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ABSTRACT

In this  paper,  the model  output  machine learning (MOML) method is  proposed for  simulating weather  consultation,
which  can  improve  the  forecast  results  of  numerical  weather  prediction  (NWP).  During  weather  consultation,  the
forecasters obtain the final results by combining the observations with the NWP results and giving opinions based on their
experience. It is obvious that using a suitable post-processing algorithm for simulating weather consultation is an interesting
and important topic. MOML is a post-processing method based on machine learning, which matches NWP forecasts against
observations through a regression function. By adopting different feature engineering of datasets and training periods, the
observational  and  model  data  can  be  processed  into  the  corresponding  training  set  and  test  set.  The  MOML  regression
function  uses  an  existing  machine  learning  algorithm  with  the  processed  dataset  to  revise  the  output  of  NWP  models
combined  with  the  observations,  so  as  to  improve  the  results  of  weather  forecasts.  To  test  the  new  approach  for  grid
temperature forecasts, the 2-m surface air temperature in the Beijing area from the ECMWF model is used. MOML with
different feature engineering is compared against the ECMWF model and modified model output statistics (MOS) method.
MOML shows  a  better  numerical  performance  than  the  ECMWF model  and  MOS,  especially  for  winter.  The  results  of
MOML with a linear algorithm, running training period, and dataset using spatial interpolation ideas, are better than others
when the forecast time is within a few days. The results of MOML with the Random Forest algorithm, year-round training
period, and dataset containing surrounding gridpoint information, are better when the forecast time is longer.
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Article Highlights:

• ĂThe MOML method is proposed for improving NWP forecasts.
• ĂMOML is a machine learning−based post-processing method that matches NWP forecasts against observations through a
regression function.
• ĂMOML can make full use of the spatial and temporal structure of a point on the grid. It is used here to forecast the 2-m
surface air temperature in the Beijing area.
• ĂWith proper feature engineering, forecasts based on MOML perform better than the traditional MOS method, especially
for winter.
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1. Introduction

Weather  forecasting  plays  an  important  role  in  many

fields,  such as agriculture, transportation, industry, commerce,

atmospheric  science  research,  and  so  on.  In  the  past,  people
have forecast the weather by using meteorological knowledge,
statistics  and  the  observational  data  collected  at  weather  sta-
tions. Numerical weather prediction (NWP) has made great pro-
gress in the last 50 years with the development of computer tech-
nology, modeling techniques, and observations (Molteni et al.,
1996; Toth and Kalnay, 1997). Nevertheless, NWP model fore-
casts contain systematic biases due to imperfect model physics,
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initial conditions, and boundary conditions (Paegle et al., 1997;
Mass  et  al.,  2002; Hart  et  al.,  2003; Cheng  and  Steenburgh,
2007; Rudack and Ghirardelli, 2010).

Because the output of NWP and observations have differ-
ent systematic errors, the forecasting performance for various re-
gions, seasons and weather processes is different. Before the re-
lease of a weather forecast, in order to further improve its accur-
acy, a weather consultation is indispensable. The forecasters ob-
tain the final results during this weather consultation by combin-
ing  observations  with  the  NWP  results  and  giving  opinions
based on their experience. The process of weather consultation
is  actually  a  manual  process  of  post-processing  the  NWP res-
ults, and thus the professional knowledge and practical experi-
ence  of  individuals  have  a  crucial  impact  on  the  forecast  res-
ults. Owing to the current increase in data size and the improve-
ment of weather forecasting requirements,  the current weather
consultation model  cannot  meet  the needs of  the development
of  weather  forecasting,  and  so  suitable  post-processing  al-
gorithms are needed to help the manual process of weather con-
sultation  (Hart  et  al.,  2003; Cheng  and  Steenburgh,  2007;
Wilks and Hamill, 2007; Veenhuis, 2013).

