L4 6= 0, the energy is not bounded from below (Ball
and Majumdar 2010). However, if the L4 term is neglected, due to the form
(2.29), we can only recover the Oseen-Frank energy with k1 = k3.

Defects in Q-tensor theory is not characterized by singularities of Q. In-
deed, for minimizers of the LdG energy with suitable boundary conditions,
it is usually smooth everywhere, since the corresponding Euler-Lagrange
equation is a semilinear elliptic system. To observe defects, one has to look
at the uniaxial limit of the solution. This is reasonable, since the elastic
constants are usually small, which means that the bulk energy will force the
Q-tensor to be in the minimal manifolds M defined in (2.24). Singularities
of the limit Q-tensor should be regarded as the set of defects. There are
a number of results studying the uniaxial limit of minimizers to the LdG
energy with certain boundary conditions. We skip to Section 3.1 for further
discussions.
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2.3.2. Dynamic Q-tensor models

The dynamical Q-tensor theories for LCs can be classified into two kinds.
The first one are derived directly from physical considerations such as vari-
ational principle. The Beris-Edwards model (Beris and Edwards 1994) and
Qian-Sheng model (Qian and Sheng 1998) belong to this class. Given the
free energy F (Q,∇Q), the variation is denoted by

µQ =
δF (Q,∇Q)

δQ
.

Then the Beris-Edwards model and Qian-Sheng model can be written in the
form:

∂Q

∂t
+ v · ∇Q = D(µQ) + S(Q,D) + Ω ·Q−Q ·Ω, (2.30)

∂v

∂t
+ v · ∇v = −∇p+∇ ·

(
σdis + σs + σa + σd

)
, (2.31)

∇ · v = 0,

where D(µQ) is the diffusion term, S(Q,D) is the velocity-induced term,
σd is the distortion stress, σa is the anti-symmetric part of orientational-
induced stress, σs = γS(Q, µQ) is the symmetric stress induced by the
molecular alignments, which conjugates to S(Q,D) (γ is a constant), and
σdis is the additional dissipation stress.

In both systems, module some constants, σa and σd are the same :

σdij =
∂E(Q,∇Q)

∂(Qkl,j)
Qkl,i, σa = Q · µQ − µQ ·Q.

In Beris-Edwards system, the other terms are given by:

DBE = −ΓµQ, σdisBE = βD, σsBE = SBE(Q, µQ),

SBE(Q, A) = ξ
(

(Q +
1

3
Id) ·A+A · (Q +

1

3
Id)− 2(Q +

1

3
Id)(A : Q)

)
.

While in Qian-Sheng’s system, they are given by:

DQS = −ΓµQ, σsQS = −1

2

µ2
2

µ1
µQ, SQS(Q,D) = −1

2

µ2

µ1
D,

σdisQS = β1Q(Q : D) + β2D + β3(Q ·D + D ·Q).

We remark that in Qian-Sheng’s original formulation, the inertial effect is
also considered.

Another kind of dynamical Q-tensor models are obtained by various clo-
sure approximations from Doi’s kinetic theory. The main idea is to derive the
evolution equation for the second momentum Q from the evolution equation
for the orientation distribution function f . This is a natural way of model
reduction and the parameters can be calculated from the kinetic equations
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rather than being phenomenologically determined. However, by a direct
calculation, one can find that the evolution of Q depends on the fourth
momentum of f , which can not be determined by Q. In order to “close”
the equation at the level of the second moment tensor, one needs to repre-
sent the fourth momentum by Q approximately. Doi introduced a simplest
approximation:

〈mmmm〉f = 〈mm〉f 〈mm〉f .

Other various closure methods have also been presented, such as the HL1/HL2
closure (Hinch and Leal 1976) and the Bingham closure (Chaubal and Leal
1998). We refer to (Feng, Chaubal and Leal 1998) for the summary and
comparison between these closure methods. All these models can capture
many qualitative features of the LC dynamics effectively. However, they do
not obey the energy dissipation law.

2.3.3. A systematic way to derive new Q-tensor models

In Han, Luo, Wang, Zhang and Zhang (2015), the authors proposed a sys-
tematic way to derive a Q-tensor model from the molecular theory. The
main idea can be explained as follows: we start from the nonlocal Onsager
molecular energy functional (2.8) with suitable given interaction kernel Bε,
and then approximate the orientation distribution function by a suitable
function of its second moment. Then the energy can be entirely determined
by the second moment and thus is reduced to a Q-tensor type model. This
procedure can be applied not only for the nematics but also other phases
for rod-like molecules and even other shapes (Xu and Zhang 2014, Xu, Ye
and Zhang 2018, Xu and Zhang 2018).

For NLCs, we choose the Onsager’s energy functional (2.8) with Bε being
the excluded volume potential (2.9). Note that Bε is translational invariant,
so we let B(x− x′,m,m′) = Bε(x,m; x′,m′) which is even in x− x′.

Make the Taylor expansion for the orientational distribution function
f(x′,m′) with respect to x′ at x (r = x′ − x):

f(x′,m′) = f(x + r,m′)

= f(x,m′) +∇f(x,m′) · r +
1

2
∇2f(x,m′) : rT r + · · · . (2.32)
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Then the energy can be expanded as:

A[f ] =

∫
Ω

∫
S2

{
f(x,m)(ln f(x,m)− 1) +

1

2

∫
S2
M (0)(m,m′)f(x,m′)f(x,m)dm′

}
dmdx

+
1

2

∫
Ω

∫
S2

∫
S2
f(x,m)M (1)(m,m′) · ∇f(x,m′)dm′dmdx

− 1

4

∫
Ω

∫
S2

∫
S2
M (2)(m,m′) : ∇f(x,m′)∇f(x,m)dm′dmdx + · · · .

(2.33)

where for given kernel function B(r; m,m′), the moments M (k)(m,m′) (k =
0, 1, 2, · · · ) are defined by:

M (0)(m,m′) =

∫
B(r,m,m′)dr,

M (k)(m,m′) =

∫
B(r,m,m′) r⊗ · · · ⊗ r︸ ︷︷ ︸

k times

dr, (k ≥ 1).

These moments depend on the geometric shape of LC molecules. For ne-
matic molecules, they commonly are treated as as ellipsoids or spherocylin-
ders. In Han et al. (2015), the first three moments are explicitly calculated
by considering the molecules as spherocylinders with length L and diameter
D:

M (0)(m,m′) = 2L3
(
η|m×m′|+ πη2 +

2

3
πη3
)
,

M (1)(m,m′) = 0,

M (2)(m,m′) = B1I +B2(mm + m′m′) +B3(mm′ + m′m)(m ·m′),

where η = D/L and Bi are functions of m · m′ (see (Han et al. 2015,
Appendix) for details):

B1(m ·m′) = L4D
(

2|m×m′|η2
3 + πη3

2 + 4πη4

15

)
,

B2(m ·m′) = L4D
(
|m×m′|

6 + πη(1+η)
3 + πη3

4 + 2η2

3|m×m′|

)
,

B3(m ·m′) = L4Dη2
(

2 arcsin(m·m′)
3(m·m′) − 2

3|m×m′|

)
.

The first line in (2.33) is independent of space variation of the probability
distribution function f , which gives the bulk energy part. The other terms,
which depend on space variation of f , provide the elastic part of the free
energy.

To derive tensor models from molecular models, we need to use Q(x)
to express the total energy. Since it is unrealistic to recover f by finite
number of moments, we need to make closure approximation. We choose
the Bingham closure here, for the reasons that it keeps physical constraints
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on the eigenvalues and preserves the energy structure for dynamics. We also
take the densities variation into consideration, i. e.,

f(x,m) = c(x)fQ(m), with fQ given by (2.27). (2.34)

The bulk energy is then approximated by

Fbulk =

∫
Ω

{
c(x) ln c(x) + c(x)

∫
S2

(
fQ(x,m)(ln fQ(x,m)− 1)

)
dm

+
c2(x)

2

∫
S2
M (0)(m,m′)fQ(x,m′)fQ(x,m)dm′dm

}
dx. (2.35)

Note that the above energy can be viewed as a functional of c(x) and Q(x).
If the singular term |m × m′| in M (0)(m,m′) is replaced by its smooth
alternative |m×m′|2, we may arrive

Fbulk =

∫
Ω
c(x)

(
ln c(x) + Q(x) : BQ(x)− lnZQ(x)− αL3c(x)|Q(x)|2

)
dx,

where α is a dimensionless constant.
To derive an elastic energy convenient to use, we consider only finite terms

in (2.33). For the nematic phase, it is natural to neglect the terms whose
order of derivatives are greater than one since the first order derivatives
dominates the elastic energy part. If one would like to consider the smectic
phase, it seems enough to keep only the terms whose order of derivatives
are not greater than two.

Now it is needed to express∫
S2

∫
S2
fQ(x,m)M (2)(m,m′)fQ(x,m′)dm′dm′ (2.36)

in terms of tensor Q. Thus, we have to separate the variables of m and m′

in M (l)(m,m′). This can not be done precisely in general, since there are
some terms like |m×m′|. One has to treat them as functions of m ·m′ and
use polynomial expansion, such as Taylor expansion or Legendre polynomial
expansion, up to a finite order to approximate them. We skip the details
and just present the reduced elastic energy after approximating:

Felastic =
1

2

∫
Ω

{
J1|∇c|2 + J2|∇(cQ)|2 + J3|∇(cQ4)|2 + J4∂i(cQij)∂jc

+ J5

(
∂i(cQik)∂j(cQjk) + ∂i(cQjk)∂j(cQik)

)
+ J6

(
∂i(cQ4iklm)∂j(cQ4jklm) + ∂i(cQ4jklm)∂j(cQ4iklm)

)
+ J7∂i(cQ4ijkl)∂j(cQkl)

}
dx. (2.37)

Here Q4 = Q4[fQ] is defined in (8.1). The coefficients Ji(1 ≤ i ≤ 7) depend
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Onsager model:       

Q-tensor model:      

Oseen-Frank model:                     

Bingham closure

Uniaxial limit 

Figure 2.4. Reduction from microscopic molecular theories to macroscopic
continuum theories.

only on parameters L, η and can be explicitly calculated. Combining (2.35)
and (2.37), we obtain an energy in tensorial form derived from Onsager’s
molecular theory:

FMol(c,Q,∇c,∇Q) = Fbulk + Felastic.

The density variation can be neglected in most cases, especially when defects
are absent. Then the energy can be further simplified into a form which
depends only Q and ∇Q.

If we further assume the uniaxiality of the Q tensor, then we obtain a
vector model with elastic coefficients given by molecular parameters. We
refer to Han et al. (2015) for details. The procedure of reduction from
microscopic molecular theories to macroscopic continuum theories can be
illustrated in Fig. 2.4. The microscopic interpretation of elastic coefficients
in the Oseen-Frank theory has also been studied in Gelbart and Ben-Shaul
(1982) and many other related works.

The similar procedure can be applied to derive the dynamical equation
based on the dynamical Doi-Onsager equation. The main step is to calculate
the evolution of Q from the evolution equation for f . For simplicity of
presentation, we assume the density is constant and take the energy being
the simplest form:

F (Q) =

∫
Q(x) : BQ(x)− lnZQ(x)− α

2
Q(x) : Qε(x)dx, (2.38)

with

Qε =

∫
R3

gε(x− x′)Q(x′)dx′.

This energy can be derived directly from the Onsager energy functional (2.8)
with nonlocal Maier-Saupe potential (2.10).

As higher order moments will be involved, we also replace them by the
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corresponding ones of the approximated Bingham distribution. Namely, we
denote

M
(4)
Q =

∫
S2

mmmmfQdm, M
(6)
Q =

∫
S2

mmmmmmfQdm,

and

MQ(A) =
1

3
A+ Q ·A−A : M

(4)
Q ,

NQ(A)αβ = ∂i

{[
γ⊥

(
M

(4)
Qαβklδij −

δαβ
3
Qklδij

)
+ (γ‖ − γ⊥)

(
M6
αβklij −

δαβ
3
M

(4)
klij

)]
∂jAkl

}
.

We also let

µQ :=
δF (Q)

δQ
= BQ − αQε.

Noting that

3Q = 2αMQ(BQ),

we can obtain a closed Q-tensor system from the Doi-Onsager equation
(2.11):

∂Q

∂t
+ v · ∇Q =

ε

De
NQ(µQ)− 2

De

(
MQ +MT

Q

)
(µQ) +

(
MQ +MT

Q

)
(κT ),

∂v

∂t
+ v · ∇v = −∇p+

γ

Re
∆v +

1− γ
2Re

∇ · (D : M
(4)
Q ) (2.39)

+
1− γ
DeRe

(
2∇ ·MQ(µQ) + Q : ∇µQ

)
.

The system (2.39) obeys the following energy dissipation law

d

dt

{∫
R3

1

2
|v|2dx+

1− γ
ReDe

F (Q)
}

= − 1

Re

∫
R3

{
γ|D|2 +

1− γ
2

M
(4)
Q : (D⊗D)

− ε(1− γ)

De2
µQ : NµQ +

4(1− γ)

De2
µQ :MQµQ

}
dx.

We can also replace the energy (2.38) in (2.39) in by a general local energy
F (Q,∇Q) to obtain a dynamical system in local form. The energy law is
kept regardless of the particular choice of F (Q,∇Q).

Since the system (2.39) is derived from the Doi-Onsager equation by the
Bingham closure, it keeps many important physical properties: First, the
system preserves the energy structure, which is violated by other closure
models; secondly, the parameters have definite physical meaning rather than
be phenomenologically determined; thirdly, the eigenvalues of Q satisfy the
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physical constrain: λi ∈ {−1/3, 2/3}(i = 1, 2, 3) if they are satisfied ini-
tially; Moreover, both translational and rotational diffusion can be kept in
the formulation, and the translational diffusion can be anisotropic.

Finally, we make some comparisons between the system (2.39) with the
models of Beris-Edward and Qian-Sheng. The system (2.39) can be similarly
written as (2.30)-(2.31):

∂Q

∂t
+ v · ∇Q = D(µQ) + S(Q,D) + Ω ·Q−Q ·Ω,

∂v

∂t
+ v · ∇v = −∇p+∇ ·

(
σdis + σs + σa + σd

)
,

∇ · v = 0.

(2.40)

Here

D(µQ) =
ε

De
N (µQ) +

2

De
(MQ +MT

Q)(µQ),

where the first and the second term account for the translational and ro-
tational diffusion respectively, which is not different with the one in Beris-
Edwards’s and Qian-Sheng’s models. We remark that µQ : ∇Q is equivalent

to ∂j
(

∂F
∂(Qkl,j)

Qkl,i
)

module a pressure term, and

(MQ −MT
Q)(µQ) = Q · µQ − µQ ·Q,

so the stress terms σa and σd in our model, module some constants, are the
same as in those two models:

σdij =
∂F (Q,∇Q)

∂(Qkl,j)
Qkl,i, σa = Q · µQ − µQ ·Q. (2.41)

The dissipation stress is given by

σdis =
2γ

Re
D +

1− γ
2Re

D : M
(4)
Q .

The two conjugated terms S(Q,D) and σs = − 1−γ
ReDeS(Q, µQ) are given by

S(Q, A) = (MQ +MT
Q)(A).

Note that if we apply Doi’s closure 〈mmmm〉f ∼ 〈mm〉f 〈mm〉f in M
(4)
Q ,

then

(MQ +MT
Q)(A) ∼ (Q +

1

3
Id) ·A+A · (Q +

1

3
Id)− 2(Q +

1

3
Id)(A : Q),

which is indeed the corresponding term SBE(Q, A) in the Beris-Edwards
system with ξ = 1.
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3. Mathematical analysis for different liquid crystal models

In this section, we review some analysis results on various LC models. Since
there are numerous progress in this active area, we do not intend to cover all
topics but concentrate on the analysis of defects, well-posedness theory of
dynamical theories and the connections between them. Some of them have
already been introduced in Section 2, and will not be presented again.

3.1. Analysis on defects

The LdG model and Oseen-Frank model, have been widely used to study
the properties of equilibrium configurations under various conditions.

