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Abstract. In this paper, the RSEL (Random Subfeature Ensemble Learning) algorithm
is proposed to improve the forecast results of weather forecasting. Based on the clas-
sical machine learning algorithms, RSEL algorithm integrates random subfeature se-
lection and ensemble learning combination strategy to enhance the diversity of the
features and avoid the influence of a small number of unstable outliers generated ran-
domly. Furthermore, the feature engineering schemes are designed for the weather
forecast data to make full use of spatial or temporal context. RSEL algorithm is tested
by forecasting the wind speed and direction, and it improves the forecast accuracy of
traditional methods and has good robustness.
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1 Introduction

Weather forecasting is closely related to various fields, including agriculture, transporta-
tion, industry, and energy. In recent years, weather forecasting industry has developed
rapidly, which mainly relies on the better theory, the updating of numerical weather pre-
diction (NWP), the increase in the number and accuracy of meteorological observatories,
and the improved computational power [1]. A variety of weather prediction methods
have been developed in the literature, and they are generally classified into physical
methods, statistical methods, machine learning methods, and hybrid methods [2].
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The physical methods based on the NWP model, which simulates the overall trend
of atmospheric motion by solving atmospheric physical equations [3]. However, The
NWP models have deficiencies, such as the adaptability of physical equations to local
alpine areas, not enough spatial and temporal resolution and bad results of nowcasting
and short-term forecasting [4]. Global NWP models include the European Centre for
Medium-Range Weather Forecasts (ECMWF), the Global Forecast System (GFS), the In-
tegrated Forecast Model (IFS), etc [5–7]. The statistical method utilizes historical observa-
tion data to establish a statistical model for training, which is suitable for short-term pre-
diction. Commonly used statistical methods are Model Output Statistics (MOS) [8–11],
Analog Ensemble (ANEN) [12, 13], Kalman Filter (KF) [14, 15] and Markov Chain mod-
els [16, 17]. Statistical methods are not available for medium and long-term forecasting,
and these methods are not suitable for solving the problem of large data volume.

Machine learning methods can deal with big data in meteorological fields, such as me-
teorological observations and NWP data. There have been many applications of machine
learning in meteorological science [18–20]. The features of big data are diverse in ma-
chine learning, thus how to extract useful information from the ever-increasing stream of
geoscience data and how to obtain effective features from the NWP models are unavoid-
able problems [21]. But researches on feature engineering in weather forecasting have
received little concerns [22, 23]. Li et al. (2019) proposed model output machine learn-
ing (MOML) method to process spatiotemporal features and solved the grid temperature
forecasting problem [24]. Nevertheless, due to the spatial and temporal complexity of
weather forecasting, it is difficult for current methods to give an optimal scheme directly.
A new approach is a hybrid model, coupling physical NWP models with the versatility
of data-driven machine learning [21]. Most of the existing hybrid models only mix sev-
eral statistical methods with weighted strategies and do not form an integrated machine
learning algorithm [25–27]. Thus, these methods lack the general optimal strategy. En-
semble learning achieves learning tasks by building and combining multiple base learn-
ers. It has superior generalization than a single learner. The representative methods of
ensemble learning include boosting and bagging [28–30].

In this paper, an innovative random subfeature ensemble learning algorithm (RSEL)
is proposed for weather forecasting. RSEL is a data-driven hybrid ensemble learning al-
gorithm, it brings forth new ideas in the feature engineering scheme and the strategy of
ensemble learning algorithm, which also couples the NWP model data and the observa-
tional data. To test the application in practical problems, we applied the RSEL algorithm
to forecast the wind speed and wind direction at two weather stations that are located
in the alpine region, and focused on the next 12-240 h forecasting results. We performed
experiments to verify the root mean square error and forecast accuracy of these results
and compared them with the ECMWF model, the classical multivariate linear MOS algo-
rithm [10], and MOML algorithm, which has certain innovative meanings [24].

The remainder of the paper is organized as follows. In Section 2, the data concerned in
this study are described. Feature engineering scheme and random subfeature ensemble
learning algorithm are proposed in Section 3 and Section 4 respectively. Section 5 gives
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the case studies of RSEL algorithm. The conclusions and future work are finally drawn
in Section 6.