In order to remove systematic errors and improve the out-
put  from  NWP  models,  a  variety  of  post-processing  methods
have  been  developed  for  simulating  weather  consultation
(Wilks and Hamill, 2007; Veenhuis, 2013)—for example, mod-
el output statistics (MOS) (Glahn and Lowry, 1972; Cheng and
Steenburgh, 2007; Wu et al., 2007; Glahn et al., 2009; Jacks et
al., 2009; Zhang et al., 2011; Glahn, 2014; Wu et al., 2016), the
analog  ensemble  (Monache  et  al.,  2013; Alessandrini  et  al.,
2015; Junk  et  al.,  2015; Plenković  et  al.,  2016; Sperati  et  al.,
2017), the Kalman filter (Delle Monache et al.,  2011; Cassola
and Burlando, 2012; Bogoslovskiy et al., 2016; Buehner et al.,
2017; Pelosi et al., 2017), anomaly numerical-correction with ob-
servations (Peng et al., 2013, 2014), among which MOS is one
of  the  most  commonly  used  to  produce  unbiased  forecasts
(Glahn et al., 2009). MOS uses multiple linear regression to pro-
duce an improved forecast at specific locations by using model
forecast  variables  and  prior  observations  as  predictors  (Mar-
zban et al., 2006; Cheng and Steenburgh, 2007). MOS remains
a  useful  tool  and,  during  the  2002  Winter  Olympic  Games,
MM5-based MOS outperformed the native forecasts produced
by MM5 and was  equally  or  more  skillful  than  human-gener-
ated  forecasts  by  the  Olympic  Forecast  Team  (Hart  et  al.,
2003). Glahn (2014) used MOS with a decay factor to predict
temperature and dewpoint, and showed how different values of
the  decay  factor  affect  MOS  temperature  and  dewpoint  fore-
casts (Glahn, 2014).

Although machine learning and statistics both draw conclu-
sions from the data, they belong to two different modeling cul-
tures. Statistics assumes that the data are generated by a given
stochastic data model. Statistical methods have few parameters,
and the values of the parameters are estimated from the data. Ma-
chine learning uses algorithmic models and treats the data mech-
anism as unknown. The approach of machine learning is to find
an algorithm that can be fitted to the data, and it has lots of para-
meters (Breiman, 2001b). Machine learning has developed rap-
idly in fields outside statistics. It can be used both on large com-

plex datasets and as a more accurate and informative alternat-
ive  to  data  modeling  on  smaller  datasets  (Mirkin,  2011).  Ma-
chine learning is becoming increasingly more important to the
development  of  science  and  technology  (Mjolsness  and  De-
coste, 2001). To apply machine learning to practical problems,
one of  the most  important  things is  to  apply feature engineer-
ing and data  structures  (Domingos,  2012).  The quality  of  fea-
ture engineering directly affects the final result. For some practic-
al problems with special data structures, targeted feature engin-
eering is required.

Since  weather  forecasts  depend  highly  on  data  informa-
tion and technology, how to make better use of machine learn-
ing and big-data technology to improve weather forecasts has be-
come a research hotspot. Machine learning has been used in met-
eorology  for  decades  (Haupt  et  al.,  2009; Lakshmanan  et  al.,
2015; Haupt  and  Kosovic,  2016; Cabos  et  al.,  2017).  For  in-
stance, the neural network technique was applied to the inver-
sion of a multiple scattering model to estimate snow paramet-
ers  from  passive  microwave  measurements  (Tsang  et  al.,
1992). Schiller and Doerffer (1999) used a neural network tech-
nique for inverting a radiative transfer forward model to estim-
ate the concentration of  phytoplankton pigment from Medium
Resolution  Imaging  Spectrometer  data  (Schiller  and  Doerffer,
1999). Chattopadhyay et al. (2013) put forward a nonlinear clus-
tering technique to identify the structures of the Madden−Juli-
an  Oscillation  (Chattopadhyay  et  al.,  2013). Woo  and  Wong
(2017) applied  optical  flow  techniques  to  radar-based  rainfall
forecasting (Woo and Wong, 2017). Weather consultation data
are unique, and mainly include NWP model data and observation-
al data. They have different data structures and features, which
makes  feature  engineering  a  complicated  task.  On  the  one
hand,  the  observational  data  are  real,  but  they  only  comprise
the historical data of weather stations. If relying solely on obser-
vational data for prediction, only short-term weather can be pre-
dicted. On the other hand, model data reflect the average of a re-
gion, and can therefore help to make long-term predictions. Fur-
thermore,  model  data  have  time  series  and  a  spatial  structure
that  contain  abundant  intrinsic  information  on  the  problem  to
be solved.

Therefore, the key to using machine learning algorithms to
solve the problems of weather forecasts is to apply feature engin-
eering, such that the structure of observational and model data
can be fully taken into account. This is a difficult but meaning-
ful topic.

The  ever-increasing  demand  for  weather  forecasts  has
made the accuracy of grid weather forecasts more and more im-
portant.  However,  most  post-processing  methods,  such  as
MOS,  can  only  consider  the  correction  of  one  spatial  point,
without  considering  the  spatial  and  temporal  structure  of  the
grid. Currently, one challenging and important area of research
is finding a solution to apply post-processing methods to large
volumes of gridded data across large dimensions in space and
time. The feature engineering of constructing a data structure is
a useful technology to achieve this goal.