In vector theories, the simplest configuration contains defect is

n(x) =
x

|x|
, (3.1)

known as the hedgehog. It is not hard to verify that the hedgehog is always a
weak solution of the Euler-Lagrange equation for any choice of ki-s. For the
stability, it has been proved that the hedgehog is stable if 8(k2−k1)+k3 ≥ 0
(Cohen and Taylor 1990) and not stable if 8(k2−k1)+k3 < 0 (Hélein 1987).
One can construct other typical configurations of point defects. For example,
in the one-constant case, for any R ∈ O(3),

n(x) = R
x

|x|
is always a solution of the Euler-Lagrange equation. Moreover, it is always
stable (Brezis, Coron and Lieb 1986). For the general case, the choice of R
is limited. If k1 = k3, R has to be ±I or any 180◦ rotation. When ki differs
with each other, R must be ±I. The corresponding stability is analyzed by
Kinderlehrer, Walkington and Ou (1993).

Moreover, by considering suitable surface energy, the free boundary prob-
lems have also been analytically studied to explore optimal shapes of LC
droplets (Lin and Poon 1996, Shen, Liu and Calderer 2002). For more re-
sults on the analysis of the Oseen-Frank and related models, we refer to the
survey paper (Lin and Liu 2001).

The vector theory can provide the macroscopic information of the align-
ment for defects configuration. While to study the fine structure of de-
fect cores, one has to use Q-tensor models. Given the boundary condition

Q(x) = s+

(
n(x)n(x) − 1

3I
)

with n(x) given by (3.1), three kinds of equi-

librium solutions are found numerically (Mkaddem and Gartland Jr 2000),
which are called radial hedgehog, ring disclination and split core respec-
tively. These solutions are illustrated in Fig. 4.6 (b-d). Recently, in the
low-temperature limit, (Yu 2020) proved the existence of axially symmetric
solutions describing the ring disclination and split core.
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The radial hedgehog solution in the ball BR(0) can be represented in the
form

Q(x) = h(|x|)
(
n(x)n(x)− 1

3
I
)
, n(x) =

x

|x|
, (3.2)

with h satisfies the ODE

h′′(r) +
2

r
h′(r)− 6

r2
h(r) = ah(r)− b

3
h2 +

2c

3
h3, (3.3)

h(0) = 0, h(R) = s+. (3.4)

Gartland Jr and Mkaddem (1999) proved the instability of the radial hedge-
hog solution (3.2) when the temperature a is very low and the radii R of
the ball is large. Majumdar (2012) proved that if a is closed to zero or R
is small, the radial hedgehog solution is locally stable. For the whole space
case, i. e., R = ∞, it is shown in Ignat, Nguyen, Slastikov and Zarnescu
(2015) that the radial hedgehog solution is locally stable for a closed to zero
and unstable for large |a|. The monotonicity and uniqueness of the solution
h to (3.3) is studied in (Lamy 2013).

As defects in Q-tensor theory are not the singularities of order tensor Q
but the regions with rapid changes of Q, one may study the uniaxial limit
of LdG model to analyze the properties of defect sets. Most of these results
concentrate in the case L2 = L3 = L4 = 0, L1 = L.

Consider the strong anchoring boundary condition

Q|∂Ω = s+

(
nb(x)nb(x)− 1

3
I
)
, nb ∈ C∞(∂Ω, S2). (3.5)

Let QL be the global minimizers of the Landau-de Gennes energy

FL(Q,∇Q) =

∫
Ω

L

2
|∇Q|2 +

a

2
|Q|2 − b

3
trQ3 +

c

4
|Q|4dx,

with boundary condition (3.5). Majumdar and Zarnescu (2010) proved the
following results.

Theorem 3.1. For a sequence Lk → 0, the minimizers QLk → Q∗ in the
Sobolev space H1(Ω), where Q∗ ∈ H1(Ω,M) is the minimizer of∫

Ω
|∇Q|2dx, with Q ∈M and satisfying (3.5).

In addition, the convergence is uniform away from the (possible) singularities
of Q∗.

Moreover, away from the singular points of Q∗, the convergence is further
refined by Nguyen and Zarnescu (2013). Note that the fact the limit map
Q∗ ∈ H1(Ω) implies the line defects are excluded in this case.

Bauman, Park and Phillips (2012) investigated the uniaxial limit of the
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Landau-de Gennes energy with L2, L3 6= 0 on a 2D bounded domain. By
assuming that e3 is always an eigenvector of Q, they proved that, if the
boundary data has nonzero degree, then there will be a finite number of
defects of degree ±1/2. This problem models the behavior of a thin LC
material with its top and bottom surfaces constrained to having a principal
axis e3, and the limiting defects correspond to vertical disclination lines
at those locations. The line defects in the full three-dimensional domain
is investigated in Canevari (2017), where it is proved that the minimizers
Q(L) converge to a limit map with straight line segments singularities, by
assuming the logarithemic bound of the energy:

F ≤ CL| lnL|.

Some related results are also given in (Golovaty and Montero 2014, Canevari
2015).

3.2. The relation between the nonlocal Onsager energy and the
Oseen-Frank energy

The orientation distribution function f contains detail configurational infor-
mation of molecules. However, it is difficult to apply especially for studying
the macroscopic behavior or configurations, as it often leads to very high
computational costs. Thus the Q-tensor theory or Ericksen-Leslie theory are
used more often in analysis and computational simulations. Then it raises
a natural question: are these models consistent to each other? This issue is
fundamental but highly non-trivial in the analysis aspect.

We briefly show how to formally derive it. We expand the mean-field
potential as:

Uεf = U0[f ] + εU1[f ] + ε2U2[f ] + · · · , (3.6)

where U0[f ] = Uf and for k ≥ 1

Uk[f ](x,m, t) =
1

(2k)!

∫
R3

∫
S2
α|m×m′|2g(y)(y · ∇)2kf(x,m′, t)dm′dy.

Direct computation shows that

Uε[f ]− U [f ] =

∫
R3

∫
S2
α|m×m′|2gε(x− x′)(f(x′,m′, t)− f(x,m′, t))dm′dx′

=

∫
R3

∫
S2
α|m×m′|2g(y)(f(x +

√
εy,m′, t)− f(x,m′, t))dm′dy

=

∫
R3

∫
S2
α|m×m′|2g(y)

(∑
k≥1

ε
k
2

k!
(y · ∇)kf(x,m′, t)

)
dm′dy

=

∫
R3

∫
S2
α|m×m′|2g(y)

(∑
k≥1

εk

(2k)!
(y · ∇)2kf(x,m′, t)

)
dm′dy.
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We let (U0[f ] = U [f ]):

Uk[f ](x,m, t) =
1

(2k)!

∫
R3

∫
S2
α|m×m′|2g(y)(y · ∇)2kf(x,m′, t)dm′dy.

Denote M[f ] =
∫
S2 mimjf(x,m)dm, Gkl =

∫
g(y)ykyldy. Then

U1[f ](x,m) = −α
2
Gklmm : ∂k∂lM[f ], (3.7)

Then the energy can be expanded as

Aε[f ] =

∫
Ω

∫
S2
f(x,m)(ln f(x,m)− 1) +

1

2
f(x,m)U0[f ](x,m)dmdx

+
εα

4

∫
Ω
Gkl∂kM[f ] : ∂lM[f ]dx +O(ε2). (3.8)

The leading order term is a local energy which can be written as∫
Ω
A0[f(x, ·)]dx, (3.9)

with

A0[f ] =

∫
S2
f(m)(ln f(m)− 1) +

1

2
f(m)U0[f ]dm. (3.10)

Theorem 2.1 informs us that the global minimizers of the above energy are
given by

f0(m) = hη,n(m) :=
1

Z
eη(m·n)2 , Z =

∫
S2
eη(m·n)2dm, (3.11)

where n ∈ S2 is an arbitrary unit vector, and η satisfies the relation:

η = 0, or

∫ 1
0 e

ηz2dz∫ 1
0 z

2(1− z2)eηz2dz
= α.

Substituting (3.11) into (3.8), we can derive that for minimizers, the energy
can be written as

Aε = const + ε
1

2
GαS2

2 |∇n(x)|2 +O(ε2) (3.12)

with S2 =
∫ 1
0 (3z2−1)eηz

2
dz

2
∫ 1
0 e

ηz2dz
, and G = 1

3

∫
g(y)|y|2dy, in which the leading

nontrivial term is the one-constant form of the Oseen-Frank energy. One
may also derive the general Oseen-Frank energy for more complicated (and
realistic) interaction kernerl Bε(x; m,m′). We refer to E and Zhang (2006)
for details. In Liu and Wang (2018b), it is proved that the minimizers or
critical points of the Onsager functional converges to minimizers or critical
points of the one-constant Oseen-Frank energy. In Taylor (2018), the Γ-
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convergence from the Onsager functional to a two-constant Oseen-Frank
energy has been proved.

3.3. Dynamics: analysis on various models

The analysis on the models for LC flow is a hot topic in the analysis and
PDE community during the past decades, not only because these dynamical
models provide typical and concrete examples of the hydrodynamical model
for the general complex fluids, but also due to the beautiful and complicate
structures in these models and the corresponding deep challenges. As the
results on the wellposedness and long time behavior of dynamical LC mod-
els are numerous, we only mention some of them here, which are far from
complete.

The long-time behavior of the Smoluchowski equations without the hy-
drodynamics was studied by Vukadinovic (2009). For the full Doi-Onsager
hydrodynamical model, the local well-posedness of strong solutions is estab-
lished by Zhang and Zhang (2008). However, the global existence of weak
solutions remains open. For recent work on the existence and properties
of solutions to the dynamical Q-tensor models, we refer to some recent pa-
pers (Paicu and Zarnescu 2012, Abels, Dolzmann and Liu 2014, Huang and
Ding 2015, Wilkinson 2015, Liu and Wang 2018a) and the references therein.

The analysis of Ericksen-Leslie model is initiated by Lin (1991), in which
a simplified Ericksen-Leslie system (without Leslie’s stress) is presented.
Moreover, Lin-Liu proposed a regularized model based on the Ginzburg-
Landau approximation and proved the long-time asymptotic, existence and
partial regularity (Lin and Liu 1995, Lin and Liu 1996). There are a lot
of works devoting to the existence of global weak solution to the simplified
or more general Ericksen-Leslie system in both R2 (Lin, Lin and Wang
2010, Hong 2011, Hong and Xin 2012, Huang, Lin and Wang 2014) and R3

(Lin and Wang 2016). The local wellposedness of strong solutions for the
general Ericksen-Leslie system is proved in Wang, Zhang and Zhang (2013)
for whole space case and in Hieber, Nesensohn, Prüss and Schade (2016)
on bounded domain with the Neumann boundary condition. Recently, the
local wellposedness for the Ericksen-Leslie system which includes the inertial
term was considered (Jiang and Luo 2019, Cai and Wang 2020).

Another important issue in the analysis part is the generation or move-
ment of singularities of solutions to the Ericksen-Leslie equation, which char-
acterizes the dynamical behavior of defects in LC flow. For the simplified
equation, Huang, Lin, Liu and Wang (2016) constructed solutions in a 3-
D bounded domain with Dirichlet boundary data where the direction field
blows up at finite time while the velocity field remains smooth. Lai, Lin,
Wang, Wei and Zhou (2019) proves that, for any given set of points in R2,
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one can construct solutions with smooth initial data which blow up exactly
at these points in a small time.

The above list of analysis results on the Ericksen-Leslie system is far from
complete. For more analysis results on the Ericksen-Leslie system or its
variant versions, we refer to the survey papers (Lin and Wang 2014, Hieber
and Prüss 2016) and the references therein.

3.4. Dynamics: from Doi-Onsager to Ericksen-Leslie

The formal derivation of the Ericksen-Leslie equation from Doi’s kinetic the-
ory was first studied by Kuzuu and Doi (1983). However, the Ericksen stress
is missed since only the homogeneous case is considered. This derivation was
extended to the inhomogeneous case by E and Zhang (2006), in which they
found that the Ericksen stress can be recovered from the body force which
comes from the inhomogeneity of the chemical potential, see (2.11).

The derivations in Kuzuu and Doi (1983) and E and Zhang (2006) are
based on the Hilbert expansion (also called the Chapman-Enskog expansion)
of solutions with respect to the small parameter ε:

f(t,x,m) = f0(t,x,m) + εf1(t,x,m) + ε2f2(t,x,m) + · · · ,
v(t,x) = v0(t,x) + εv1(t,x) + ε2v2(t,x) + · · · .

(3.13)

Substituting the above expansion to the system (2.11) and collecting the
terms with the same order of ε, we can obtain a series of equations for
(f0,v0; f1,v1; · · · ).

The O(ε−1) equation gives that f0 satisfies:

R · (Rf0 + f0RUf0) = 0,

which means f0 is a critical point of A0[f ]. So by Theorem 2.1, we can let

f0(t,m,x) = hη,n(t,x)(m), for some n(t,x) ∈ S2.

For the terms of order O(ε0), it holds that

∂f0

∂t
+ v0 · ∇f0 = Gf0f1 +R · (f0RU1f0)−R · (m× (∇v0)T ·mf0),

(3.14)

∂v0

∂t
+ v0 · ∇v0 =−∇p0 +

γ

Re
∆v0 +

1− γ
2Re

∇ · (D0 : 〈mmmm〉f0)

− 1− γ
Re

{
∇ ·
〈
mm× (Rf1 +

∑
i+j+k=1

fiUjfk)
〉

1
+ 〈∇U1f0〉f0

}
.

(3.15)

Although the above system involves the next order term f1 which is not
known so far, it is a closed evolution system for the direction field n(t,x)
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and the velocity v0(t,x). Indeed, it is equivalent to the Ericksen-Leslie
system for (n(t,x),v0(t,x)) with coefficients determined by the parameters
in the Doi-Onsager equation, which will be shown in Theorem 3.2 and 3.3
in the next subsections.

3.4.1. Analysis of the linearized operator
Analysis of the linearized operator

Ghf
def
= R ·

(
Rf + hRUf + fRUh

)
. (3.16)

around a critical point h plays important roles in the reduction of the sys-
tem (3.14)-(3.15). In Kuzuu and Doi (1983), some properties of the null
space and spectrums are assumed or presented. With the help of complete
classifications of critical points of the Maier-Saupe energy, these properties
can be rigorously proved (Wang et al. 2015b).

We introduce two operators Ah and Hh which are defined by

Ahf
def
= −R · (hRf) + Uf, Hhf

def
=

f

h
+ Uf.

There holds the following important relation:

Ghf = −AhHhf. (3.17)

Then the null spaces of Gh, Hh and G∗h (the conjugate of Gh) can be charac-
terized by the following theorem.

Proposition 3.1. Let hi = hηi,n, i = 1, 2. For α > α∗, it holds that

1. Gh1 and Gh2 with η2 = 0 have no positive eigenvalues, whereas Gh2 has
at least one positive eigenvalue for η2 6= 0 ;

2. If φ ∈ KerGh1 , then Hh1φ = 0;
3. KerGh1 =

{
Θ · Rh1; Θ ∈ R3

}
is a 2D space;

4. KerG∗h1 =
{
A−1
h1

(Θ · Rh1); Θ ∈ R3
}

.

3.4.2. Derivation of the angular momentum equation
From the equation (3.14), we have that〈∂f0

∂t
+ v0 · ∇f0 +R · (m× (∇v0)T ·mf0)−R · (f0RU1f0), ψ

〉
L2(S2)

= 0,

(3.18)

for any ψ ∈ KerG∗f0 . This equation provides the evolution equation for

the vector field n(t,x). Actually, the following lemma tells us that n(t,x)
satisfies the evolution equation in the Ericksen-Leslie equation with some
constants λ1, λ2.

As Ker G∗n = AnKer Gn, ψ0 ∈ Ker G∗n if and only if there is a vector Θ
such that

−R · (hnRψ0) = Θ · Rhn. (3.19)
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Theorem 3.2. The equation (3.18) holds if and only if n(x, t) is a solution
of

n×
(
γ1(∂tn + v · ∇n + Ω · n) + γ2D · n− kF∆n

)
= 0, (3.20)

with v = v0 and some γ1, γ2 depending on α and kF depending on α and
the interaction kernel function g.