2 Data

Meteorological data are typical multi-modal data, mainly including meteorological ob-
servation data and NWP model data. These two types of data are data from different
sources, with their own data structures and physical variables. The meteorological ob-
servation data are local high-frequency data, including several observable meteorological
indicators, such as temperature, pressure, wind speed and precipitation. The characteris-
tics of the observational data are real and the time interval is short, but only the informa-
tion of one weather station on the ground is included, and the spatial and the surround-
ing information is not included, and only historical data exists. The NWP model data
are low-frequency data for global medium-and long-term weather forecasting, which
contains numerical prediction grid results of the predictors for the next few days. The
advantages of the NWP model data are that these data are time series data covering the
region and there are many predictors, such as 2 metre temperature, convective available
potential energy, 10 meter U wind component and 10 meter V wind component. How-
ever, the time interval is large, and the grid points can not be accurately matched to the
weather stations, which may cause errors. These multi-modal data require the algorithm
to get useful information from big data and combine them into appropriate formats.

3 Feature engineering

It is difficult to match the multi-modal data of weather forecasting directly, thus feature
engineering is the first and an important step before the forecasting method [24]. We
constructed a special feature engineering scheme to ensure that the method can better
couple the NWP model data and observation data.

3.1 Database

Fig. 1 shows the typical database of weather forecasting at a weather station. The database
involves the model data of nine grid points around the weather station and the observa-
tional data of the weather station, which are called the original model dataset and the
original observational dataset, respectively. The model data of nine grid points add spa-
tial information around the weather station to the original model dataset.

Model dataset. The original model grid data (the nine blue cubes in Fig. 1) is a high-
dimensional array. The model output of the predictors on a certain day at each grid point
is called a sample, and there are L samples. Each sample has T forecasting time series
and M predictors.
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In fact, the model dataset is a 5-dimensional T×L×M×3×3 array for wind forecasting
at a weather station, which contains only nine grid points around the weather station.
The coordinate of the closest grid point to the weather station is denoted by (i, j), and the

model dataset for this weather station is recorded as X
(i,j)
0 . X

(i,j)
0 can be written as

X
(i,j)
0 =

{

x
(p,q)
t,l,m

}p=i−1,i,i+1, q=j−1,j,j+1

t=1,2,···,T, l=1,2,···,L, m=1,2,···,M
. (3.1)

Observation dataset. The observation dataset (the green rectangle in Fig. 1) for each
weather station is a K×N matrix, where the number of rows K is the original observation
data with an interval of 1 hour in the corresponding the L-day model dataset, and the
number of columns N is N meteorological variables. The observational dataset for this
weather station is recorded as Z0. Z0 can be written as

Z0=[zk,n]k=1,2,···,K, n=1,2,···,N . (3.2)

3.2 Machine learning datasets

We constructed three suitable datasets Dd=(Xd,Yd) for machine learning algorithm train-

ing by feature engineering from the model dataset X
(i,j)
0 , where Xd are features, Yd are

labels and d= 1,2,3. The labels are all extracted from the observational dataset. For the
forecast lead time t, set n0 as the variable to be predicted and kt

l is the selected L samples,
that is

Y0=[yt,l]t=1,2,···,T, l=1,2,···,L,
[

zkt
l ,n0

]

l=1,2,···,L, t=1,2,···,T
. (3.3)

Thus, the labels of the three machine learning datasets are equal to Y0, i.e. Y1 = Y2 =
Y3 =Y0. The features of these three datasets are different according to the diverse ways
of feature engineering.