In this paper, the model output machine learning (MOML)
method  is  proposed  for  simulating  weather  consultation.
MOML matches NWP forecasts against a long record of verify-
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ing observations through a regression function that uses a ma-
chine  learning  algorithm.  MOML  constructs  datasets  by  fea-
ture engineering based on spatial and temporal data, and it can
make full use of the spatial and temporal structure of a point on
the grid. In order to test the results of the application in practic-
al problems, the MOML method is used to forecast 2-m grid tem-
perature in the Beijing area. A variety of post-processing meth-
ods are used to calculate the 2-m temperature with different data-
sets in a 12-month period, including several machine learning al-
gorithms,  such  as  multiple  linear  regression  and  Random
Forest, two training periods, and three datasets.

The  paper  is  organized  as  follows:  In  section  2,  the  data
and  the  problem  concerned  in  this  study  are  described.  The
MOML method  is  proposed  in  section  3.  Section  4  compares
the NWP forecasts with the numerical results from multiple lin-
ear  regression,  Random  Forest,  and  MOS.  Conclusions  are
drawn in section 5.

2. Data and problem

2.1. Model data

The six-hourly forecast data of the ECMWF model initial-

ized at 0000 UTC up to a lead time of 360 hours from January
2012 to November 2016 are used in this paper. The model data
are obtained for a grid of 5 × 6 points covering the Beijing area
(39°−41°N,  115°−117.5°E)  with  a  horizontal  resolution  of
0.5°, as well as the grid points on the edge of this area, and thus
the model  data  on this  7 × 8 grid are used.  Several  predictors
(e.g.,  land−sea mask)  have the same value in  the Beijing area
and do not change with time. In addition to these unnecessary
variables, 21 predictors are chosen, broadly based on meteorolo-
gical intuition. Table 1 shows these predictors and their abbrevi-
ations.

(C ∈ {10U,10V, · · · ,TP})

These  model  data  constitute  a  part  of  the  original  dataset
D0, and this part is denoted by X0. A record of meteorological ele-
ments  on a  certain  day at  a  spatial  point  is  called a  sample S,
and thus there are 1796 samples, i.e., S = 1, 2, …, 1796. Each
sample has 61 six-hour time steps TTem with a forecast range of
0−360 hours (TTem= 0, 6, …, 360) and 21 predictors C, as lis-
ted in Table 1 . The horizontal grid divi-
sion is 7 × 8, and each spatial point of this region is denoted by
(m, n), where m = 1, 2…, 7 and n = 1, 2, …, 8. Therefore, X0 con-
sists of a 5D array, the size of which is 1796 × 61 × 21 × 7 × 8,
and it can be written as

X0 =
{
xm,n,S ,TTem,C

}
m=1,2,··· ,7, n=1,2,··· ,8,S=1,2,··· ,1796, TTem=0,6,··· ,360,C∈{10U,10V,··· ,TP} .

Ă
2.2. Observational data

Data assimilation can determine the best possible atmospher-
ic state using observations and short-range forecasts. The weath-
er forecasts produced at the ECMWF use data assimilation and

obtain the model analysis (zero-hour forecast) from meteorologic-
al observations. Therefore, for this study, the model analysis is
used as the label, because not every grid point has an observa-
tion station. Furthermore, the model analysis data contain the ob-
servational  information  through  data  assimilation.  The  model
analysis data used in this paper are the 2-m temperature of the
ECMWF analysis in the Beijing area, with a horizontal resolu-
tion  of  0.5°  and  recorded  every  0000  UTC  from  1  January
2012 to 15 December 2016.

These observational data constitute the other part of the ori-
ginal dataset D0, and this part is denoted by Y0, D0 = (X0, Y0).
Following the above notation,  the  samples S =  1,  2,  …, 1796
are from January 2012 to November 2016, the predictor C is giv-
en the value 2T, 2T stands for 2-m temperature, the horizontal
grid division is 5 × 6, and thus m = 2, 3, …, 6 and n = 2, 3, …,
7.  Actually,  the  model  analysis  data  include  1811  days,  be-
cause, for a sample, the temperatures in the next 15 days are pre-
dicted by the model, and the corresponding true values need to
be used. Let t be the forecast lead time, t = 24, 48, …, 360 hour,
for  a  fixed  (m, n)  and S,  the  temperatures  in  the  next t hours
can be aggregated into vectors. Y0 can be written asĂ

Y0 =
{
ym,n,t,S

}
m=2,3,··· ,6, n=2,3,··· ,7, t=24,48,··· ,360,S=1,2,··· ,1796 ,

where C =  2T  was  omitted. Y0 consists  of  a  4D  array,  of
which the size is 1796 × 5 × 6 × 15.