Proof. Let W be a matrix with components given byWij =
∫
S2 A

−1(Rif0)Rjf0.
Then we have

• W is symmetric;

• W · n = 0;

• For any unit vector p satisfying p · n = 0, pT ·W · p is independent of
p.

Therefore, W is a constant, denoted by γ1, multiplying with (I− nn), and
we have ∫

S2
A−1(v · Rf0)w · Rjf0 = γ1v · (I− nn) ·w. (3.21)

Now, assume that ψ = A−1(Θ · Rf0) with Θ ∈ R3. First we have df0
dt =

f ′0(m · ṅ) = (ṅ× n) · Rf0. Hence

〈df0

dt
, ψ〉 = 〈(ṅ× n) · Rf0,A−1(Θ · Rf0)〉 = −γ1Θ · (n× ṅ). (3.22)

Next, we have

〈R · (m× κ ·mf0), ψ〉 = 〈R · (m× (D−Ω) ·mf0), ψ〉

= −〈1
2
A(mm : D) + (n× (Ω · n)) · Rf0,A−1Θ · Rf0〉

= 〈m× (D ·m),Θf0〉 − 〈(n× (Ω · n)) · Rf0,A−1Θ · Rf0〉

=
(
S2n× (D · n)− γ1n× (Ω · n)

)
·Θ. (3.23)

From (3.7), we have

−〈R · (f0RU1f0), ψ〉 = 〈U1f0,Θ · Rf0〉

=

∫
S2
αS2Gm× (∆(nn) ·m) ·Θf0dm

= S2
2αGΘ ·

(
n×∆n

)
.

Let h = S2
2αG∆n, then

−〈R · (f0RU1f0), ψ〉 = Θ · (n× h). (3.24)

Let γ2 = −S2. Then combining (3.22), (3.23) and (3.24), we obtain that
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for any Θ ∈ R3,

Θ ·
(
n×

(
γ1(∂tn + v0 · ∇n + Ω · n) + γ2D · n− h

))
= 0,

which closes our proof. Note that the induced Oseen-Frank energy is

EOF =
kF
2
|∇n|2, with kF = S2

2αG. (3.25)

which coincides the O(ε) part of (3.12).

3.4.3. Derivation of the momentum equation

Now we calculate the stress tensor in (3.15):

τ1 =

∫
S2

mm× (Rf1 +
∑

i+j+k=1

fiRUj [fk])dm,

τ2 =

∫
S2
f0∇U1[f0]dm,

τ3 =

∫
S2
f0mm(mm : D)dm.

From (3.7), we have

τ2 =

∫
S2
−αS2

2
Gf0(m · n)∇

(
mm : ∆(nn)

)
dm

=

∫
S2

αS2

2
G∇f0(m · n)mm : ∆(nn)dm + gradient term

=
αS2

2

2
G∇(nn) : ∆(nn) + gradient term

= −αS2
2G∇nk∆nk + gradient term

= −αS2
2G∇ ·

(
∇n�∇n

)
+ gradient term,

which is actually the Ericksen tensor σE up to a pressure term with the
Oseen-Frank energy given by (3.25).

For the stress of τ1, we can write

τ1 =
〈
mm×R(Hf1 + U1[f0])

〉
f0
.

It can be decomposed into two parts: τS1 and τA1 , which are symmetric and
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anti-symmetric respectively. By the identity (8.5), the symmetric part

τS1 =
1

2

∫
S2

(mm− 1

3
I)
{∂f0

∂t
+ v0 · ∇f0 +R · (m× (∇v0)T ·mf0)

}
dm

=
1

2

(
(∂t + v0 · ∇)〈mm〉f0 + 2D : 〈mmmm〉f0

− (D−Ω) · 〈mm〉f0 − 〈mm〉f0 · (D + Ω)
)
,

where in the last equality, we have used the equation (8.7).
For any antisymmetric matrix A, one has〈

mm× f0R(Hf1 + U1[f0])
〉
f0

: A

=
〈
[m× (A ·m)] · R(Hf1 + U1[f0])

〉
f0

=−
〈
[m× (A ·m)] · R(Hf1 + U1[f0])

〉
f0

=−
〈
[n× (A · n)] · R(Hf1 + U1[f0])

〉
f0

=−
〈
[n× (A · n)] · RU1[f0]

〉
f0

=−
[
n× (A · n)

]
· (n× h)

=
1

2
(nh− hn) : A,

which implies

τA1 =
1

2
(nh− hn).

From the equation (8.4), we have

τ3 =

∫
S2
f0mm(mm : D)dm

= S4nn(D : nn) +
2(S2 − S4)

7
(nD · n + D · nn) + 2

(S4

35
− 2S2

21
+

1

15

)
D.

Combining the above equations and noting that

h = γ1N + γ2D · n,

we can obtain the following theorem.

Theorem 3.3. The equation (3.15) is equivalent to

∂tv0 + v0 · ∇v0 = −∇p+∇ · (σE + σL), (3.26)
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where the stress terms are defined as

σE =− kF∇ ·
(
∇n�∇n

)
,

σL =
γ

Re
D +

1− γ
Re

(
α1(nn : D)nn + α2nN + α3Nn

+ α4D + α5nn ·D + α6D · nn
)
,

with coefficients αi(i = 1, 2, · · · , 6) given by

α1 = −S4

2
, α2 = −1

2

(
S2 − γ1

)
, α3 = −1

2

(
S2 + γ1

)
,

α4 =
4

15
− 5

21
S2 −

1

35
S4, α5 =

1

7
S4 +

6

7
S2, α6 =

1

7
S4 −

1

7
S2.

(3.27)

3.4.4. The higher order terms and the control of the remainder terms

We can also perform the higher order expansion in a similar way up to any
order of ε. Then we arrive at a series of equations for (fi(t,x,m),vi(t,x))
(i = 0, 1, 2, · · · ). In principle, these high order terms provide more accu-
rate corrections for approximate solutions. However, it is not known so far
whether the expansion in the right hand side of (3.13) is convergent. More-
over, even existences of corrector solutions (fi(t,x,m),vi(t,x)) are not clear,
although the equations can be derived explicitly.

The rigorous confirmation on the validation of the expansion (3.13) con-
sists of the following part:

• Existence of smooth solutions to (fi(t,x,m),vi(t,x)) for all i ≥ 0;
• The bound of the difference between the true solution (fε,vε) and the

approximate solutions

f (k)(t,x,m) =

k∑
i=1

εifi(t,x,m),

v(k)(t,x) =
k∑
i=1

εivi(t,x).

(3.28)

Indeed, we need the bound tends to 0 as ε→ 0.

The proof of the first part relies on the local existence of smooth so-
lutions to the Ericksen-Leslie equations, which is proved in Wang et al.
(2013). Indeed, let (n(t,x),v0(t,x)) be a solution on time interval [0, T ]
satisfying the Ericksen-Leslie system with parameters suitably given, then
we can construct a corresponding solution (f0(t,x,m),v0(t,x)) = (h(m ·
n(t,x)),v(t,x)) to (3.14)-(3.15). The construction of (f1(t,x,m),v1(t,x))
is a little bit subtle, since the system is nonlinear and this implies that the ex-
isting time may be small than T in general. However, by carefully examining
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Figure 3.5. Reduction to Ericksen-Leslie theory from the Doi-Onsager
theory or the dynamic Q-tensor theory

the inherent structure of the system, one may find that (f1(t,x,m),v1(t,x))
could be constructed by solving a linear system, and thus the existing time
can be extended to [0, T ]. The system for (fk(t,x,m),vk(t,x)) (k ≥ 2) is
straightforwardly linear and can be solved directly.

The second part, i.e., estimates for the difference, is much more difficult.
The key ingredients are the spectral analysis for the linearized operator Gh
and a lower bound estimate for a bilinear functional related to a modified
nonlocal version of Gh. We refer to Wang et al. (2015b) for details.

3.5. Dynamics: other relations

The connection between the dynamic Q-tensor model and the Ericksen-
Leslie model can be directly derived. One may see Beris and Edwards (1994)
or Qian and Sheng (1998) for the derivation from the Beris-Edward model
or Qian-Sheng model to the Ericksen-Leslie theory respectively. The corre-
spondence of parameters can also be found. For the rigorous justifications,
one may apply the similar procedure discussed in Subsection 3.4. We refer to
papers (Wang, Zhang and Zhang 2015a, Li et al. 2015) for the uniaxial limit
of the dynamic Q-tensor models such as Beris-Edwards model, the molec-
ular based dynamic Q-tensor model and the inertial Qian-Sheng’s model
respectively. These results are summarized in Fig. 3.5.

The above discussions build a solid coincidence between the Ericksen-
Leslie theory and the Doi-Onsager theory or the dynamic Q-tensor theory.
However, they are based on the framework of smooth solutions which relies
on the existence of smooth solution of the Ericksen-Leslie system. Thus it
excludes the possibility of defects. To resolve this problem, one needs to
study the relations between weak solutions. Liu and Wang (2018c) gives
an attempt on this issue, where it is proved that, the solutions to the Doi-
Onsager equation without hydrodynamics converges to the weak solution of
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the harmonic map heat flow–the gradient flow of the one-constant Oseen-
Frank energy.

4. Numerical methods for computing stable defects of liquid
crystals

In this section, we review recent developments on the numerical methods for
computing stable defect patterns of LCs. We will focus on the NLC systems
again and apply the LdG theory as the model system to provide a sam-
ple of relatively new progress on the development of numerical algorithms
that are applicable to general LC problems. Two numerical approach will
be reviewed in order to obtain a local minimum for a given energy func-
tional, one is the energy-minimization based approach, which follows the
idea of “Discretize-then-Minimize”, and the other is to solve the gradient
flow dynamics.

4.1. Energy-Minimization Based Approach

The energy-minimization based approach first discretizes the free energy
by introducing a suitable spatial discretization to the order parameter of
system, then adopts some optimization methods to compute local minimizers
of the discrete free energy. From an optimization point of view, solving the
gradient flow equation corresponds to the gradient decent method on the
discrete free energy. An energy-minimization based approach enables us to
apply some advanced optimization methods, such as Newton-type methods
or quasi-Newton methods, which may be able to find local minimizers of the
discrete free energy more efficiently.

The idea of computing defect structures in LC by an energy-minimization
based approach can be traced back to some early work on Oseen-Frank
model in late 1980s. Cohen et al. (1987) obtain several LC configura-
tion by numerically minimizing the Oseen-Frank energy. However, due
to the lack of convexity of the unit-length constraint, the convergence of
their algorithms is difficult to be established. A significant improvement
is made by Alouges (1997), who proposed an energy-decreasing algorithm
for one constant Oseen-Frank model. The convergence of this algorithm
is proved in a continuous setting. Later, Adler et al. (2015) proposed an
energy-minimization finite-element approach to Oseen-Frank model by us-
ing Lagrangian multiplier and the penalty method, which can be applied
to the cases with elastic anisotropy and electric/flexoelectric effects (Adler
et al. 2015, Adler, Emerson, MacLachlan and Manteuffel 2016). A surface
finite element method was developed for the surface Oseen-Frank problem
to study the orientational ordering of NLCs on curved surfaces (Nitschke,
Nestler, Praetorius, Löwen and Voigt 2018, Nestler, Nitschke, Praetorius and
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Voigt 2018). For Ericksen model, Nochetto et al. (2017) proposed a struc-
ture preserving discretization of the LC energy with piecewise linear finite
element and develop a quasi-gradient flow scheme for computing discrete
equilibrium solutions that have the property of strictly monotone decreas-
ing energy. They also prove Γ-convergence of discrete global minimizers
to continuous ones as the mesh size goes to zero. Similar idea has also
been applied to generalized Ericksen model with eight independent “elas-
tic” constants (Walker 2020) and an uniaxially constrained Q-tensor model
(Borthagaray, Nochetto and Walker 2019).

For the full Q-tensor model, Gartland Jr et al. (1991) constructed a nu-
merical procedure that minimizes the LdG free energy model, which is based
on a finite-element discretization to the tensor order parameter, and a di-
rect minimization scheme based on Newton’s method and successive over-
relaxation. The corresponding analytical and numerical issues of this numer-
ical procedure are addressed in Davis and Gartland Jr (1998), in which the
well-posedness of the discrete problem are proved. Besides more physically
realistic, the full Q-tensor model has an advantage that the corresponding
optimization problem is almost unconstrained (as the eigenvalue constraint
is normally satisfied due to the boundary condition in a certain parameter
region), although it might require more computational cost since Q has five
degrees of freedom.

In recent years, we have incorporated the spectral method with the energy-
minimization techniques and successfully applied our approach to differ-
ent confined LC systems, including three-dimensional spherical droplet (Hu,
Qu and Zhang 2016), three-dimensional cylinder (Hu et al. 2016, Han, Hu,
Zhang and Zhang 2019), nematic shell (Qu, Wei and Zhang 2017), nematic
well (Yin et al. 2020a) and LC colloids (Wang et al. 2017, Tong, Wang and
Zhang 2017, Wang, Zhang and Chen 2018). From a computational perspec-
tive, as an efficient numerical method with high accuracy, spectral method
makes an accurate free-energy calculation for 3D problems possible and en-
able us to determine the phase diagram of some complicated LC systems
(Wang et al. 2017).

To apply the spectral method to different confined LC systems, one can
either identify an appropriate coordinates system, i.e., map the physical do-
main to a regular computational domain (Hu et al. 2016, Wang et al. 2017),
or phase-field type method (Wang et al. 2018) to deal with the underly-
ing geometry and the boundary conditions. Then the free energy can be
discretized by introducing a spectral discretization to the order parameter
Q. Since the order parameter Q is a traceless symmetric tensor, it can be
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written as

Q =

q1 q2 q3

q2 q4 q5

q3 q5 −q1 − q4

 . (4.1)

We can introduce a spectral approximation to qi separately. The local min-
imizers of the resulting discrete free energy Fh(Ξ) can be computed by
some optimization methods, such as the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) method. Here Ξ ∈ R5×K consists of all expansion coefficients and
K is the number of basis functions.

The key step in the above numerical procedure is to compute the gradient
of the discrete free energy Fh(Ξ) with respect to Ξ. To illustrate the idea,
we consider a simple system with a scalar order parameter ϕ and a free
energy

F [ϕ] =

∫
W (ϕ,∇ϕ)dx. (4.2)

We can discretize the free energy F(ϕ) by introducing a spectral approxi-
mation to

ϕ =

K∑
i=1

ξiφi, (4.3)

where φi is the basis function, and ξi are the expansion coefficients that
needed to be determined during the optimization procedure. The derivative
of Fh(Ξ) with respect to ξi can be computed directly as

∂

∂ξi
Fh(Ξ) =

∫
∂W

∂ϕ
φi +

∂W

∂∇ϕ
· ∇φidx, (4.4)

which is easy to compute by a numerical integration. Noticed that the weak
form of the Euler-Lagrangian equation of the free energy (4.2) is given by(

∂W

∂ϕ
, ψ

)
+

(
∂W

∂∇ϕ
,∇ψ

)
= 0, (4.5)

where ψ is a test function and (., .) is the standard L2-inner production.
Hence, the stationary points of the discrete free energy Fh(Ξ) are exactly
numerical solutions of the Euler-Lagrangian equation δF

δϕ = 0 obtained by a
Galerkin method. The idea of discretization first can be extended to dynam-
ics cases with variational structure, we refer the interesting readers to Doi,
Zhou, Di and Xu (2019) and Liu and Wang (2020a) for some recent devel-
opments. In particular, by using the strategy of “discretize-then-variation”,
Liu and Wang (2020b) proposed a variational Lagrangian scheme for a phase-
filed model, which has an advantage in capturing the thin diffuse interface
with a small number of mesh points. Such a numerical methodology can be



41

definitely applied to a liquid crystal system and will have potential advan-
tages in computing the defect structures.