Dataset 1 directly reshaped the model dataset into the features X1, of size T×L×(9M).
The dimensions represent T forecast lead times, L samples, and 9M predictors, where 9M
is reshaped by M×3×3. Dataset 1 considers the spatial context in the database without
temporal information. The features X1 of D1=(X1,Y1) is denoted as

X1={xt,l,mp,q}
p=i−1,i,i+1, q=j−1,j,j+1
t=1,2,···,T, l=1,2,···,L, m=1,2,···,M . (3.4)

Dataset 2 adds time series of the model dataset to the features. The size of X2 in D2 =
(X2,Y2) is T×L×[(9M)×S]. The additional dimension S represents that dataset 2 adds
the model prediction results with the S−1 time series before the forecast time to the
feature data. Therefore, the feature number of dataset 2 is (9M)×S, and the features X2

of D2 is denoted as

X2=
{

xt,l,m
p,q
s

}p=i−1,i,i+1, q=j−1,j,j+1

t=1,2,···,T, l=1,2,···,L, m=1,2,···,M, s=1,2,···,S
. (3.5)
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Figure 1: Database of multi-modal data at a weather station is on the left side. The red point is the weather
station that needs to be forecasted. The orange 3×3 grid points are the grid point closest to this weather
station and the surrounding grid points. Each blue cuboid is the model output data of each grid point, and
the green rectangle is the observational data of this site. The machine learning datasets (take dataset 3 as an
example) is on the right side. The blue cuboids and the green cuboid on the right are the features, and the
purple rectangle is the labels.

Dataset 3 involves observational data and its geographical information, such as the lon-
gitude, the latitude and the altitude of the observational station. The size of X3 in D3 =
(X3,Y3) is T×L×[(9M)×S+N+3], where

X3={xt,l,c}t=1,2,···,T, l=1,2,···,L, c∈{m
p,q
s ,n,Lon,Lat,Alt}

p=i−1,i,i+1, q=j−1,j,j+1
m=1,2,···,M, s=1,2,···,S, n=1,2,···,N

. (3.6)

Its first two dimensions represent the same meaning as dataset 1 and 2, and the third
dimension adds xt,l,n that are selected from the observation dataset Z0, where xt,l,n,zk̂t

l ,n
.

The historical observation data has N features, which are N meteorological observations.
Add the latest observational data and the three geographic features, the feature number
of dataset 3 is (9M)×S+N+3. Fig. 1 shows the diagram of dataset 3.

Remark 3.1. For example, assuming that we want to forecast the wind that is offset by
12 hours from UTC 0000, only the model prediction results at this forecast time (UTC
1200) are taken as features in dataset 1. Dataset 2 adds the model prediction results of 3
hours, 6 hours and 9 hours offset (UTC 0300, 0600 and 0900) to the feature data. Based on
dataset 2, dataset 3 adds the latest observational data and geographic features.
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4 RSEL method

We adopted the integration idea in machine learning and designed a data-driven random
subfeature ensemble learning algorithm (RSEL), a novel ensemble learning algorithm.
RSEL adopts our new feature engineering scheme and integrates random subfeature se-
lection and a novel ensemble learning combination strategy to get an optimal forecasting
solution.

Because the samples from many years ago may differ greatly from those from today
in data quality and structure, there are not enough samples but many features, especially
the number of features further increased after feature engineering. It is not very effec-
tive to apply a machine learning algorithm directly to such datasets, so we proposed a
new bootstrap aggregating (Bagging) method, namely random subfeature selection. Ran-
dom subfeature selection does not sample the samples of the machine learning datasets,
but sample the features of the machine learning datasets to obtain a random subfeature
dataset. We applied several machine learning algorithms to these random subfeature
datasets to obtain preliminary forecasts, and then repeated the process of random sub-
feature selection and machine learning training.

The forecasting problems can be divided into regression and classification problems.
Furthermore, we proposed two ensemble learning combination strategies based on the

Figure 2: The flow diagram of RESL. The grey rectangle represents the data, the grey cube represents the
dataset, the grey parallelogram represents the forecast value, the yellow ellipse represents the algorithm module,
and the blue rounded rectangle represents the operation.
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preliminary forecast of each machine learning algorithm, namely, adopting the median
strategy for regression problems and adopting the majority voting strategy for classifi-
cation problems. The new ensemble learning combination strategy can avoid the influ-
ence of a small number of unstable outliers generated randomly. Finally, the results of
random subfeature ensemble learning algorithm are obtained, and the optimal ensem-
ble algorithm scheme is given according to the specific problems and the loss functions.
Fig. 2 shows the flow diagram of random subfeature selection in RSEL algorithm. The
RSEL algorithm integrates the advantages of model and observation data by feature engi-
neering and enhances the diversity by random subfeature selection. Moreover, the RSEL
algorithm enhances the robustness by using the ensemble learning combination strate-
gies. The RSEL algorithm is illustrated by the pseudo-code in Algorithm 1, where the
RandomSelect and Map functions work together to perform the random subfeature se-
lection. RandomSelect function samples several feature indexes from all features, and
Map function maps this sampling result to the whole dataset. The training set and test
set of dataset 1, 2, or 3 are

