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1.    A key support for the 2022 Winter Olympics

The  XXIV Olympic  Winter  Games  are  scheduled  to  take  place  from 4  to  22  February  2022,  followed  by  the  Para-
lympic  Games  from  4  to  13  March,  in  Beijing  and  towns  in  the  neighboring  Hebei  Province,  China.  Weather  plays  an
extremely  important  role  in  the  outcome  of  the  games  (Chen  et  al.,  2018).  It  can  not  only  cause  a  difference  between  a
medal or not, but affect the safety of athletes. Success of the Winter Olympics will greatly depend on weather conditions at
the outdoor competition venues, dealing with many weather elements including the snow surface temperature, apparent tem-
perature, gust wind speed, snow, visibility, etc. To ensure that the scheduled games go smoothly, it  is imperative to have
hourly or even every 10-minutely forecasts as well as updated weather-related risk assessments at the venues for the next
240 hours. So far, the Beijing/Hebei Meteorological Observatory has already started intelligent weather forecasting at 3-km
resolution based on the results of numerical weather prediction (NWP) models. However, these experiments have sugges-
ted that the current forecasting techniques are incapable of capturing the complex mountain weather variations around some
venues. The forecasting capability of NWP is constrained partly by limited knowledge of the local weather mechanisms.

In recent years, artificial intelligence (AI) has accelerated the development of meteorology. The integration of AI and
conventional physical simulation can help to improve the objective forecasting capability of NWP models. As an applica-
tion of AI, machine learning is also expected to extend the forecasting system’s ability to automatically learn and improve
from past experience and novel understanding of the physical mechanism. It could be used as a post-processing method for
NWP model outputs, by matching NWP forecasts against observations through a regression function. It takes advantages of
both physical simulation (NWP models) and data-driven (machine learning) approaches, e.g., using physical simulation to
predict  a  wide  range  of  environmental  atmospheric  trends  and  using  data-driven  algorithms  to  capture  highly  localized
details, thus improving the forecasting capability. Many studies have shown the effectiveness of machine learning as a post-
processing method for NWP. It fosters potential solutions to the improvement of weather forecasting at venues in a com-
plex mountain environment for the Winter Olympics. 
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2.    Progress and problems

Aimed at providing high-quality mountain weather forecasts for the Winter Olympics, a data science team was organ-
ized in August 2018, involving the Beijing Weather Forecast Center (BWFC), the Institute of Atmospheric Physics (IAP) of
the Chinese Academy of Sciences, the School of Mathematical Sciences (SMS) of Peking University, and the Beijing Insti-
tute  of  Urban  Meteorology  (IUM).  This  team  is  composed  of  members  experienced  in  fields  of  artificial  intelligence,
weather forecasting, and meteorological big data. Five groups were set up with specific targets as follows:

(1) Understanding the needs of weather forecasting for the 2022 Winter Olympics, led by BWFC and jointly conduc-
ted by all the partners;

(2) Data Acquisition and Understanding, led by BWFC;
(3) Data Preprocessing and Feature Engineering, led by IAP;
(4) Machine Learning Model construction, led by SMS;
(5) Application Test, mainly led by IUM.
This group work is partly supported by the National Key Research and Development Program of China, via a project

led by BWFC. Figure 1 shows the cyclic linkages among the work of the different groups.
A  few  studies  have  been  conducted  since  the  organization  of  the  team. Li  et  al.  (2019) proposed  an  NWP  model

(ECMWF model) output machine learning (MOML) method. Several experiments showed significant improvement of the
forecast accuracy of weather elements for the Olympic venues based on machine-learning methods (e.g., Sun et al., 2019;
Yu et al., 2020). The MOML method has been integrated into the existing meteorological operational system. MOML is a
post-processing method, which matches NWP forecasts against a long series of verifying observations through a regression
function that uses a machine learning algorithm (Fig. 2). The MOML method uses machine learning algorithms including
multiple linear regression, support vector regression, random forest, gradient boosting decision tree, XGBoost, deep learn-
ing, etc.  It  takes the NWP model output (wind speed, wind direction, temperature,  humidity,  pressure,  precipitation, etc.)
and the geographic information (such as latitude and longitude, altitude, slope, aspect, distance from the coastline, underly-
ing surface type, etc.) of each weather station (or each grid) as the input (“features”), to predict the meteorological elements
(near-surface air temperature, wind speed, precipitation, etc., which are also termed “labels”). MOML constructs datasets
by feature engineering based on spatial and temporal data, which makes full use of the spatial and temporal structure of a
point on the grid (Li et al., 2019). The machine learning−based MOML method could learn the general physical laws from
a large number of model output data and geographic information data. Experimental results showed that the MOML method
increased  the  forecasting  accuracy  by  more  than  10%,  compared  with  conventional  model  output  statistics  (MOS)  and
ECMWF model results (Fig. 3).