Next, we discuss the choice of basis function. For three-dimensional unit
sphere, Hu et al. (2016) choose the basis function as Zernike polynomials
Znlm (Zernike 1934, Mahajan and Dai 2007), defined by

Znlm(r, θ, φ) = R(l)
n (r)Ylm(θ, φ), (4.6)

where

R(l)
n =

{ ∑(n−l)/2
s=0 Nnlsr

n−2s 0 ≤ n−l
2 ∈ Z,

0 otherwise,

Nnls = (−1)s
√

2n+ 3
n−l∏
i=1

(n+ l − 2s+ 1 + i)
l∏

i=1

(
n− l

2
− s+ i

)
2l−n

s!(n− s)!
,

and Ylm(θ, φ) = P
|m|
l (cos θ)Xm(φ) are the spherical harmonic functions with

Xm(φ) =

{
1
π cosmφ m ≥ 0,
1
π sin |m|φ m < 0,

and Pml (x)(m ≥ 0) be the normalized associated Legendre polynomials. The
Zernike polynomials Znlm are orthogonal in three-dimensional unit sphere,
which can simplify the computation in (4.5). Similarly, for 2D disk and
cylindrical domain (Hu et al. 2016, Han et al. 2019), the authors choose 2D
Zernike polynomials Znl as basis functions.

The orthogonality of the basis functions is not required in above the nu-
merical procedure. A disadvantage of using Zernike polynomials is that the

value of R
(l)
n (r) for given r is not easy to compute in high accuracy. The

standard basis function, such Legendre and Chebyshev polynomials, might
be better choices in numerical calculation for more general problems. For ex-
ample, for spherical shells and unbounded domain outside one or two spheres
(Wang et al. 2017, Tong et al. 2017, Noh, Wang, Liang, Subba, Jampani,
Majumdar and Lagerwall 2020), one can first map the physical domain to a
computational domain

Ω = {(ζ, µ, ϕ)| − 1 ≤ ζ ≤ 1, 0 ≤ µ < π, 0 ≤ ϕ < 2π},

and choose real spherical harmonics of (µ, ϕ) and Legendre polynomials of
ζ as the basis functions.

To validate the algorithm, Hu et al. (2016) compared the numerical results
of the radial hedgehog solution with its analytic form (Gartland Jr and
Mkaddem 1999, Majumdar 2012). The radial hedgehog solution is a radial
symmetric solution, in which the Q is given by

QRH(r) = h(|r|)
(

r

|r|
⊗ r

|r|
− 1

3
I

)
, 0 < |r| ≤ 1,
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with h(r) satisfies the second order ODE (3.3), which can be solved accu-
rately. By increasing the number of the basis in the Zernike polynomials
using N = 4k, L = 16,M = 4, the numerical error in the total free-energy
decreases to as low as 10−10 (Hu et al. 2016). For more complicated solu-
tions (without radial symmetry), Wang et al. (2017) shows the numerical
error in free energy calculation for the dipole and Saturn ring defect around
a spherical particle immersed in NLC. These numerical tests suggest that
such numerical method is adequate for an accurate free energy calculation
to determine the phase diagram of the system.

Finding minimizers of the LdG free energy is an unconstrained nonlin-
ear optimization problem. The minimizers can be obtained by optimization
methods such as gradient descent method and quasi-Newton methods. A
commonly used optimization method for such problem is the Limit-memory
Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) method (Knyazev 2001). The
energy-minimization based numerical approach with L-BFGS usually con-
verges to a local minimizer with a proper initial guess, but that is not nec-
essarily guaranteed. To check whether the solution is a local minimizer, we
need to justify the stability of the solution on the energy landscape F by
computing the smallest eigenvalue λ1 of its Hessian H(x) = ∇2F (x), the
associated second variation of the reduced energy corresponding to x (Yin
et al. 2019, Canevari, Harris, Majumdar and Wang 2020):

λ1 = min
v∈Rn

〈H(x)v,v〉
〈v,v〉

, (4.7)

where 〈·, ·〉 is the standard inner product in Rn. The solution is locally
stable or metastable if λ1 > 0. Practically, λ1 can be computed by solving
the gradient flow equation of v

∂v

∂t
= − 2γ

〈v,v〉

(
Hv − 〈Hv,v〉

〈v,v〉

)
. (4.8)

where γ is a relaxation parameter and H(x)v can be approximated by

H(x)v ≈ −∇F (x + lv)−∇F (x− lv)

2l
, (4.9)

for some small constant l. We can choose γ(t) properly to accelerate the
convergence of the dynamic system (4.8) (Yin et al. 2019).

First example of minimizing the LdG free energy is to calculate the possi-
ble equilibria of the NLCs confined in three-dimensional ball with different
kind of anchoring condition (Hu et al. 2016). For the strong radial anchoring
condition, three different configurations: the radial hedgehog, ring disclina-
tion and split core solutions (Figure 4.6(a-c)) are obtained. In the radial
hedgehog solution Q is uniaxial evergywhere with a central point defect,
which is a rare example of pure uniaxial solution for Landau-de Gennes
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(a) (b) (c) (d)

(e) (f ) (g)

Figure 4.6. (Credit: (Hu et al. 2016)) Possible equilibria under various
anchoring condition. (a-c) Three equilibria under the strong radial
anchoring condition on the xz-plane: (a) radial hedgehog; (b) ring
disclination and (c) split core (a zoom-in view). (d) Equilibrium under the
relaxed radial anchoring condition. (e-f) Two equilibria for the planar
anchoring condition. (g) A uniaxial solution for planar anchoring

condition. β = 0 and Q is oblate everywhere. Colorbar for β = 1− 6 (trQ3)2

(trQ2)3

shown in (a)-(g), with red indicates biaxial and blue indicates uniaxial. β
(represented by color) and Q-tensor (represented by ellipsoid glyph) from
numerical simulation. The cyan tubes inside the ball in (e-f) are the
iso-surfaces of cl = λ1 − λ2, the difference between two largest eigenvalues
of Q.

model (Lamy 2015, Majumdar and Wang 2018). For low temperature and
large domain size, the point defect broadens into a disclination ring. The
disclination ring solution is a symmetry breaking configuration. The split
core solution contains a +1 disclination line in the center with two isotropic
points at both ends, the existence of which is proved in Yu (2020) under the
rotational symmetric assumption. The authors also consider relaxed radial
anchoring condition, which allows s = s(x) to be a free scalar function on
∂Ω. Besides the radial hedgehog, disclination ring and split core configura-
tions, one more solution is obtained for this boundary condition shown in
Figure 4.6(d). Two rings of isotropic points form on the sphere. Between the
two rings, on the surface Q is uniaxial and oblate (s < 0). Inside the ball,
there is a strong biaxial region close to the surface. For a planar boundary
condition, the authors find three stable solutions (Figure 4.6(e-f)). In Figure
4.6(e), two +1 point defects form at two poles. As temperature decreases,
the point defect on the surface splits into two +1/2 point defects. In Figure
4.6(f), the four +1/2 point defects on the sphere form the vertices of a tetra-
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Figure 4.7. (Credit: (Hu et al. 2016)) Three equilibria: (a) planar radial
(b) planar polar and (c) escape radial for radial anchoring condition on a
2D disc. β is shown in color in (a-b) with red corresponds to biaxial and
blue uniaxial. Ellipsoids represent the Q-tensor. Golden solid bars in (c)
represent the eigendirection corresponding to the largest eigenvalue. (d)
Phase diagram of the planar radial, planar polar and escape radial
configurations. The partition is based on the lowest energy of the three.

hedron. Inside the ball, there are disclination lines which intersect with the
spherical surface on the above mentioned point defects. The configuration
in Figure 4.6(e) has two segments of +1 disclination lines with one isotropic
end buried inside the ball and the other end connecting the surface. As
temperature decreases, the +1 disclination splits into a +1/2 disclination
with both ends open at the surface. Another metastable solution is shown
in Figure 4.6(g). In this configuration Q is uniaxial and everywhere and
has radial symmetry. But unlike the radial hedgehog solution, Q is oblate
(s < 0) everywhere rather than prolate.

For 2D disk and 3D cylinder, Hu et al. (2016) obtained minimizers on
unit disc with boundary condition Q(cosφ, sinφ) = s+(n ⊗ n − I

3), where

n = (cos k2φ, sin
k
2φ, 0), k = ±1,±2, · · · , is kept in the xy-plane at the bound-

ary. They found that the solutions are predictable. For large temperature
and large domain, there is a semi-radial solution in which all the eigenval-
ues are rotational symmetric and the eigenvectors are invariant along the
r-direction determined by the boundary condition. The semi-radial solu-
tion has a central defect with winding number determined by the boundary
constraint. As temperature decreases and domain size increase, the semi-
radial solution become unstable and the central defect quantize to defect
points with +1/2 or -1/2 winding number. The number of 1/2 defects is
determined by the conservation of the total winding number. When k of the
boundary condition is even, there is a non-singular harmonic map solution, a
phenomena referred as “escape into the third dimension” in (Sonnet, Kilian
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(a)Planar Radial

             (PR)
(d)Escape Radial with Ring Defect

                          (ERRD)

(c)Escape Radial

            (ER)

(b)Planar Polar

            (PP)

Figure 4.8. (Credit: (Han et al. 2019)) Four equilibria of NLC confined in
cylinder with homeotropic anchoring condition (a) Planar Radial; (b)
Planar Polar; (c) Escape Radial and (d) Escape Radial with Ring Defect.
Disclination lines are represented by the red isosurface of cl. The disk in
the upper-right corner is the transversal view of structure in (a)-(c). The
ellipsoid on disk represents the Q-tensor on the disc and the color
corresponds to β, ranging from 0 (blue) to 1 (red).

and Hess 1995). Both the escape solution and the quantized ±1/2 solutions
are stable for low temperature. As the temperature decreases further, the
free energy of the escape solution will be lower. When k = 2 or with planar
boundary condition, there are three known configurations: planar radial
(PR), planar polar (PP) and escape radial (ER) as shown in Figure 4.7.
The planar radial has one +1 point defect at the center; the planar polar
solution has two +1/2 point defect form at the opposite site of the disc; the
escape radial has no defect in which Q is uniaxial everywhere with s being
constant and n being a harmonic map for the given boundary condition. A
phase diagram for these three configurations is shown in Figure 4.7.

With z-axial invariance, the PR, PP and ER (Figure 4.8(a-c)) are still
stable equilibria of NLC confined in a cylinder with homeotropic bound-
ary condition. Without axial invariance, the escape radial with ring defect
(ERRD) configuration (Figure 4.8(d)) is also stable equilibria which has
two disclination rings lying on a plane parallel to the axial direction of the
cylinder. Two disclination rings can be considered as the broadening of
two point defects with topological charge +1 and −1 (Brada, Kralj, Svetec
and Zumer 2003). The ERRD solution can be considered as a quenched
metastable state formed by jointing ER configurations with opposite point-
ing directions, which means the free energy of ERRD is always higher than
ER.

For the liquid crystal colloids (LCC) system, Wang et al. (2017) presented
a detailed numerical investigation to the LdG free-energy model under the
one-constant approximation for systems of single and double spherical col-
loidal particles immersed in an otherwise uniformly aligned NLC. For the
strong homeotropic anchoring with one spherical particle, two types of con-
figurations, quadrupolar (also known as Saturn-ring structure) and dipolar
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Figure 4.9. (Credit: (Wang et al. 2017)) Two equilibria of NLC
surrounding a spherical particle: (a)-(c) quadrupolar state, (d)-(f) dipolar
state, as well as the corresponding regimes in the phase diagram (g) where
these states have the lowest free energies and the dashed line represents
the stability limit of the dipolar state. Each state is illustrated by using
three views: side views of the Q-tensor element Q11 [in (a) and (d)], the
same side views of the biaxiality coefficient β [in (b) and (e)], and top view
of the defect location, indicated by the black circles produced from
plotting the isosurface of cl = 0.1. (e) is an enlarged version of the defect
area on top of the sphere, where the tensor field (white ellipsoids) indicates
a −1/2 defect line.

states, illustrated in Figure 4.9, are obtained. In the quadrupolar state, a −1
2

disclination line forms a ring located at the spherical equator and the entire
Q tensor has an axisymmetry about the z axis and reflection symmetry with
respect to the x−y plane through the spherical center. The dipolar solution
is an axisymmetric configuration and contains no reflection symmetry with
respect to the x − y plane. The defect ring in dipolar is near the spherical
top. The phase diagram for the single-particle problem is shown in Figure
4.9. Below the critical temperature of isotropic-nematic phase transition,
the dipolar state is stable for large particle systems and can only be found
to the right of the dashed curve, which represents the stability limit of it.
The quadrupolar pattern can be found as the stable or metastable state over
the entire parameter space below the critical temperature.

To study the case with two spherical particles of equal radii are placed in
a nematic fluid, Wang et al. (2017) introduced the bispherical coordinates
(ξ, µ, φ) (−ξ0 ≤ ξ ≤ ξ0,0 ≤ µ < π and 0 ≤ φ < 2π) (Fukuda et al. 2004),
and choose real spherical harmonics of (µ, ϕ) and Legendre polynomials of ζ
(ζ = ξ/ξ0) as basis functions. The relation between bispherical coordinates
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(ξ, µ, φ) and Cartesian coordinates (x, y, z) is

x = a
sinµ

cosh ξ − cosµ
cosφ, , y = a

sinµ

cosh ξ − cosµ
sinφ, z = a

sinh ξ

cosh ξ − cosµ
,

where a =
√

(D/2)2 −R2, R is radius of balls, D is the distance between the
centers of the two spherical particles. At a fixed φ, ξ = µ = 0 corresponds
to infinity, and the surface of constant ξ represents a sphere given by

x2 + y2 + (z − acothξ)2 =
a2

sinh2 ξ
. (4.10)

So the surfaces of the two spherical particles are represented by ξ = ±ξ0,
and ξ0 = cosh−1(D/2R). Inspired by the configuration of single particle in
NLC, Wang et al. (2017) consider the dimer complex composed of dipole-
dipole pair, quadrupole-quadrupole pair and dipole-quadrupole pair. They
find three stable state configuration: entangled hyperbolic defect (H), un-
entangled defect rings (Uγ) and parallel dipoles (D0) in the dimer system
after the free energy is minimized with respect to both the far-field nematic
director (represented by γ ∈ [0, π/2]) and inter-particle distance D/R. Both
H and Uγ states are variations of the quadrupolar structure in Figure 4.9.
H state, in which γ = π/2, is only stable in the systems with extremely
small particle size. Due to the two defect rings both have the same winding
number -1/2, in Uγ the portions of the defect rings near the sphere-sphere
center locally repel each other. As these portions are twisted upwards and
downwards, the original spherical axes tilt in order to accomodate a larger
distance between these two repelling portions. The value of the optimal γ
deviates from γ = π/2 starting from the isotropic-nematic transition line
and increases as the system moves to a smaller particle size state. In D0,
the far field tilt angle γ = 0. Beyond the three free-energy ground states,
six metastable states can be computed. We refer the interested reader to
Wang et al. (2017) for more detailed discussions.

For more complex geometries, phase-field approaches or diffuse interface
methods (Yue, Feng, Liu and Shen 2004) can be incorporated into the above
numerical framework. For example, combining the phase-field method with
Fourier spectral method, Wang et al. (2018) investigated the formation of
three-dimensional colloidal crystals in a nematic liquid crystal dispersed with
large number of spherical particles. The corresponding defect structures
in the space-filler nematic liquid crystal induced by the presence of the
spherical surface of the colloids are computed. Multiple configurations are
found for each given particle size and the most stable state is determined by a
comparison of the free energies. Their numerical studies show that from large
to small colloidal particles, a sequence of 3D colloidal structures, which range
from quasi-one-dimensional (columnar), to quasi-two-dimensional (planar),
and to truly three-dimensional, are found to exist.
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Figure 4.10. (Credit: (Wang et al. 2017)) (a) Sketch of the coordinate
system for a dimer problem; (b) entangled hyperbolic defect (H) state
where γ = π/2; (c) unentangled defect rings (Uγ) where γ = π/2; (d)
parallel dipole-dipole state (D0) where γ = 0; and (e) the phase diagram
that describes the regimes where these defect states have free-energy
minima in terms of a reduced temperature τ and reduced spherical radius
1/ξR. The phase diagram was determined based on the ground-state
calculation, after consideration of all other possibilities including
minimization with respect to the particle distance D and tilt angle γ. (b)
and (c) are illustrations of the defect lines determined from isosurface of
the largest eigenvalue of Q, λ1 = 0.25. (d) is the cross-section view of Q11 .