D={(X ,y)},{(X i,yi) | t= t0}i=1,2,3={(xt,l,c,yt.l)}
t=t0

l=1,2,···,L1, c=1,2,···,C . (4.1)

Algorithm 1 Random subfeature ensemble learning algorithm.

Require:
Training set D={(X ,y)}, Test set D̂=

{

(X̂ ,ŷ)
}

,
Base learners G, number of basic learner categories Λ, maximum iterations Ω,
Number of features d, number of subfeatures d′.

Ensure:

Forecast results of ensemble algorithm H(X̂).
1: for ω=1,2,··· ,Ω do

2: Fω =RandomSelect(d,d′)
3: Dω =MapFω(D)
4: for λ=1,2,··· ,Λ do

5: gω,λ=Gλ(Dω)
6: end for
7: end for

8: return H(X̂)=hargmink Loss(hk(X̂),ŷ)(X̂), where

regression: hk(X̂)=Median
(

{

gω,λ(MapFω(X̂))
}Ω

ω=1

)

.

classification: hk(X̂)=MajorityVote
(

{

gω,λ(MapFω(X̂))
}Ω

ω=1

)

.

In fact, in these machine learning algorithms, no matter whether it is the regression
problem or the classification problem, some Boosting algorithms perform well and be-
come the optimal ensemble algorithm scheme. So we can understand the RSEL algorithm
as a novel ensemble learning algorithm integrating Bagging and Boosting algorithms. It
has three advantages:
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1. Updating the traditional Bagging of the samples to Bagging of the features enhances
the diversity of the features.

2. The mature Boosting algorithms are used as the base learners of the new Bagging
method, which ensure the stable improvement of the accuracy of the forecast re-
sults.

3. At the end of the algorithm, the median or majority voting combination strategy
can avoid the influence of a small number of unstable outliers generated by random
feature selection.

5 Simulation and case study

To test the application of RSEL algorithm in practical problems, we applied RSEL algo-
rithm to forecast the wind speed and wind direction at Yanqing and Foyeding weather
stations that are located in Beijing, and focused on the next 12-240 h forecasting results.
The altitude of Foyeding weather station is high, and the accuracy of numerical weather
prediction near this weather station is always inaccurate. Yanqing weather station is lo-
cated with the competition zones of the 2022 Winter Olympic Games, thus it requires
very high accuracy in forecasting wind direction and wind speed. Therefore, it is repre-
sentative and practical to choose these two weather stations to test the effectiveness of
our method.

The meteorological observation we used include the observational data from Jan-
uary, 2015 to November, 2017 at the weather stations. Hourly observational data of each
weather station contains six weather elements: temperature, pressure, relative humidity,
wind direction, wind speed, precipitation. The NWP model data used in this paper are
the numerical forecast products of ECMWF from January, 2015 to October, 2017. The
range is 35 to 45 degrees north latitude and 110 to 120 degrees east longitude. In fact, the
valuable data are some grid data near the weather stations from initialized at UTC 1200
up to lead time of 240 hours. The forecast interval of the first 72 hours is 3 hours, that of
78-240 hours is 6 hours, and the spatial resolution on the ground is 0.125◦×0.125◦, and at
high altitude is 0.25◦×0.25◦. After deleting some unnecessary predictors (e.g. land-sea
mask), the NWP model data include 44 predictors (listed in Table 1).