2.3. Problem

For  this  study,  the  grid  temperature  forecast  is  actually  a
problem of  using  the  predictions  from the  ECMWF model  as

Table 1. Ă The predictors taken from the ECMWF model and their
abbreviations.

Predictor Abbreviation

10-m zonal wind component 10U
10-m meridional wind component 10V
2-m dewpoint temperature 2D
2-m temperature 2T
Convective available potential energy CAPE
Maximum temperature at 2 m in the last 6 h MX2T6
Mean sea level pressure MSL
Minimum temperature at 2 m in the last 6 h MN2T6
Skin temperature SKT
Snow depth water equivalent SD
Snowfall water equivalent SF
Sunshine duration SUND
Surface latent heat flux SLHF
Surface net solar radiation SSR
Surface net thermal radiation STR
Surface pressure SP
Surface sensible heat flux SSHF
Top net thermal radiation TTR
Total cloud cover TCC
Total column water TCW
Total precipitation TP
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the  input  and  obtaining  the  2-m  grid  temperature  forecasts  as
the  output.  Focusing  on  the  samples  from January  to  Novem-
ber 2016,  for  each sample,  the 2-m grid temperature forecasts
in the Beijing area at the forecast lead times of 1−15 days need
to be forecast.

3. Methods

3.1. Univariate linear running training period MOS

Univariate  linear  MOS  is  one  of  the  most  important  and
widely  used  statistical  post-processing  methods  (Glahn  and
Lowry,  1972; Marzban  et  al.,  2006).  The  statistical  method
used by univariate linear MOS is unary linear regression; thus,
only one predictor is used. The general unary linear regression
equation of univariate linear MOS can be written asĂ

y = w0+w1xp ,

y = ym,n,t,S
x = xm,n,S ,TTem=t,C=2T

where y is  the  desired  predicted  value; xp is  the  predictor,
which is the NWP model output of this predicted value; w0
is the intercept parameter, and w1 is the slope parameter of
the linear regression equation. Applying univariate linear run-
ning training period MOS to this problem, for a fixed (m, n,
t)  and S,  the  predicted  value ,  the  predictor

, and the parameters (w0, w1) have been
estimated  from a  large  amount  of  historical  data.  The  run-
ning training period will be explained in section 3.3.1.

3.2. Machine learning

y = f (x), (x,y) ∈ (Xtest,Ytest)

xm,n,S ,T,C

ym,n,t,S

The meaning of machine learning in terms of weather fore-
casting  can  be  understood  in  conjunction  with  the  data  men-
tioned  above.  In  machine  learning,  a  feature  is  an  individual
measurable property or characteristic of a phenomenon being ob-
served, and a label is resulting information (Bishop, 2006). Ma-
chine learning obtains a model f by learning in the training set
(Xtrain, Ytrain).  Then,  for  a  test  sample  in  the  test  set,  its  pre-
dicted value  can be obtained. For
a  sample S at  fixed  (m, n, t)  in  this  problem,  the  features  are

 or  some  combinations  of  them,  and  the  label  is
. The construction of the training and test set and the selec-

tion of  features  are  the  key to  the  problem,  which will  be  ex-
plained in section 2.3.

Using the MOML method to solve the problem raised in sec-

tion  2.3,  the  most  important  step  is  feature  engineering.  Fea-
ture  engineering  produces  different  datasets,  and  then  a  ma-
chine  learning  algorithm is  used  to  process  these  datasets.  As
we all know, in order to obtain better results, the importance of
feature engineering is far greater than that of the choice of ma-
chine learning algorithm. Therefore, this paper focuses on fea-
ture engineering in MOML (section 2.3),  and two mature ma-
chine learning algorithms are used.

3.2.1.ĂĂĂĂMultiple linear regression

x1, x2, ..., xd ∈ Xtrain y ∈ Ytrain

Multiple  linear  regression  attempts  to  model  the  relation-
ship between two or more explanatory features and a response
variable by fitting a linear equation to observed data. In this prob-
lem,  a  multiple  linear  regression  model  with d features

 and a label , can be written as
Ă

f (x1, x2, ..., xd) = w1x1+w2x2+ · · ·+wd xd +b ,

f (x) = wTx+b

w = (w1,w2, ...,wd)T

x ∈ Xtest

which can also be written in the vector form .
The aim of learning in the training set is to decide the coeffi-
cient  and b, so as to make f(x) as close
to y as possible (Alpaydin, 2014). The multiple linear mod-
el f can  be  used  to  predict  the  results f(x)  in  the  test  set
( ).