Besides the NLCs, similar numerical technique can also be applied to
cholesteric LCs. Tong et al. (2017) investigated the defect structures around
a spherical colloidal particle in a cholesteric LC, i.e., Ω = R3\B(0, 1). In
order to deal with the inhomogeneity of the cholesteric at infinity, they first
identify the ground state Q0 and use spectral method to approximate Q−
Q0. Instead of using classical orthogonal systems on the unbounded domain,
such as Laguerre polynomials, they combine the exponential mapping and
the truncation techniques to capture the property of Q−Q0. The mapping
between the computational domain (ρ, θ, φ) and the physical domain (r, θ, φ)
are given by

r = sinh

(
ρ+ 1

2
L

)
, ρ ∈ [−1.1], (4.11)

where r is the radial distance in the spherical coordinates. Fig. 4.11 shows
two types of defect configurations obtained in a cholesteric LC by their
numerical simulation for strong homeotropic anchoring condition : twisted
Saturn ring (Figs. 4.11(a-c)) and cholesteric dipole (Figs. 4.11(d-f)). Sim-
ilar numerical method can be used to study defect structures in cholesteric
LC and blue phase under the different geometric constraints (Fukuda, Žumer



49

Figure 4.11. (Credit: (Tong et al. 2017)) Two possible configurations
around a spherical particle: (a-c) The defect structures in the twisted
Saturn ring. (d-f) The defect structures in the cholesteric dipole.

et al. 2010, Guo, Afghah, Xiang, Lavrentovich, Selinger and Wei 2016, Dar-
mon, Benzaquen, Čopar, Dauchot and Lopez-Leon 2016).

4.2. Gradient Flow Approach

Gradient flow is a dynamics driven by a free energy. There are quite a num-
ber of works devoted to obtain the defect patterns by solving the gradient
flow equation corresponding to different LC systems (Fukuda et al. 2004,
Ravnik and Žumer 2009, Canevari et al. 2017, Wang et al. 2019, MacDon-
ald et al. 2020). For the LdG theory, the corresponding L2-gradient flow
equation can be written as

∂Q

∂t
= −γ δF

δQ
, (4.12)

where γ > 0 is dissipative coefficient. An advantage of gradient flow ap-
proach is that it also provides part information of dynamical evolution of
defect structure.

On the numerical perspective, the main challenge in developing numerical
schemes for gradient flow systems is to maintain the energy dissipation prop-
erty at the discrete level. During the last a few decades, energy stable nu-
merical schemes for gradient flow systems have been studied extensively, ex-
amples include full-implicit scheme (Xu, Li, Wu and Bousquet 2019, Du and
Feng 2020), convex splitting method (Elliott and Stuart 1993, Eyre 1998),
stabilization method (Shen and Yang 2010, Cai, Shen and Xu 2017a), invari-
ant energy quadratization (Yang 2016, Zhao, Yang, Gong and Wang 2017)
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and scalar auxiliary variable (SAV) (Shen, Xu and Yang 2018, Shen, Xu and
Yang 2019).

In a recent work, Shen et al. (2019) developed a second-order uncondition-
ally energy stable based on SAV and Crank-Nicolson for the LdG theory, in
which the LdG free energy is given by

F [Q] = Fb[Q] + Fel[Q,∇Q], (4.13)

where

Fb =

∫
fb(Q) =

∫
A

2
trQ2 − b

3
trQ3 +

C

4
(trQ2)2dx

Fel =

∫
L1

2
|∇Q|2 +

L2

2
Qik,iQjk,j +

L3

2
Qjk,iQij,kdx.

Here C > 0, L1 > 0 and L1 + L2 + L3 > 0, so the total energy is bounded
from below. Due to quartic term C(trQ2)2, there exists a1, C0 > 0 such that
fb(Q)−a1trQ2/2 +C0 > 0, Let r be the scalar auxiliary variable defined by

r(t) =
√
F1 =

√
Fb −

∫
Ω

a1

2
trQ2 + C0 (4.14)

and

L = a1Q +
δFe
δQ

, (4.15)

then the gradient flow equation can be rewritten as
∂Q
∂t = −µ
µ = LQ + r(t)√

F1

δF1
δQ

rt = 1
2
√
F1

∫
Ω
δF1
δQ : Qtdx.

(4.16)

and the corresponding numerical scheme is given by

Qn+1 −Qn

∆t
= −µn+1/2,

µn+1/2 =
1

2
(Qn+1 + Qn) +

rn+1 + rn

2
√
F1[Q̄n+1/2]

δF1

δQ
[Q̄n+1/2],

rn+1 − rn =

∫
Ω

1

2
√
F1[Q̄n+1/2]

(
δF1

δQ
[Q̄n+1/2]

)
ij

(Qn+1
ij −Qn

ij)dx.

(4.17)

For the LdG free energy with cubic term (L4QklQij,kQij,l), although the
total free energy is not bounded below (Ball and Majumdar 2010), Cai et
al. (2017a) constructed an unconditionally stable numerical scheme for 2D
Q-tensor by a stabilizing technique, They also established unique solvabil-
ity and convergence of such a scheme. The convergence analysis leads to
the well-posedness of the original PDE system for the 2D Q-tensor model.
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Several numerical examples are presented to validate and demonstrate the
effectiveness of their scheme.

4.3. Machine learning approach

Over the last decade, machine learning has made a huge impact on the
research areas of materials and soft matter, showing the highly powerful and
effective performance by using the techniques of deep learning. Here, we just
take a recent work by Walters et al. (2019) as an example of the LC system
to demonstrate such trend. In Walters et al. (2019), authors investigated a
problem for identifying the topological defects of rod-like molecules confined
in a square box from “images”. Unlike conventional images with correlated
physical features where supervised machine learning has been successful,
these images are coordinated files generated from an off-lattice sampling.
A single-line structure [l, xl, yl, θl] is given for each rod-like molecule, where
[xl, yl, θl] specifies the location coordinates and angular orientation of the
molecule labelled l, and the labels are not related . The task is to identify
which of the four defect patterns from the off-lattice data, and two types
of machine-learning procedures, the feedforward neural network (FNN) and
the recurrent neural network (RNN), are considered. It is shown that FNN
is not readily appropriate for studying defect types in this off-lattice model.
However, with a coarse-grained position sorting in the initial data input,
referred to as presorting, an effective learning can be realized by FNN. On
the contrary, RNN performs exceptionally well in identifying defect states in
the absence of presorting. Mort importantly, Walters et al. (2019) pointed
out that by dividing the whole image into small cells, an RNN approach
with the data in each cell as an input can detect the types and positions of
nematic defects in each image instead of naked eyes.

5. Numerical methods for computing liquid crystal
hydrodynamics

In this section, we review some progress on numerical methods to study
LC hydrodynamics, including vector models, tensor models, and molecular
models.

5.1. Vector models

A NLC flow behaves like a regular liquid with molecules of similar size, and
also displays anisotropic properties due to the molecule alignment, which is
usually described by the local director field. The Ericksen–Leslie equations
have been applied to describe the flow of NLCs and attracted many theoret-
ical and numerical researches. According to the macroscopic hydrodynamic
theory of NLCs established by Ericksen (1961) and Leslie (1979), Lin (1989)
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proposed a simplied Ericksen–Leslie equations for a NLC flow,
∂tu + (u · ∇)u− ν∆u +∇p+ λ∇ · ((∇d)>∇d) = 0,
∇ · u = 0
∂td + (u · ∇)d− γ∆d− γ|∇d|2d = 0,
|d| = 1.

(5.1)

Here u denotes the solenoidal velocity field, p denotes the pressure, and d
denotes the molecular alignment satisfying a sphere constraint almost every-
where. The positive parameters ν, λ, γ are respectively a fluid viscosity con-
stant, an elastic constant and a relaxation time constant. The system (5.1)
consists of the Navier-Stokes equations coupled with an extra anisotropic
stress tensor and a convective harmonic map equation. Although simple,
this system keeps the core of the mathematical structure, such as strong
nonlinearities and constraints, as well as the physical structure, such as the
anisotropic effect of elasticity on the velocity vector field u, of the original
Ericksen-Leslie system. The first energy equality, which is established under
certain boundary conditions, expresses the balance of energy in the system
between the kinetic and elastic energies.

Badia et al. (2011b) provided an excellent overview of the numerical meth-
ods for (5.1). Since an almost everywhere satisfaction of the sphere con-
straint restriction is not appropriate at a numerical level, two alternative
approaches have been introduced: a penalty method and a saddle-point
method. With a Ginzburg–Landau penalty function Fε(d) = (|d|2−1)2/4ε2

to enforce the sphere constraint, a penalty formulation is obtained by weak-
ening the constraint as

∂tu + (u · ∇)u− ν∆u +∇p+ λ∇ · ((∇d)>∇d) = 0,
∇ · u = 0
∂td + (u · ∇)d + γ(fε(d)−∆d) = 0,
|d| 6 1,

(5.2)

where fε(d) = ∇dFε(d), and the energy estimate for (5.2) was established
by Lin and Liu (1995). Finite element methods of mixed types play an
important role when designing numerical approximations for the penalty
formulation in order to preserve the intrinsic energy estimate. Alternatively,
with a Lagrange multiplier q to enforce the sphere constraint, a saddle-point
formulation reads as

∂tu + (u · ∇)u− ν∆u +∇p+ λ∇ · ((∇d)>∇d) = 0,
∇ · u = 0
∂td + (u · ∇)d + γ(qd−∆d) = 0,
|d| = 1,

(5.3)

and the energy estimate for (5.3) was derived by Badia, Guillén-González
and Gutiérrez-Santacreu (2011a). These approaches are suitable for their
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numerical approximation by finite elements, since a discrete version of the
restriction is enough to prove the desired energy estimate. The penalized
Ginzburg–Landau problem (5.2) can be stated in a saddle-point framework
as well,

∂tu + (u · ∇)u− ν∆u +∇p+ λ∇ · ((∇d)>∇d) = 0,
∇ · u = 0
∂td + (u · ∇)d + γ(qd−∆d) = 0,
|d|2 − 1 = ε2q,

(5.4)

which establishes a connection between (5.2) and (5.3).
The numerical approximation of the Ericksen–Leslie equations is difficult

and computationally expensive because of the coupling between the nonlin-
ear terms and the constraint conditions. Liu and Walkington (2000) dealt
with the approximation of (5.2) for 2D domains, and convergence of finite
element approximations is established under appropriate regularity hypothe-
ses with dependence on the penalty parameter ε. Du, Guo and Shen (2001)
studied a Fourier-spectral method for (5.2) by proving its convergence in
a suitable sense and establishing the existence of a global weak solution of
the original problem and its uniqueness in the 2D case. The error estimates
exhibit the spectral accuracy of the Fourier-spectral method, and a fully
discrete scheme is constructed with a complete stability and error analy-
sis. Feng and Prohl (2004) proved a convergence result for a Ginzburg–
Landau-type equation where the dependence of ε is of polynomial order.
Lin and Liu (2006) presented one of the simplest time-stepping schemes for
the 2D Ginzburg–Landau problem (5.2), where the space is discretized by
H1-conforming finite elements and time is discretized implicitly with respect
to the linear terms and semi-implicitly with respect to the nonlinear terms,
while the anisotropic stress tensor is fully explicit. This scheme reduces
the computational cost significantly and larger scale numerical simulations
are allowed because only a sequence of two decoupled linear problems for
the velocity-pressure pair and the director field need to be solved sepa-
rately at each time step. Liu, Shen and Yang (2007) presented an efficient
and accurate numerical scheme for (5.2) in a cylinder domain. The time
discretization is based on a semi-implicit second-order rotational pressure-
correction scheme and the Legendre–Galerkin method is used for the space
variable. Annihilation of a hedgehog-antihedgehog pair with different types
of transport is simulated numerically.

By introducing an auxiliary variable w = ∇d, Liu and Walkington (2002)
avoided using Hermite finite elements for the approximation of the director
equation in (5.2) and formulated the director equation in the framework of
mixed methods. They showed how a mixed method may be used to elimi-
nate the need for Hermite finite elements and establish convergence of the
method. Girault and Guillén-González (2011) considered another auxiliary
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variable w = −∆d to avoid the large number of extra degrees of freedom
and the nonlinearity of the numerical schemes, and constructed a fully dis-
crete mixed scheme which is linear, unconditionally stable and convergent
towards (5.2). With an auxiliary variable w = −∆d + fε(d), two finite-
element Euler time-stepping schemes that are implicit for the linear terms
and semi-implicit for the nonlinear have been developed. Specifically, Becker
et al. (2008) proposed a fully implicit approximation to deal with the time
integration of fε, while Guillén-González and Gutiérrez-Santacreu (2013)
suggested a fully explicit one. The time step of the explicit scheme must
be quite small if the size of ε is proportional to the space parameter h, but
their numerical experiences have demonstrated to be optimal. Lin, Liu and
Zhang (2007) used convenient conformal C0 finite elements in solving the
problem in the weak form, and derived a discrete energy law for a modi-
fied midpoint time discretization scheme. A fixed iterative method is used to
solve the resulted nonlinear system so that a matrix-free time evolution may
be achieved and velocity and director variables may be solved separately.

Becker et al. (2008) presented a finite element scheme directly for the
Ericksen–Leslie equations (5.1), which is a more difficult task than for the
Ginzburg–Landau problem (5.2) because the sphere constraint |d| = 1 is
difficult to be fulfilled at the discrete level. Badia et al. (2011a) developed
a linear semi-implicit algorithm which is unconditionally stable for both the
Ginzburg–Landau problem and the Ericksen–Leslie problem, and it does not
involve nonlinear iterations. Guillén-González and Koko (2015) proposed a
two sub-step viscosity-splitting time scheme for (5.3), which is a fully decou-
pled linear scheme from the computational point of view. The first sub-step
couples diffusion and convection terms whereas the second one is concerned
with diffusion terms and constraints. Some numerical experiments in 2D
domains are carried out by using only linear finite elements in space, con-
firming numerically the viability and the convergence of this scheme.

Walkington (2011) considered numerical approximation of the flow of LCs
governed by the Ericksen–Leslie equations. Care should be taken to develop
numerical schemes which inherit the Hamiltonian structure of these equa-
tions and associated stability properties. Zhao, Yang, Li and Wang (2016)
developed a first-order and a second-order, coupled, energy stable numeri-
cal schemes for a modified Ericksen–Leslie hydrodynamic model, which can
reduce to (5.1) with the omission of some terms. Two ways are presented to
develop decoupled schemes for the model and the energy stability is shown
as well. Prediction comparisons of the modified model with a reduced model
are made, demonstrating quite different but more realistic orientational dy-
namics in flows of NLCs. Chen, Bao and Zhang (2016) investigated the
kinematic transports of the defects in the NLC system by numerical exper-
iments with difference schemes and the semi-implicit scheme which is more
efficient although it does not preserve discrete energy relation. The pre-
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sented development and interaction of the defects are partly consistent with
the observation from the experiments.

Simulating the rise of Newtonian drops in a NLC is a computational chal-
lenge because of the numerical difficulties in handling moving and deforming
interfaces as well as the complex rheology of the NLCs. The anisotropic
rheology of the LC can be represented by the Ericksen–Leslie theory, regu-
larized to permit topological defects. Zhou, Yue and Feng (2007) simulated
the rise of Newtonian drops in a NLC parallel to the far-field molecular
orientation by computing the moving interface in a diffuse interface frame-
work. The numerical results revealed interesting coupling between the flow
field and the orientational field surrounding the drop, especially the defect
configuration. For example, drops with planar anchoring on the surface rise
faster than those with homeotropic anchoring due to the viscous anisotropy
of the nematic. With both types of anchoring, the drag coefficient of the
drop decreases with increasing Ericksen number as the flow-alignment of the
nematic orientation reduces the effective viscosity of the LC.