We set the samples from January 16, 2015, to October 29, 2016, as the training set and
the samples from October 30, 2016, to October 30, 2017, as the test set. The specific values
of the indicators in the database and the machine learning datasets (Eqs. (3.1)-(3.6)) are
L= 1019, M= 44, T = 49, N = 6, K = 8152, S= 4. The base learners used in this case in-
volve Least Absolute Shrinkage and Selectionator Operator (LASSO) [31], Random For-
est (RF) [32], Gradient Boosting Decision/Regression Tree (GBDT/GBRT) [33, 34], and
eXtreme Gradient Boosting (XGB) [35], including linear algorithms and nonlinear algo-
rithms. We performed experiments to verify the root mean square error and forecast
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Table 1: Information of the predictors taken from ECMWF.

Predictors

100 meter U wind component Low cloud cover Sea surface temperature

100 meter V wind component Large-scale precipitation Temperature [500 hPa]

10 meter U wind component Mean sea level pressure Temperature [850 hPa]

10 meter V wind component Potential vorticity [1000 hPa] Total cloud cover

2 meter dewpoint temperature Potential vorticity [500 hPa] Total column water

2 metre temperature Potential vorticity [850 hPa] Total column water vapour

Convective available potential energy Specific humidity [1000 hPa] Total precipitation

Divergence [1000 hPa] Specific humidity [500 hPa] U wind component [500 hPa]

Divergence [500 hPa] Specific humidity [850 hPa] U wind component [850 hPa]

Divergence [850 hPa] Relative humidity [1000 hPa] V wind component [500 hPa]

Zero Degree Level Relative humidity [500 hPa] V wind component [850 hPa]

Forecast albedo Relative humidity [850 hPa] Vertical velocity [1000 hPa]

Geopotential height [1000 hPa] Snow depth Vertical velocity[500 hPa]

Geopotential height [500 hPa] Snowfall Vertical velocity [850 hPa]

Geopotential height [850 hPa] Skin temperature

accuracy of these results and compared them with the ECMWF model, the classical mul-
tivariate linear MOS algorithm [8–10], and MOML algorithm [24].

Remark 5.1. Applying RSEL to the datasets constructed in Section 3.2, we can get various
algorithm models. For example, RSEL apply the GBDT algorithm to dataset 2 to get
RSEL GBDT 2 model.

5.1 The regression problem of wind speed forecasting

Wind speed is a continuous variable, so the wind speed forecast problem is suitable to
be resolved as a regression problem. The base learners used by RSEL algorithm include
GBRT, LASSO, RF, and XGB, which means Λ=4. We choose the root mean square error
as the loss function of RSEL algorithm.

Table 2 show the performance of wind speed forecast at Yanqing weather station and
Foyeding weather station, all the RSEL algorithms can improve the wind speed fore-
cast results of the ECMWF model, multivariate linear MOS and MOML algorithms quite
well in the sense of annual mean. The altitude of Foyeding weather station is higher
than that of Yanqing weather station, thus the forecast results of ECMWF model is poor
that provide RSEL algorithm with significant upside. Selecting the boosting algorithm
(GBRT, XGB) as the base learner is superior to the other machine learning algorithms
used in RSEL algorithms. It proves that the RSEL algorithm with the appropriate Boost-
ing method can improve the forecast results very well in the wind speed forecasting
problem. The root mean square errors (RMSE) of these feature engineering approaches
have little difference, so the simplest dataset (dataset 1) is more suitable for wind speed
forecasting.
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Table 2: The average RMSE of the next 12-240 h wind speed forecast results at Yanqing and Foyeding weather
stations.

Station Evaluation Dataset
RSEL

EC MOS
MOML

GBRT LASSO RF XGB XGB

Yanqing RMSE (m/s)

1 0.9373 0.9477 0.9394 0.9436

1.1482 0.9884 1.00792 0.9369 0.9514 0.9427 0.9443

3 0.9371 0.9523 0.9426 0.9424

Foyeding RMSE (m/s)

1 1.7293 1.7439 1.7300 1.7232

2.6883 1.8676 1.87272 1.7324 1.7709 1.7444 1.7438

3 1.7326 1.7694 1.7438 1.7457

(a) Yanqing weather station (b) Foyeding weather station

Figure 3: RMSE of wind speed forecasting at Yanqing and Foyeding weather stations. The RSEL results are
better than multivariate linear MOS algorithm and MOML algorithm.