Of  note  is  that  the  linear  regression model  can perform better  than other  models  for  short-term forecasting;  only for
mid-to-long-term forecasting can machine learning and deep learning take full advantage (Li et al., 2019). Two reasons are
considered. On the one hand, the NWP is not very biased for short-term forecasts, such that some linear relationship can be
applied well between its output and observation. On the other hand, machine learning, especially deep learning, requires a
large amount of data. Although our training dataset is quite large, it remains insufficient. For example, there are about 20 sta-
tions around the venue on Haituo Mountain, but only four stations have relatively long weather records back to 2014.

Though some progress has been made, the achievements so far have not satisfied the required forecast accuracy. One
of the major difficulties is the wind forecast. The Winter Olympics requires much stricter constraints on wind speed and direc-
tion than on other weather elements. The most common snow sports all have specific requirements for wind speed and direc-
tion. Alpine skiing requires a gust wind speed below 14 m s−1, with an alert threshold of 11 m s−1 for average wind speed; a
wind speed above 13 m s−1 will greatly affect sports involving sleighs; ski jumping has a desirable wind speed of no more
than 4 m s−1 and requires uphill/downhill wind speed change to be within 1 m s−1.  Moreover, all kinds of wind direction
will impact the result of outdoor games and even the safety of athletes. Wind forecasting is even more important in the moun-
tain area, since the uphill and downhill winds differ significantly. Unfortunately, since the weather observatories at the moun-

 

 

Fig. 1. Machine learning applications lifecycle for the 2022 Winter Olympics.
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tainous  Olympic  venues  have  not  been  established  for  long,  there  are  no  sufficient  data  on  winter  winds  for  training  a
machine-learning model, leading to inaccurate forecasting and large uncertainties. Therefore, it is a serious challenge for the
interdisciplinary data science team to improve the forecasting of local wind speed and direction for the mountainous venues.

3.    Focus of further work

Additional machine-learning model tuning and relevant feature engineering are critical and still under way. Moving for-
ward, we seek to improve the machine learning–based forecast accuracy (especially for the wind forecast) by carrying out
the following three tasks.

First, apply MOML with refined numerical model prediction results. The Rapid-refresh Multi-scale Analysis and Predic-
tion System–Short Term (or RMAPS–ST), which aims at forecasting the weather condition in northern China, will be con-
sidered as an alternative weather forecasting system. The system provides hourly forecasting results for 0−3 days at a hori-
zontal grid resolution of 3 × 3 km, the spatiotemporal resolution of which is much higher than that of the ECMWF model. It
has played a key role in weather forecasting operations in Beijing. A professional meteorological research team from IUM
has been working on developing and maintaining RMAPS–ST for many years (Fan et al., 2013; Xie et al., 2019).

 

 

Fig. 2. Framework for applying machine learning to NWP post-processing.

 

 

Fig.  3.  Comparison  of  forecast  accuracy  for  four  meteorological  elements
averaged  over  four  stations  (located  on  Haituo  Mountain)  at  a  7-day
forecasting lead time among MOML, MOS and ECMWF model output.
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Second, integrate semi-intelligent forecasts with forecasters’ experience and data augmentation techniques. Forecasters
have a wealth of weather knowledge and long-term accumulated forecasting experience, especially for some severe weather
processes.  Forecasters  can use the results  of  advanced artificial  intelligence models  (e.g.,  MOML) to combine with prior
knowledge  to  make  more  accurate  forecasts.  As  extreme  and  turning  weather  records  are  rare  and  not  sufficient  for
machine-learning training, data augmentation techniques (Perez and Wang, 2017; Shorten and Khoshgoftaar, 2019) could
be used to increase samples of such rare and abnormal weather events.