LC droplets immersed in another fluid matrix or another liquid droplet
immersed in LC matrices have many interesting technological applications
(Yue et al. 2004). Based on an energetic variational approach, Yue et al.
(2004) derived a phase-field theory for immiscible mixtures of NLCs and vis-
cous fluids. A novel phase transition mechanism is implemented to couple
the NLC phase with the viscous fluid phase to arrive at the dissipative hy-
drodynamic model for incompressible fluid mixtures. In Zhou et al. (2007),
a decoupled, linear scheme for a simplified version of the phase field model,
as well as a coupled, nonlinear scheme for the full model, are developed and
shown as unconditionally energy stable with consistent discrete dissipative
energy laws. The effectiveness of the presented numerical examples show
the effectiveness of the new model and the developed numerical schemes.

A number of models for smectic phase LCs have been developed and stud-
ied during the last two decades, and we take one example of smectic LC hy-
drodynamics here. Chen, Yang and Zhang (2017) considered the numerical
approximations for solving a particular hydrodynamics coupled smectic-A
model developed by E (1997). The model, which is derived from the varia-
tional approach of the modified Oseen–Frank energy, is a highly nonlinear
system that couples the incompressible Navier–Stokes equations and a con-
stitutive equation for the layer variable, but appears to be the minimal
model of unknowns. The director field is assumed to be strictly equal to the
gradient of the layer and thus the total free energy is reduced to a simplified
version with only one order parameter. Rather than imposing nonconvex
constraint directly on the gradient of the layer variable, the free energy is
modified by adding a Ginzburg–Landau type penalization potential, which
is a commonly used technique in LC theory. Two linear, second order time
marching schemes, which are unconditionally energy stable, are developed
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with the Invariant Energy Quadratization method for nonlinear terms in the
constitutive equation, the projection method for the Navier–Stokes equa-
tions, and some subtle implicit-explicit treatments for the convective and
stress terms. Various numerical experiments are presented to demonstrate
the stability and the accuracy of the numerical schemes in simulating the
dynamics under shear flow and the magnetic field.

5.2. Tensor models

In recent years, more complex problems of modelling the interaction of flow
and molecular orientation in a LCs are studied. The hydrodynamic Q-tensor
model has been applied to the flows of LCs and LC polymers. In particular,
the nondimensionalized hydrodynamic Q-tensor model of NLCs ∂tQ + u · ∇Q− S(∇u,Q) = MH,

∇ · u = 0,
∂tu + u · ∇u = −∇p+ η∆u +∇ · Σ−H∇Q.

(5.5)

can be derived from a variational approach together with the generalized On-
sager principle. The molecular field H, which provides the driving motion,
is related to the derivative of the free energy. More details are referred to
Beris and Edwards (1994), Wang (2002). Zhao and Wang (2016) developed
the first-order and second-order coupled energy stable numerical schemes
for the Q-tensor based hydrodynamic model of NLC flows. The first-order
coupled scheme is extended to a decoupled scheme, which is energy sta-
ble as well. With the fully coupled schemes implemented in 2D space and
time, defect dynamics for flow of NLCs in a channel is studied. The de-
veloped methodology also provides a paradigm for developing energy-stable
schemes for general hydrodynamic models of complex fluids with an energy
dissipation law. Furthermore, Zhao et al. (2017) developed a second-order
semi-discrete scheme in time, which is linear and unconditionally energy
stable at the semi-discrete level, to solve the governing system of equations
by following the novel ‘energy quadratization’ strategy. Several numerical
examples are presented to demonstrate the usefulness of the model and the
effectiveness of the numerical scheme in simulating defect dynamics in flows
of LCs. Denniston, Orlandini and Yeomans (2001) described a lattice Boltz-
mann algorithm to simulate LC hydrodynamics in terms of a tensor order
parameter, including a molecular field that provides the driving motion. A
lattice Boltzmann algorithm was described in detail to simulate LC hydro-
dynamics. Backflow effects and the hydrodynamics of topological defects are
naturally included in the simulations, as are non-Newtonian flow properties
such as shear thinning and shear banding.

Ramage and Sonnet (2016) considered the NLC in a spatially inhomoge-
neous flow with a second-rank alignment tensor, whose evolution is deter-
mined by two coupled equations: a generalized Navier–Stokes equation for
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the flow, and a convection-diffusion type equation for the alignments. A
specific model with three viscosity coefficients allows the contribution of the
orientation to the viscous stress to be cast in the form of an orientation-
dependent force, which effectively decouples the flow and orientation to cir-
cumvent the fully coupled problem. A time-discretized strategy for solving
the flow-orientation problem is illustrated using the Stokes flow in a lid-
driven cavity.

Dispersing colloidal particles into LCs provides an approach to build a
novel class of composite materials with potential applications. Many re-
searches have been devoted to the hydrodynamic equations governing their
dynamical evolution to understand the physics and dynamical properties of
such colloid LC composites. Foffano et al. (2014) provided an overview of
theoretical understanding of the hydrodynamic properties of such materi-
als from computer simulations, including a single particle and two particles
forming a dimer and dispersion. A number of open questions in the dynam-
ics of colloid LC composites are also raised.

5.3. Molecular models

For the liquid crystalline polymer (LCP) model, the Doi–Hess theory by
Doi et al. (1988) and Hess (1976) is the simplest and the most studied
model. Many interesting dynamics have been found in rod-like nematic
LCPs in a shear flow. Li, Zhang, Zhou et al. (2004) considered the stochastic
model of concentrated LCPs in the plane Couette flow, where the flow is one
dimensional while the configuration variable of the rod is restricted to the
circle, and presented the local existence and uniqueness theorem for the
solution to the coupled fluid-polymer system. Ji et al. (2008) considered the
extended Doi model for nematic LCPs in the planar shear flow and studied
the formation of microstructure and the dynamics of defects. The Fokker–
Plank equation is discretized with the spherical harmonic spectral method
and multiple flow modes are replicated in the simulations. A comparison
among complete closure models, Bingham closure models and kinetic models
is given in Ji et al. (2008) as well.

Yu and Zhang (2007) presented a new kinetic hydrodynamic coupled
model for the dilute LCP solution for inhomogeneous flow, which accounts
for translational diffusion and density variation. The coupled kinetic hydro-
dynamic model is a combination of an extended Doi kinetic theory for rigid
rod-like molecules and the Navier–Stokes equation for incompressible flow.
They studied the microstructure formation and defects dynamics arising
in LCPs in plane shear flow with mass conservation of LCPs in the whole
flow region. The LCP molecular director is restricted in the shear plane,
and LCP molecules are ensured anchoring at the boundary by an additional
boundary potential. Plane Couette flow and Poiseuille flow were studied
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with a second-order difference scheme and the fourth-order Runge–Kutta
method for time-stepping. Their numerical results in plane Couette flow
predicted seven in-plane flow modes, four of which have been reported by
Rey and Tsuji (1998). In plane Poiseuille flow, the micro-morph is quasi-
periodic in time when flow viscosity and molecular elasticity are comparable.
Different local states, such as flow-aligning, tumbling or wagging, arise in
different flow regions. To describe the microstructures and defect dynamics
of LCP solutions, Yu, Ji and Zhang (2010) later purposed a general nonho-
mogeneous extension of the Doi’s kinetic theory with translational diffusion
and nonlocal potential. A reduced second-order moment model for isotropic
long-range elasticity was obtained as a decent tool for numerical simulations
of defect dynamics and texture evolution. Their numerical results of in-plane
rotational case show that this model qualitatively predicts complicated non-
homogeneous director dynamics under moderate nematic potential strength,
and the translational diffusion plays an important role in defect dynamics.

6. Numerical methods for computing transition pathways
and solution landscape of liquid crystals

NLCs often exhibit a number of ordered phases. When an ordered phase is
metastable, phase transition proceeds via nucleation and growth under ther-
mal fluctuations or external perturbations. Such transition is often called
as a rare event, which can be characterized by a long waiting period around
one local metastable state and followed by a sudden jump over the transition
state, to another stable state (Hänggi, Talkner and Borkovec 1990). Because
the transition state is an unstable critical point of the LC free energy, i.e.,
an index-1 saddle point with a single unstable direction that connects two
local minima, it is of great challenge to accurately compute the transition
states and the transition pathways.

In this section, we will first review the numerical methods to compute
the transition states and transition pathways. Then we will introduce a
novel solution landscape, which describes a pathway map consisting of all
stationary points (i.e. extrema and saddle points) and their connections.

6.1. Transition pathways

There are two popular approaches to find the saddles points and transition
pathways. One is the class of surface-walking methods for finding saddle
points starting from a single state, such as gentlest ascent dynamics (E
and Zhou 2011) and dimer-type method (Henkelman and Jónsson 1999,
Zhang and Du 2012). The other approach is categorised as path-finding
methods for computing minimal energy path (MEP) that involves two end
states, including nudged elastic band method (Jónsson et al. 1998) and string
method(E et al. 2002).
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In the case when the object of interest is the most probable transition path
between metastable/stable states of the smooth potential energy, it is known
that for overdamped Langevin dynamics the most probable path for the
transition is the MEP. The string method serves this purpose well, which was
first proposed by E, Ren and Vanden-Eijnden (E et al. 2002) and has some
variants (E, Ren and Vanden-Eijnden 2007, Du and Zhang 2009, Ren and
Vanden-Eijnden 2013, Samanta and E 2013). The string method proceeds
by evolving a string φ with intrinsic parametrization in the configuration
space by using the steepest decent dynamics to the MEP:

φt = −∇F⊥(φ) + λτ, (6.1)

where ∇F⊥(φ) is the component of ∇F normal to φ, τ denotes the unit
tangent vector to φ, and λ is the Lagrange multiplier to impose the equal
arc-length constraint.

In the numerical algorithm, the string φ is discretized to N nodes {Qn
i , i =

1, .., N}, where n represents the iteration step. The string method adopts a
time splitting scheme via the following two-step procedure:
Step 1: string evolution: The current path {Qn

i , i = 1, .., N} is updated by
following the gradient decent direction :

Q̄n+1
i = Qn

i − αi∇F⊥[Qn
i ], i = 1, 2, · · · , N, (6.2)

where αi is a stepsize that is chosen as a constant or determined by the
linesearch.

Step 2: string reparametrization: Redistributes the nodes Q̄n+1
i to obtain

a new path Qn+1
i by enforcing the equal arc length parametrization. One

can calculate the arc length corresponding to the current nodes Q̄n+1
i and

then use a linear or cubic spline interpolation to find Qn+1
i by the equal arc

length.
Parametrization by equal arc length gives a good accuracy for the MEP,

but not for the transition state. To achieve the better estimation of the
transition state and the energy barrier, one way is to use energy-weighted
arc length so that finer resolution can be achieved around the transition
state (E et al. 2007). If the final minima is far from the transition state and
too many nodes are needed for the whole MEP, the free-end nudged elastic
band method can be used to obtain subtle depiction around the transition
state by allowing the last node not to be a minimum (Zhu, Li, Samanta,
Kim and Suresh 2007).

To improve the accuracy of both MEP and transition state without using
too many nodes, in (Han et al. 2019), the authors proposed a multi-scale
scheme of the string method by applying a global coarse string and a local
fine string. The global coarse string is used to obtain the whole MEP by
connecting two minima, and then the local fine string is utilized to com-
pute the local MEP by choosing two nodes with the highest energies on the
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Figure 6.12. (Credit: (Han et al. 2019)) Transition pathway from ER to
PP. (a-d) four states along the MEP (e), corresponding to the ER (a), the
transition state (b), an intermediate state (the 6th node) (c), and the PP
(d), respectively. In the MEP(e), the red line with green beads is the global
coarse string and the blue line with blue beads is the local fine string.

global coarse string as the two ends for the case of single energy barrier.
Both strings follow the same two-step procedure described above to make
the implementation straightforward, and better estimation of the transition
state can be achieved by the local fine string. They implement the multi-
scale string method on numerical simulations of the transition pathway in
three-dimensional cylinder between PR and PP with and without axial in-
variance, between ER and PP or ERRD for different values of temperature
and radius of cylinder.

For example, the transition pathway between ER and PP for fixed tem-
perature and radius of cylinder is shown in Fig. 6.12. A pair of +1/2
disclination lines starts to form in the middle of the cylinder. These two
disclination lines appear to join their both ends, hence forming a disclina-
tion ring (Fig. 6.12(b)). The width of the ring is increasing when less than
the distance between defects of stable 2D PP layer. Finally, the ring is bro-
ken by the top and bottom boundary and the line defect straightens to PP
line defect configuration (Fig. 6.12(d)). The local fine string in Fig. 6.12
finds a more accurate transition state than the global coarse string.

6.2. Saddle points

The classical transition state theory describes a sufficiently accurate transi-
tion process for the systems with smooth energy landscapes. On the energy
landscape, the transition state is a saddle point with the lowest energy that
connects two neighbouring local minima, i.e., index-1 saddle point. As long
as the transition state is located, one can calculate the MEP using gradi-
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ent flow from the transition state perturbed along both sides of its unstable
direction.

Extensive surface walking methods have been proposed to search sad-
dle points. A key character of such methods is to perform a systematic
search for a saddle point starting from a given initial state, without know-
ing the final states. In this subsection, we focus on a typical class of surface
walking methods, the so-called minimum mode following methods, where
only the lowest eigenvalue and the corresponding eigenvector of the Hessian
are needed and subsequently used together with the energy gradient (often
referred as the force) to compute transition states. Besides the eigenvector-
following method by Cerjan and Miller (1981), the trajectory following algo-
rithm by Vincent, Goh and Teo (1992), the activation-relaxation technique
by Mousseau and Barkema (1998), and the step and slide method by Miron
and Fichthorn (2001) are also some samplers of surface-walking methods,
and we refer to Vanden-Eijnden et al. (2010) and Zhang, Ren, Samanta and
Du (2016b) as some excellent reviews.

In E and Zhou (2011), the authors proposed the gentlest ascent dynamics,
which is a dynamical formulation of the gentlest ascent method by Crippen
and Scheraga (1971). It refers to the following dynamical system

ẋ = −∇E(x) + 2
〈∇E(x), x〉
〈v, v〉

v,

v̇ = −∇2E(x)v +
〈v,∇2E(x)v〉
〈v, v〉

v,

(6.3)

where E(·) repersents the energy functional. Besides the position variable x,
another variable v represents the unstable direction. The dynamics (6.3) can
drive x climb out of the basin of attraction by following the ascent direction
v, which is the eigenvector that corresponds to the smallest eigenvalue of its
Hessian, to find the saddle point. It was proved in (E and Zhou 2011) that
the stable fixed points of this dynamical system are precisely the index-1
saddle points.

To avoid the calculation of the Hessian, a dimer method was developed
using only first derivatives by Henkelman and Jónsson (1999). Specifically,
a dimer with two points is placed at the current position to compute the
Hessian-vector multiplication with a finite difference scheme. The dimer
method proceeds by alternately performing the rotation step for finding the
lowest eigenmode and the translation step by using the modified force with
either the steepest descent algorithm or the conjugate gradient method to
search the saddle point. Later, Zhang and Du (2012) proposed a shrinking
dimer dynamics by introducing a dynamic reduction of the dimer length, and
proved linear stability and convergence results for such dynamics. To ac-
celerate the convergence and further improve the efficient of the dimer-type
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methods, Zhang et al. (2016a) developed an optimization-based shrinking
dimer (OSD) method by establishing a minimax optimization for the sad-
dle searching problem and finding the unstable direction in an optimization
framework. All these methods can be applied to the LC models for identi-
fying the transition states accurately (Han et al. 2019).