Fig. 3 shows the variation trend of the RMSE of 12-240 h forecast of several well-
performing RSEL algorithms. It can be seen that the RMSE of RSEL algorithms are less
than that of the ECMWF model, multivariate linear MOS and MOML algorithms. These
figures also show that the RMSE does not increase with the increase of forecast lead time
in the medium and long-term forecast, and the values of RMSE have periodicity with
the increase of forecast lead time, and the period is about 24 hours. So we compared the
results in daily BJT 08:00, 14:00, 20:00 and 02:00 in Fig. 4. The results of RSEL algorithm for
wind speed forecast at Yanqing weather station is the best in daily BJT 02:00 and 08:00,
and the RMSE of RSEL GBRT 2 in the daily BJT 02:00 and 08:00 decrease by 23.042%
and 19.729% than that of ECMWF model, respectively. The RMSE of RSEL XGB 1 for
10 days at Foyeding weather station are minimum in daily BJT 02:00 and 20:00, which
decrease by 40.514% and 47.784% than that of ECMWF model, respectively. Thus, these
two algorithms are the optimal algorithms for wind speed forecasting at the two weather
stations.

Remark 5.2. In the simulation experiment, the algorithm is not sensitive to the number
of iterations (Ω) if Ω is large enough and we showed the results of Ω= 60. Because of
random sampling, the algorithm is not sensitive to the number of subfeatures d′. In this
experiment, d′ is set at the same magnitude as M, and the result of d′=40 is shown.
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(a) Yanqing weather station (b) Foyeding weather station

Figure 4: RMSE of wind speed forecasting at Yanqing and Foyeding weather stations by time. The results of
RSEL algorithm for wind speed forecast is the best in daily BJT 02:00, and can fully exceed multivariate linear
MOS and ECMWF model.

5.2 The classification problem of wind direction forecasting

The data of wind direction has a large data range, and few categories, thus the wind
direction forecast problem is suitable to be solved as a classification problem. The classi-
fication problem is not suitable to be evaluated by root mean square error, so we calculate
the values of forecast accuracy in this subsection. The wind direction is divided into eight
categories and numbered from 0 to 7, and the wind direction forecast accuracy (denoted
by Fa) is defined by the forecast score matrix (Table 3) [36].

Table 3: The forecast score matrix of wind direction.

Srore

0.0-

22.5◦,

337.5-

360.0◦

22.5-

67.5◦
67.5-

112.5◦
112.5-

157.5◦
157.5-

202.5◦
202.5-

247.5◦
247.5-

292.5◦
292.5-

337.5◦

0.0-22.5◦, 337.5-360.0◦ 1 0.6 0 0 0 0 0 0.6

22.5-67.5◦ 0.6 1 0.6 0 0 0 0 0

67.5-112.5◦ 0 0.6 1 0.6 0 0 0 0

112.5-157.5◦ 0 0 0.6 1 0.6 0 0 0

157.5-202.5◦ 0 0 0 0.6 1 0.6 0 0

202.5-247.5◦ 0 0 0 0 0.6 1 0.6 0

247.5-292.5◦ 0 0 0 0 0 0.6 1 0.6

292.5-337.5◦ 0.6 0 0 0 0 0 0.6 1
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Table 4: The average forecast accuracy of the next 12-240 h wind direction forecast results at Yanqing and
Foyeding weather station.

Station Evaluation Dataset
RSEL

EC MOS
MOML

GBDT RF XGB XGB

Yanqing Fa (×100%)

1 0.5026 0.5146 0.5090

0.3937 0.2991 0.40452 0.5080 0.5150 0.5135

3 0.5096 0.5154 0.5126

Foyeding Fa (×100%)

1 0.6090 0.6131 0.6099

0.4394 0.3312 0.49022 0.6081 0.6089 0.6082

3 0.6056 0.6081 0.6094

For the fixed forecast lead time, the formula of forecast accuracy is Eq. (5.1), where
SCl are the forecast scores that can be found in Table 3, Ltest is the number of samples
in test set, and the forecast score is shown as a percentage and recorded as the forecast
accuracy.