Finally, produce probability predictions by integrating the MOML with climate statistics. There is a limit to predictabil-
ity for any NWP model or MOML, and no perfect forecast can be achieved on any scale. Ensemble forecasting has advant-
ages  over  deterministic  forecasting  (Bougeault  et  al.,  2010),  by  giving  the  possibility  of  certain  weather  conditions  and
describe the uncertainty of weather variations. In this area of study, we will calculate the climate statistics for each meteorolo-
gical element (near-surface air temperature, wind speed, precipitation, etc.) based on high-temporal-resolution (5-min) histor-
ical records (Fig. 3). For example, we will calculate the probability of occurrence of an event with wind speeds beyond a cer-
tain criterion for each station. Then, using machine learning to match the MOML output against the probability, build an
MOML-P model  (MOML probabilistic  forecast  model).  Studies  have already shown that  probabilistic  forecasting can be
well  applied  to  users’ decision-making,  bringing  considerable  social  and  economic  benefits  to  users.  The  integrated
MOML-P model is a hopeful solution.

4.    Views beyond the Olympics

As a technique for implementing AI, machine learning, especially deep learning, which has greatly accelerated the devel-
opment of AI, is quite powerful. This tool has been needed for developing objective meteorological prediction. Taking its
data-driven  advantage,  a  machine-learning  framework  will  make  optimal  use  of  all  available  predictors  and  enable  the
model to routinely incorporate new predictors as they become available (Veillette et al., 2013). In particular, machine learn-
ing is feasible to address the challenges of nonlinear and uncertainty problems of complicated weather and climate systems
(Xu, 2018). In fact, by using machine learning, meteorologists have made some breakthroughs.

For example, nowcasting has become one of the most influential streams of predictive studies employing machine learn-
ing  (especially  deep  learning)  models. Shi  et  al.  (2015) proposed  the  Convolutional  Long-Short  Term Memory  (ConvL-
STM) model for precipitation nowcasting based on radar data. ConvLSTM merges the Convolutional Neural Network for
extracting abstract features from images and LSTM for processing sequential data to solve the spatiotemporal sequence fore-
casting problem. Thus, it made a major breakthrough. Many subsequent studies have been conducted and demonstrated that
deep  learning  models  can  significantly  outperform  traditional  statistical  algorithms  (Shi  et  al.,  2017; Wang  et  al.,  2017,
2018, 2019; Guo et al.,  2019; Jing et al.,  2019). However, this kind of deep learning model is mainly an extrapolation of
radar reflectivity without considering other meteorological fields, e.g. the wind, temperature, and humidity, thus having inher-
ent limitation for forecasting. Some works have employed multi-meteorological fields for nowcasting, e.g. the convective ini-
tiation, by using machine learning (Veillette et al., 2013; Han et al., 2017; Liu et al., 2019; Zhang et al., 2019; Zhou et al.,
2019). However, most of these forecast studies focused on a time point rather than series. Relating information from mul-
tiple sources and integrating multimodal knowledge is one of the core problems in general AI. Multimodal machine learn-
ing (Ngiam et  al.,  2011; Srivastava and Salakhutdinov,  2012; Baltrušaitis  et  al.,  2019)  has  been proposed to  address  this
issue by learning shared features over multiple-modalities data and making predictions for multiple tasks in a uniform frame-
work. It could be employed to address weather forecast issues too.

To improve the accuracy of forecasting, combining the numerical model and AI is an efficient approach (Reichstein et
al., 2019; Toms et al., 2019). AI techniques can be used as model-post processing methods, as done in the present project.
Alternatively, they can be integrated into the numerical model. For example, machine learning was used to optimize paramet-
erization schemes in a numerical  model based on observations and targeted high-resolution simulations (Schneider et  al.,
2017). It was also interesting to build a fast AI model, which closely reproduces a far more expensive simulation, referred
to as model emulation (Prudden et al., 2017). Model emulation is of potential value for a wide range of applications in meteor-
ological and climate studies.

Machine  learning  has  been  used  for  years  as  a  black-box  solution.  In  recent  years,  it  has  become  a  tool  to  help  to
explore underlying mechanisms for weather prediction and climate diagnosis (e.g., Gao et al., 2019; Ham et al., 2019; Tong
et al., 2019; Wei et al., 2020). In addition, the data-driven advantages of machine learning also facilitate characterizing the
impact of weather and climate change on human society, economies, etc., thus constructing impact assessment and auxili-
ary decision-making models for various users (McGovern et al., 2017). In particular, it is of great potential in developing a
machine learning−based replacement for conventional weather consultation.

Application of machine learning in meteorological and climate sciences is still in its infancy. It requires not only abund-
ant resources (e.g., for big data analysis) but also multidisciplinary collaborations. The 2022 Winter Olympics offers a good
opportunity for developing and training a multidisciplinary group of young researchers in meteorology, computer science,
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mathematics and operational forecasting to promote the development of machine learning–based weather forecasting.
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