Besides the investigations of the minima and index-1 saddle points on the
energy landscape of NLCs in confinement, there is substantial recent interest
in the high-index saddle points of the LdG free energy, which are stationary
points of the NLC free energy. The Morse index of a saddle point is the
maximal dimension of a subspace on which its Hessian is negative definite,
which is equal to the number of negative eigenvalues of its Hessian (Milnor
et al. 1969). For example, a stable stationary point has index 0 and a
transition state is an index-1 saddle point. In recent years, powerful numer-
ical algorithms have been developed to find multiple solutions of nonlinear
equations, including the gradient-square-minimization method (Angelani,
Di Leonardo, Ruocco, Scala and Sciortino 2000), the minimax method (Li
and Zhou 2001), the deflation technique (Farrell et al. 2015), and the ho-
motopy method (Mehta 2011, Hao, Hauenstein, Hu and Sommese 2014).
Despite substantial progress in this direction, it is still a numerical chal-
lenge to systematically find saddle point solutions, especially those with
high indices, of nonlinear systems of partial differential equations such as
the Euler-Lagrange equation. In Yin et al. (2019), the authors proposed a
high-index saddle dynamics (HiSD) to efficiently compute the saddle points
of any index (including minima) for the LdG energy (Han, Yin, Zhang,
Majumdar and Zhang 2020b).

For a non-degenerate index-k saddle point x̂, the Hessian H(x) = ∇2E(x)

at x̂ has exactly k negative eigenvalues λ̂1 6 · · · 6 λ̂k with corresponding
unit eigenvectors v̂1, . . . , v̂k satisfying

〈
v̂j , v̂i

〉
= δij , 1 6 i, j 6 k. Define a

k-dimensional subspace V̂ = span
{
v̂1, . . . , v̂k

}
, then x̂ is a local maximum

on a k-dimensional linear manifold x̂ + V̂ and a local minimum on x̂ + V̂⊥,
where V̂⊥ is the orthogonal complement space of V̂.

The HiSD dynamics for a k-saddle (k-HiSD) is given as follows:
β−1ẋ = −

I− 2
k∑
j=1

vjv
>
j

∇E(x),

γ−1v̇i = −

I− viv
>
i − 2

i−1∑
j=1

vjv
>
j

H(x)vi, i = 1, . . . , k,

(6.4)

where the state variable x and k direction variables vi are coupled, I is
the identity operator and β, γ > 0 are relaxation parameters. The k-HiSD
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dynamics (6.4) is coupled with an initial condition:

x(0) = x0 ∈ Rn, vi(0) = v0
i ∈ Rn, i = 1, . . . , k, (6.5)

where v0
1, . . . ,v

0
k satisfy the orthonormal condition

〈
v0
i ,v

0
j

〉
= δij , i, j =

1, 2, . . . , k. The first equation in (6.4) describes a transformed gradient flow,

which allows x to move along ascent directions on the subspace V̂ and descent
directions on the subspace V̂⊥. The second equation in (6.4) is used to

search for an orthonormal basis of V̂. Because the Hessian H(x) is self-
adjoint in a gradient system, we can simply take vi as a unit eigenvector
corresponding to the ith smallest eigenvalue of H(x), which can be obtained
from a constrained optimization problem,

min
vi∈Rn

〈H(x)vi,vi〉, s.t. 〈vj ,vi〉 = δij , j = 1, 2, . . . , i. (6.6)

Then we minimize the k Rayleigh quotients (6.6) simultaneously by solving
the second equation in (6.4). Furthermore, one can apply the locally opti-
mal block preconditioned conjugate gradient (LOBPCG) method (Knyazev
2001) to calculate the smallest k eigenvalues and v1, ...,vk.

6.3. Solution landscape of liquid crystals

Solution landscape is a novel concept, which is defined as a pathway map
consisting of all stationary points and their connections, which presents a
hierarchy structure to show how minima are connected with index-1 saddle
points, and how lower-index saddle points are connected to higher-index
ones, finally to a parent state, i.e., the highest-index saddle point (Yin et
al. 2020a). Solution landscape not only advances the understanding of the
relationships between the minima and the transition states on the energy
landscape, but also provides a full picture of the entire family of stationary
points in both gradient systems and dynamical systems (Yin, Yu and Zhang
2020b).

To construct a solution landscape, one needs to apply HiSD and follow
two algorithms, downward search to find all connected low-index saddles
from a high-index saddle and upward search to find a connected high-index
saddle, which drive the entire search to navigate up and down on the energy
landscape (Yin et al. 2020a).

Downward search algorithm: Given an index-m saddle point x̂ and m
unit eigenvectors v̂1, . . . , v̂m corresponding to the m negative eigenvalues
λ̂1 6 . . . 6 λ̂m of the Hessian H(x̂) respectively, we search for a lower index-
k (k < m) saddle point using HiSD dynamics (6.4). For the initial condition,
we choose x(0) = x̂± εu for x, where we perturb x̂ along a direction u with
a small ε. The direction u can be chosen as v̂i or a linear combination
of (m − k) vectors in the set of unstable directions {v̂k+1, . . . , v̂m}, whose
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negative eigenvalues have the smallest magnitudes. The other k eigenvectors
v̂1, . . . , v̂k are the initial unstable directions vi(0). A typical choice of initial
conditions in a downward search is (x̂± εv̂k+1, v̂1, . . . , v̂k). Normally, a pair
of index-k saddles can be found, corresponding to the ± sign of the initial
searching direction.

Upward search algorithm: We can also search a high index-k saddle from
a low index-m saddle x̂ (m < k) by using the HiSD method. Starting at
an index-m saddle x̂, to search for a high index-k saddle, (k − m) other
unit eigenvectors v̂m+1, . . . , v̂k corresponding to the smallest k−m positive
eigenvalues of the Hessian H(x̂) are needed. The initial state x(0) is set
as x̂± εu where u is a linear combination of {v̂m+1, . . . , v̂k}, and a typical
initial condition for k-HiSD in an upward search is (x̂± εv̂k, v̂1, . . . , v̂k).

Each downward or upward search represents a pseudodynamics between a
pair of saddle points, which presents valuable insights into transition path-
ways between stable and unstable solutions and the corresponding energy
barriers. By repeating downward search and upward search, we are able
to systematically find saddle points of all indices and uncover the complex
connectivity of the solution landscape.

In Yin et al. (2020a), the authors demonstrated the success of the solution
landscape and applied the LdG model to construct the pathway maps of 2D
NLCs confined in a square domain with tangent boundary conditions. One
of the technical advantages of this method is to produce the entire family
tree under a parent state.

For small nano-scale square domains, it is known that the well order recon-
struction solution (WORS) is the unique solution with isotropic diagonals
and is the global energy minimum in this asymptotic regime (Kralj and
Majumdar 2014, Canevari et al. 2017). Moreover, the existence of WORS
can be proved in arbitrary sized nematic wells (Majumdar, Milewski and
Spicer 2016). By studying the second variation of LdG free energy numeri-
cally, Wang et al. (2019) shows that the WORS is a high-index saddle point
in a large well. In Figure 6.14 (a), the Morse index of the WORS increases
with the domain size and the WORS is always the parent state in the solu-
tion landscapes on a square domain. Intuitively, this is because the length
of the diagonal defect lines increases as the domain size increases, and thus
the WORS has an increasing number of unstable directions and an increas-
ing Morse index with the increasing square edge length. Using WORS as
the parent state (the highest-index saddle) and the HiSD method (Yin et
al. 2019), Yin et al. (2020a) constructed a solution landscape on the square
domain in Figure 6.13 and reported novel saddle point solutions with multi-
ple interior defects, such as N±, M±, S±, and T±, that were not reported
in the existing literature . Besides these new solutions, solution landscape
provides rich information of dynamical pathways. For example, two movies,
a dynamic downward pathway sequence and an upward pathway sequence
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Figure 6.13. (Credit: (Yin et al. 2020a)) Solution landscape of NLC
confined on a square at the domain size λ2 = 50.

in Figure 6.13, are shown in Yin et al. (2020a) to demonstrate the hidden
physical processes and transitions on the complicated energy landscape of
NLCs.

Solution landscape of the NLC system can be affected by many factors,
such as material properties, external fields, temperature, boundary condi-
tions, domain size and shape, etc. Compared to a square domain, hexagon
is a generic regular polygon with an even number of sides. In Han et al.
(2020b), the authors investigated the solution landscapes of NLCs confined
in a hexagon with tangent boundary conditions. The Ring solution, which
is the analogue of the WORS, is a minimizer on a hexagon when the param-
eter of domain size λ is small enough. However, the Ring solution becomes
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Figure 6.14. (Credit: (Han et al. 2020b)) Comparison of the parent states
of the solution landscapes on the square (a) and the hexagon (b). The
domain size λ2 = 5, 70, 120, and 600, respectively.

and remains as an index-2 saddle-point solution for large λ, i.e., the Morse
index of the Ring solution does not increase with λ. By using the HiSD
method, the parent states in the solution landscapes of NLCs on a hexagon
are found to be the Ring solution, index-3 T135 solution, and index-14 H*
solution when λ2 = 70, 120, and 600 in Figure 6.14 (b) respectively, where
T135 and H* solutions emerge through saddle-node bifurcations.

In the NLC system confined on a hexagon, the solution landscape is very
complicated at λ2 = 600 in Figure 6.15(a). There are three notable nu-
merical findings, including a new stable T solution with an interior −1/2
defect, new H and TD classes of saddle point solutions with high symmetry
and high indices, and new saddle points with asymmetric defect locations.
Novel H-class solutions with interior point defects have Morse indices rang-
ing from 8 to 14, and the connectivity of these solutions is shown in Figure
6.15(b), as well as the corresponding configurations and their defect profiles.
The parent state is the index-14 H* saddle point solution connecting to the
lowest index-8 saddle point solution, labelled as H. The H-class solutions
look very similar to each other at first glance and their subtle differences
are illustrated by plotting |Q − QH |, where Q is a critical point solution
in H-class and QH is the index-8 H solution. The differences concentrate
on the vertices with conspicuous red or white points in the dark blue back-
ground (Figure 6.15(b)). The vertex with a pinned +1/3 defect and a splay
profile of direction is referred to as a splay-like vertex. The vertex with a
−1/6 defect and a bend profile of direction is referred to as a bend-like vertex.
These conspicuous points are localised near or at the bend-like vertices. The
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Figure 6.15. (Credit: (Han et al. 2020b)) (a) Solution landscape on a
hexagon at λ2 = 600. The number in the parentheses indicates the number
of solutions without taking symmetry into account. The height of a node
approximately corresponds to its energy. (b) Solution landscape of the H
class, and the configurations of sample solutions and the corresponding
plots of |Q−QH |, where Q is the sample solution in H class, and QH is
the index-8 H solution. (c) Solution landscape of the TD class, and the
configurations of sample solutions and the corresponding plots of
|P−PTD|, where P is the sample solution in TD class, and PTD is the
index-3 TD solution.

TD-class solutions, in which TD is an abbreviation for “triangle double”,
appear to be a superposition of two Ring solutions on a regular triangle,
with two interior −1/2 point defects and an interior +1/2 point defect. All
saddle points in this class have three defective vertices, either bend-like or
splay-like, and the connectivity of this class is shown in Figure 6.15(c). The
lowest-index saddle point solution in this class is the index-3 TD solution
with no bend-like vertices.

A further innovative aspect of the solution landscape of NLCs is to pro-
vide rich information on dynamical pathways, which include transition path-
ways with a single transition state, multiple transition states, and dynami-
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Figure 6.16. (Credit: (Han et al. 2020b)) (a) The transition pathways
between stable states including two T, six M and three P solutions at
λ2 = 600. (b) Solution landscape starting from the H solution. All local
minima such as Tleft, P36, M26, M35, P25, and Tright are connected by the
index-8 H solution.

cal pathways mediated by high-index saddle points. For example, in Figure
6.16(a), the transition pathway between Tleft and M26 is connected by single
transition state T04. On the other hand, one transition pathway between
P25 and P36 can be P25 ↔M135 ↔M35 ↔M153 ↔P36, connected by two
transition states M135 and M153. The “longest” transition pathway ap-
pears to be the pathway between the two T solutions: Tleft and Tright,
despite Tleft and Tright are two symmetric solutions related by a 60◦ rota-
tion. One switching pathway between Tleft and Tright cannot be achieved by
Tleft ↔T04 ↔M26 ↔M162 ↔P25 ↔M115 ↔M15 ↔T03 ↔Tright, which indi-
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cates the transition between two energetically-close but configurationally-far
T solutions has to overcome four energy barriers.

Figure 6.16(b) shows how the different P, M, and T solutions are connected
by high-index saddle points. For example, the index-1 M1 connects stable
M and P, and the index-1 T0 connects stable M and T. Contrarily, two M
or two P are connected by the index-2 BD. Furthermore, Tleft and Tright,
which are configurationally far away from each other, are connected by an
index-8 H solution by following HiSD: Tleft←T135left←H→T135right→Tright.
The index-8 H solution is the stationary point in the intersection of the
smallest closures of on the energy landscape, which is able to connect every
stable solution (two T, three P and six M solutions) through dynamical
pathways in Figure 6.16(b). In Han et al. (2020b), the authors deduce
that index-1 saddle points are efficient for connecting configurationally-close
stable solutions. For configurationally-far stable states, they are generally
connected by multiple transition states, or in another way, connected by a
high-index saddle point.

7. Conclusion and future directions

LCs are fascinating examples of complex fluids that combine fluidity of fluids
with the directionality of solids. During the last decades, the study of LCs
has grown tremendously due to the widespread applications in the industry,
such as the display devices, the photonic devices and the biological sensors.
Modeling, analysis, and computation are indispensable tools for describing,
understanding, and predicting the physical phenomena related to the LCs.
The topics of LCs land on a number of branches in physics, materials science,
and mathematics, forming problems of fundamental importance.

Theoretical studies of LCs are primarily concerned with how topology and
geometry of the elements (macromolecules or anisotropic molecules) produce
and affect the mesoscopic structure, and how the structure determines the
properties of the materials. It is crutial to understand the LC phenomena by
building appropriate mathematical models and carry out both theoretical
analysis and numerical simulation. Scientific values of LCs include two major
aspects:

Raise new mathematical problems. The study of LCs involves calculus of
variation, PDEs, harmonic analysis and computational methods. For ex-
ample, Onsager model can be expressed as either a variation minimization
problem, or a nonlinear nonlocal integral equation or PDE problem. In
general, it is impossible to find all analytical solutions for such problem. It
is because of the problem with special physical properties, which allows us
to find all the solutions and prove that all solutions have axial symmetry.
LC is prone to defects, which corresponds to the mathematical singularities.
The main reason is because the nature of such problem is a vector field.
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Mathematicians often use the LCs as the background to study singulari-
ties of harmonic maps. The Q-tensor theory is a regularization model for
the vector model, involving the mathematical problems such as eigenvalues
degradation and multiscale analysis, which provides direction and guidance
to the relevant mathematical study. Furthermore, because of multiscale phe-
nomena in complex fluids, it is desirable to study modeling and numerical
methods in computational and applied mathematics.

Provide new methodologies. The choice of order parameter in the macro-
scopic model of LC and is a key to the understanding of the connections
between macroscopic theories and microscopic theories. For rod-like liq-
uid crystal, axially symmetric assumption is generally believed by chemists,
physicists, and scientists in materials or mechanics. The strict mathematical
proof can not only verify their intuition, but also achieve deep understand-
ing of the mechanism of axial symmetry. Continuum NLC theories, which
assume that macroscopic quantities of interest vary slowly on the molecular
length-scale, are typically defined in terms of a macroscopic order parameter
and a free energy; the experimentally observable states correspond to en-
ergy minimizers. Mathematically, this reduces to analyzing and numerically
computing solutions of the associated Euler Lagrange equations which are
a system of highly nonlinear and coupled partial differential equations. Re-
cent years have seen a boom in analytical and numerical efforts to compute
the solution landscapes of NLC systems.

Although tremendous progress have been achieved in both theoretical
and numerical study of LCs over the last four decades, there are still many
challenges in modeling and computation of LCs. According to the contents
of this review, we list some of perspectives as below.