Fa=
Ltest

∑
l=1

SCl

Ltest
×100%. (5.1)

The base learners used by RSEL algorithm include GBDT, RF and XGB, which means Λ=
3, the number of subfeatures d′=40 and the maximum iterations Ω=60. The loss function
used in this problem is the forecast accuracy. Table 4 show the forecast accuracy of wind
direction forecast at the two weather station. The results show that RSEL algorithms
has got good classification accuracy for the test set. Both multivariate linear MOS and
MOML algorithms are regression algorithms, so their forecast accuracy is not high, which
verifies that the wind direction forecasting problem is more suitable to be solved as a
classification problem. In RSEL algorithms, selecting dataset 1 and 3 and RF or XGB
algorithm is superior to the others in this study. It proves that the RSEL algorithm which
combines the new Bagging method with the appropriate Boosting method can improve
the accuracy very well in the classification problem.

Fig. 5 shows the variation trend of the forecast accuracy of 12-240 h wind direction
forecasting. The figures show the stability of the RSEL algorithm. On the whole, the fore-
cast accuracy of the algorithms have periodicity and decrease with the increase of forecast
lead time. Fig. 6 shows the forecast accuracy of the short-term wind direction forecast-
ing. It can be seen in Figs. 5 and 6 that the dataset 3 with observation data is helpful to
improve the accuracy of short-term forecast, but has little effect on long-term forecast,
which illustrates the necessity of constructing diverse machine learning datasets. We can
conclude that RSEL RF 3 and RSEL RF 1 are the optimal algorithms for wind direction
forecasting at Yanqing and Foyeding weather stations, respectively. Actually, the aver-
age forecast accuracy of RSEL RF 3 and RSEL RF 1 for 10 days is 21.628% and 28.186%
higher than that of multivariate linear MOS algorithm and 11.088% and 12.286% higher
than that of MOML algorithm with XGBoost, respectively at these two weather stations.
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(a) Yanqing weather station (b) Foyeding weather station

Figure 5: Forecast accuracy of wind direction forecasting at Yanqing and Foyeding weather stations. The RSEL
results are better than multivariate linear MOS algorithm and MOML algorithm.

Figure 6: Forecast accuracy of 12-18 h wind direction forecasting at Yanqing weather stations. The dataset 3
with observation data has the advantages of the short-term wind direction forecasting.

6 Conclusions

In this paper, a novel RSEL algorithm is proposed to solve the problems in weather fore-
casting. In fact, this algorithm can be used to solve similar problems involving multi-
modal data. With feature engineering for weather forecast data, RSEL integrates random
subfeature selection, a new Bagging method to enhance the diversity of the features, and
a novel ensemble learning combination strategy to avoid the influence of a small number
of unstable outliers generated randomly. The case studies show that regardless of regres-
sion or classification, RSEL outperforms other candidate algorithms for wind forecasting.
In the sense of annual mean, the RSEL algorithms can improve the wind forecasting re-
sults of the ECMWF model at Yanqing and Foyeding weather stations quite well. The
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advantages of RSEL in the classification problem is greater than that in the regression
problem, and if time series and historical observation information are included in the
feature, the result can be improved. The forecast accuracy of wind speed increases con-
siderably before dawn and that of wind direction improved greatly throughout the whole
day. Boosting algorithms are suitable to be the base learners of RSEL, which ensure the
stable improvement of the accuracy of the forecast results.

In summary, RSEL has the ability to improve the results of weather forecasting, and it
has better performance than multivariate linear MOS algorithm and MOML algorithm.
In addition, as a post-processing method, RSEL can be applied to the weather consulta-
tion and other problems involving multi-modal data. This approach has good applica-
tion prospects and can greatly reduce manpower consumption in the consultation and
improve the forecast accuracy. Considering the practical application, the machine learn-
ing algorithm in this paper adopts the mature eXtreme Gradient Boosting algorithm and
Random Forests algorithm, which do not need a lot of parameter adjustment and are easy
to use. Constructing a more accurate and efficient ensemble learning algorithm to solve
the problem is our later research work.
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