Symmetry of equilibrium configurations. Symmetry is the centre theme of
LC studies. The axially symmetry of equilibrium solutions of the Onsager’s
molecular energy plays fundamental role in molecular kinetic theory. How-
ever, it is only proved for the Maier-Saupe potential. To prove analogous
results for the Onsager potential, even for the minimizers, is an important
and difficult problem. For the Landau-de Gennes energy with isotropic
elasticity, it is believed that, the minimizing solutions corresponding to the
hedgehog boundary condition in a three dimensional ball is axially symmet-
ric. Furthermore, all minimizers should be one of the three types: radial
hedgehog, ring disclination and split core. However, the rigorous proofs are
challenging. Similar problems can be asked for the 2D point defects, which
are closely related to the disclinations in three dimensional space. If the
anisotropic elastic constants are not zero, corresponding problems are more
complicated and difficult. These problems are related to fine structures of
the point defects and disclinations, which are of fundamental importance.

Analysis on the isotropic-nematic interface. Study on profiles and struc-
ture of two phases interface is physically important and mathematically
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challenging. One of the simplest model is the energy functional with the
order parameter being a scalar function, which has been widely studied dur-
ing past two decades. When the order parameter is a high dimensional
vector, the problem is much more difficult. Lin, Pan and Wang (2012) stud-
ied the asymptotical behavior of minimizers for the high dimensional prob-
lem. The phase transition interface between isotropic and nematic phases
is even harder because it is not only high dimensional but also involves
anisotropic elasticity. The problem on one dimensional line has been stud-
ied in some special cases (Park, Wang, Zhang and Zhang 2017, Chen, Zhang
and Zhang 2018). The general problem, such as properties of profiles, the
boundary condition on the interface and the limit behavior of the equilib-
rium configuration are needed to be further studied.

Wellposedness, blow-up and long time behavior of solutions to different dy-
namical models. Although there are many works on the wellposedness of so-
lutions to various dynamical models, some basic questions are still unsolved,
for examples, the global existence of weak solutions to the three dimensional
Ericksen-Leslie system and the inhomogenous Doi-Onsager equation. Con-
structing solutions which blow up at finite time are also of interest. In
addition, the long time dynamics would be complicated, even under a given
flow field. For examples, there are many periodic solutions which are called
kayaking, wagging, logrolling, et. al. It would be interesting to rigorously
justify the existence of these solutions.

Dynamics of point defects, disclinations and two phase interfaces. In the
Ginzburg-Landau theory for superconductors, dynamics of vortices and fil-
aments have been well understood. The method can not be directly applied
for similar problems in LCs, for example, the uniaxial limit of dynamical Q-
tensor system, due to some essential differences: First, the elasticity is usu-
ally anisotropic which will cause complex phenomenons such as back flows;
Second, the Q-tensor can escape to biaxial, and the minimizing manifold
is isomorphic to the projective space RP2 which has different topological
property with S2 or S1; Thirdly, the hydrodynamics will play important
roles. The singularity set of the limit system can be isolated points, lines
and surfaces, which has co-dimensional three, two and one respectively. The
evolution of the singularity set is an interesting and challenging problems
which may rely on deeper understanding on the profiles near the singularity
set.

Relationship between different dynamical models. The rigorous derivation
of the Ericksen-Leslie theory from the Doi-Onsager theory are only estab-
lished for smooth solutions with isotropic elasticity (k1 = k2 = k3). To gen-
eralize it to the anisotropic elasticity case would be an important problem.
Moreover, as the defect solutions can only be described by weak solutions
in the vector theory, justification of convergence for weak solutions is an
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important problem. However, analogous results for weak solutions are very
few.

Solution landscape of confined liquid crystals. NLCs in confinement typ-
ically exhibit multiple stable and unstable states, which correspond to sta-
tionary solutions of a free energy. Solution landscape of confined NLCs,
a hierarchy of connected solutions, is able to provide a rich and insightful
information of the physical properties of such multisolution problems. The
HiSD is an efficient numerical algorithm for computing saddle-point solu-
tions for LC systems, and has been successfully applied to construct the
solution landscapes of the NLCs confined in a square and a hexagon. Solu-
tion landscape reveals not only transition pathways between stable solutions
connected by index-1 saddle points, but also innovative dynamical pathways
mediated by high-index saddle points. Several challenging analytic and nu-
merical questions remain for the solution landscape, for instance, the com-
pletion of solution landscape. Can we obtain bounds for the Morse index of
the parent state in the solution landscape? How to estimate the number of
the stationary solutions of a given free energy? Building theoretical frame-
work of solution landscape is a big challenge as well as a great opportunity
for applied mathematicians to make contributions.

Finally, we would like to emphasize again that we only focus on the sim-
plest, NLC systems in the content of this review, and have not touched much
upon the other LC systems. There is a crucial need for exhaustive theoret-
ical and numerical studies of complex and unconventional LC systems, to
complement thriving experimental work. We list a few samplers in the re-
maining part, in which the theory is relatively open, the energies are more
complex, and the solutions are less regular with new analytic and numerical
challenges.

Phase transitions in multiphase liquid crystal systems. Recent experi-
ments show NLC-cholesteric (by adding chiral particles), NLC-smectic (by
lowering the temperature) phase transitions in LC systems (Siavashpouri,
Wachauf, Zakhary, Praetorius, Dietz and Dogic 2017). Compared with sin-
gle phase LC, these heterogeneous systems are inherently more complex with
multiple competing NLC, cholesteric/smectic and mixed solutions, novel so-
lutions with phase separation, and interactions between phases (Gottarelli,
Hibert, Samori, Solladie, Spada and Zimmermann 1983). Multiple phases
in the heterogeneous system need to be analyzed under the unified theory
framework. For instance, the complex N-S or N-C systems can be analyzed
in terms of LdG-type energies with multiple order parameters for coupled
system with smectic/cholesteric terms. The heterogeneous systems can also
be analyzed by molecular models. On the other hand, the accurate struc-
tures (e.g. interfaces between phases) and complex defects, have multiscale
properties. The theory is relatively open with new analytic and numerical
challenges.
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Ferroelectric and ferromagnetic liquid crystals. LC is sensitive to external
fields such as electric field and magnetic field (Mertelj, Lisjak, Drofenik and
Čopič 2013, Mertelj and Lisjak 2017, Chen, Korblova, Dong, Wei, Shao,
Radzihovsky, Glaser, Maclennan, Bedrov, Walba and Clark 2020, Bisht,
Wang, Banerjee and Majumdar 2020). Due to the photoelectric effect, LCs
are applied in display devices and have revolutionized the display industry.
Besides normal LC, ferroelectric LC as a new LC material has attracted ex-
tensive attention. Ferroelectric LC materials have the characteristics of high
response speed, high contrast, high resolution and large capacity information
display. It has a good application prospect in the fields of display, optical
interconnections and optical information processing. One future direction is
to develop suitable LC models from molecular model to macroscopic mod-
els to study the photoelectric effect of ferroelectric LCs and the design of
voltage waveform.

Active liquid crystal systems. The non-equilibrium phenomena studied
in active matter systems are widespread in nature, especially playing an
important role in biological phenomena (Marchetti, Joanny, Ramaswamy,
Liverpool, Prost, Rao and Simha 2013, Keber, Loiseau, Sanchez, DeCamp,
Giomi, Bowick, Marchetti, Dogic and Bausch 2014, Prost, Jülicher and
Joanny 2015). The active matter system is a typical non-equilibrium sys-
tem, which is composed of a large number of active particles. These particles
obtain energy for self-propulsion by converting other forms of energy into
kinetic energy (Zhou, Sokolov, Lavrentovich and Aranson 2014). Due to the
interaction between particles and particles, and particles and media, the en-
tire system can exhibit extremely rich dynamic phenomena macroscopically.
Active LC system is a paradigm of active systems for biologically inspired
complex fluids with orientational alignment. In active LC, the rod-like con-
stituents endow the fluid they are immersed in with active stresses. For
instance, in cell motivity the motility mechanism arising by the interaction
of myosin and actin. Their dynamic properties, phase transition process,
and external field response are worthy of study and exploration.
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8. Appendix

8.1. Elementary identities for the high order moment

Let Q2[f ] = 〈mm− 1
3I〉f , and define Q4[f ] as follows:

Q4αβγµ[f ]=
〈
mαmβmγmµ −

1

7
(mαmβδγµ +mγmµδαβ +mαmγδβµ +mβmµδαγ

+mαmµδβγ +mβmγδαµ) +
1

35
(δαβδγµ + δαγδβµ + δαµδβγ)

〉
f
.(8.1)

Let Pk(x) be the k-th Legendre polynomial and

S2 = 〈P2(m · n)〉hn , S4 = 〈P4(m · n)〉hn , (8.2)

which only depend on α. Firstly, we have a lemma:

Lemma 8.1.

Q2[hn] = S2(nn− 1

3
),

Q4αβγµ[hn] = S4

(
nαnβnγnµ −

1

7
(nαnβδγµ + nγnµδαβ + nαnγδβµ

+nβnµδαγ + nαnµδβγ + nβnγδαµ) +
1

35
(δαβδγµ + δαγδβµ + δαµδβγ)

)
.

Corollary 8.1. Let M = 〈mm〉hn , M(4) = 〈mmmm〉hn , there holds that

M = S2nn +
1− S2

3
I, (8.3)

M
(4)
αβγµ = S4nαnβnγnµ +

S2 − S4

7
(nαnβδγµ + nγnµδαβ + nαnγδβµ + nβnµδαγ

+nαnµδβγ + nβnγδαµ) +
(S4

35
− 2S2

21
+

1

15

)
(δαβδγµ + δαγδβµ + δαµδβγ). (8.4)
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8.2. Some identities used in Section 3.4.3.

For any constant vector u, w ∈ R3, and a vector field v(m) defined on S2,

u ·
(∫

S2
(mm− 1

3
I)R · (fv)dm

)
·w

=

∫
S2

(
(m · u)(m ·w)− 1

3
u ·w

)
R · (fv)dm

= −
∫
S2
R
(

(m · u)(m ·w)
)
· (fv)dm

= −
∫
S2

m× u · v(m ·w)f + (m · u)(m×w) · vfdm

= u · 〈m× vm + mm× v〉 ·w.

Hence, we have:∫
S2

(mm− 1

3
I)R · (fv)dm = 〈m× vm + mm× v〉. (8.5)

Let v = Rµ, we have∫
S2

(mm− 1

3
I)R · (fRµ)dm = 〈m×Rµm + mm×Rµ〉. (8.6)

Let v = m× κ ·m, we have∫
S2

(mm− 1

3
I)R · (fm× κ ·m)dm

= 〈m× (m× κ ·m)m + mm× (m× κ ·m)〉
= 〈2(m · κ ·m)mm− (κ ·m)m−m(κ ·m)〉
= 2D : 〈mmmm〉 −D · 〈mm〉+ Ω · 〈mm〉 − 〈mm〉 · (D + Ω).(8.7)

Lemma 8.1. For any antisymmetric constant matrix Ω, we have

R ·
(
m× (Ω ·m)f0

)
= (n× (Ω · n)) · Rf0,

R ·
(
m× (D ·m)f0

)
=

1

2
R ·
(
f0R(mm : D)

)
.

Proof. The lemma is a direct consequence of the following identities

R ·
(
m× (Ω ·m)

)
= Ri(εijkmjΩklml) = (I− 3mm) : Ω = 0,

(m× (Ω ·m)) · Rf0 = (m× (Ω ·m)) · (m× n)f ′0
= (n× (Ω · n)) · (m× n)f ′0 = (n× (Ω · n)) · Rf0.

This completes the proof. �
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A. Darmon, M. Benzaquen, S. Čopar, O. Dauchot and T. Lopez-Leon (2016), ‘Topo-
logical defects in cholesteric liquid crystal shells’, Soft Matter 12(46), 9280–
9288.

T. A. Davis and E. C. Gartland Jr (1998), ‘Finite element analysis of the Landau–de
Gennes minimization problem for liquid crystals’, SIAM Journal on Numerical
Analysis 35(1), 336–362.

P. G. de Gennes and J. Prost (1993), The physics of liquid crystals, Vol. 83, Oxford
university press.

G. de Luca and A. D. Rey (2007), ‘Point and ring defects in nematics under capillary
confinement’, The Journal of chemical physics 127(10), 104902.

C. Denniston, E. Orlandini and J. Yeomans (2001), ‘Lattice boltzmann simulations
of liquid crystal hydrodynamics’, Physical Review E 63(5), 056702.

M. Doi (1981), ‘Molecular dynamics and rheological properties of concentrated so-
lutions of rodlike polymers in isotropic and liquid crystalline phases’, Journal
of Polymer Science: Polymer Physics Edition 19(2), 229–243.

M. Doi, S. F. Edwards and S. F. Edwards (1988), The theory of polymer dynamics,
Vol. 73, Oxford university press, Oxford.

M. Doi, J. Zhou, Y. Di and X. Xu (2019), ‘Application of the Onsager-Machlup
integral in solving dynamic equations in nonequilibrium systems’, Physical
Review E 99(6), 063303.

J. P. K. Doye and D. J. Wales (2002), ‘Saddle points and dynamics of Lennard-Jones
clusters, solids, and supercooled liquids’, The Journal of Chemical Physics
116(9), 3777–3788.

Q. Du and X. Feng (2020), The phase field method for geometric moving inter-
faces and their numerical approximations, in Handbook of Numerical Analysis,
Vol. 21, Elsevier, pp. 425–508.

Q. Du and L. Zhang (2009), ‘A constrained string method and its numerical anal-
ysis’, Communications in Mathematical Sciences 7(4), 1039–1051.

Q. Du, B. Guo and J. Shen (2001), ‘Fourier spectral approximation to a dissipa-
tive system modeling the flow of liquid crystals’, SIAM journal on numerical
analysis 39(3), 735–762.

W. E (1997), ‘Nonlinear continuum theory of smectic-A liquid crystals’, Archive
for Rational Mechanics and Analysis 137(2), 159–175.



79

W. E and P. Zhang (2006), ‘A molecular kinetic theory of inhomogeneous liq-
uid crystal flow and the small Deborah number limit’, Methods Appl. Anal.
13(2), 181–198.

W. E and X. Zhou (2011), ‘The gentlest ascent dynamics’, Nonlinearity 24(6), 1831.

W. E, W. Ren and E. Vanden-Eijnden (2002), ‘String method for the study of rare
events’, Phys. Rev. B 66(5), 052301.

W. E, W. Ren and E. Vanden-Eijnden (2007), ‘Simplified and improved string
method for computing the minimum energy paths in barrier-crossing events’,
Journal of Chemical Physics 126(16), 164103.

C. M. Elliott and A. Stuart (1993), ‘The global dynamics of discrete semilinear
parabolic equations’, SIAM journal on numerical analysis 30(6), 1622–1663.

J. L. Ericksen (1961), ‘Conservation laws for liquid crystals’, Transactions of the
Society of Rheology 5(1), 23–34.

J. L. Ericksen (1990), ‘Liquid crystals with variable degree of orientation’, Arch.
Rational Mech. Anal. 113(2), 97–120.

D. J. Eyre (1998), Unconditionally gradient stable time marching the cahn-hilliard
equation, in Materials Research Society Symposium Proceedings, Vol. 529,
Materials Research Society, pp. 39–46.
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J. Prost, F. Jülicher and J.-F. Joanny (2015), ‘Active gel physics’, Nature physics
11(2), 111–117.



86 Acta Numerica

T. Qian and P. Sheng (1998), ‘Generalized hydrodynamic equations for nematic
liquid crystals’, Physical Review E 58(6), 7475.

Y. Qu, Y. Wei and P. Zhang (2017), ‘Transition of defect patterns from 2D to 3D in
liquid crystals’, Communications in Computational Physics 21(3), 890–904.

A. Ramage and A. M. Sonnet (2016), ‘Computational fluid dynamics for nematic
liquid crystals’, BIT Numerical Mathematics 56(2), 573–586.
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