Multiple  linear  model  is  a  simple  but  powerful  model  to
solve problems. The coefficient can intuitively express the im-
portance of each independent normalized feature, which means
the multiple linear model is an explanatory model.

3.2.2.ĂĂĂĂRandom Forest

A decision tree is a tree-like structure in which each intern-
al node represents a test on an attribute, each branch represents
the output of the test, and each leaf node represents a class la-
bel (Alpaydin, 2014). Decision trees can be classified into classi-
fication trees and regression trees. This problem is a regression
problem, and thus a regression tree is used. A regression tree gen-
eration algorithm that can be applied to this problem is depic-
ted in Fig. 1.

This regression tree generation algorithm chooses the optim-
al  splitting  features xj and  the  optimal  splitting  point aj,  and
solves
Ă

Ă

Optimal splitting feature 
Optimal splitting point 

Optimal splitting feature 
Optimal splitting point 

Optimal feature 
Optimal splitting point 

<

< <
Ă

Fig.  1.  Diagram  of  a  regression  tree  generation  algorithm,  where xj is  the
optimal splitting features and aj is the optimal splitting point.
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min
j,a j

⎡⎢⎢⎢⎢⎢⎢⎢⎣min
c1

∑

x∈R1( j,a j)

(y− c1)2+min
c2

∑

x∈R2( j,a j)

(y− c2)2

⎤⎥⎥⎥⎥⎥⎥⎥⎦ ,

R1( j,a j) = {x|x j < a j},R2( j,a j) = {x|x j � a j}
ĉm = E[y|x ∈ Rm]

m = 1,2

where ,  and  out-
put  the  predicted  values  for  each  class ,

. For R1 and R2, repeat the above steps, finally generat-
ing the regression treeĂ

f (x) =
∑

m

ĉmI(x ∈ Rm) .

x j ∈ Xtrain y ∈ Ytrain x ∈ Xtest

f (x)

In this problem, a regression tree f is generated with the fea-
tures  and the label ; thus, for , the pre-
dicted value is .

The bagging decision tree algorithm is an ensemble of de-
cision  trees  trained  in  parallel,  and  the  Random  Forest  al-
gorithm is an extended version of the bagging decision tree al-
gorithm, which introduces random attribute selection in the train-
ing process of the decision tree (Breiman, 2001a).

Actually, the dataset is divided into a training set and test
set, and the training set is also randomly divided into a training
subset  and  validation  subset.  The  training  subset  and  valida-
tion subset used in the Random Forest algorithm are generated
by  the  random  selection  of  bagging  from  the  training  set
(Breiman, 2001a). The test set is used to test the results of the al-
gorithm.

Random  Forest  has  low  computational  cost  and  shows
strong performance in  many practical  problems.  The diversity
of  the  base  learners  in  Random  Forest  is  not  only  from  the
sample bagging,  but  also from the feature  bagging,  which en-
ables  the generalization performance of  the final  ensemble al-
gorithm  to  be  further  improved  by  the  increase  in  the  differ-
ence among the base learners.

3.3. MOML method

MOML is a machine learning-based post-processing meth-
od,  which  matches  NWP  forecasts  against  observations
through a regression function, and improves the output of the en-
semble forecast. The MOML regression function uses an exist-
ing machine learning algorithm. Setting the MOML regression
function as f, the MOML regression equation is written asĂ

y = f (x;w) = f (x1, x2, · · · ;w0,w1,w2, · · · ) ,
y ∈ Ytrain x = (x1, x2, · · · ) ∈ Xtrain

w = (w0,w1,w2, · · · )
where  are the labels,  are the
features,  and  the  parameters  can  be
learned by the machine learning algorithm.

This  MOML method  involves  performing  two  steps:  fea-
ture engineering and machine learning.

First,  by  utilizing  feature  engineering  (sections  3.3.1  and
3.3.2), the original dataset D0 = (X0, Y0) needs to be processed in-
to the training set (Xtrain, Ytrain) and the test set (Xtest, Ytest) to fit
machine learning. The test set can be obtained by dividing the
samples; when S = 1442, 1443…, 1796, the data are in the test
set.  The feature engineering focuses on two aspects: the train-
ing period and the dataset.

On the one hand, for training set selection, the samples of
the  original  training  set  are S =  1,  2 …,  1441,  and  for  each

sample S in the test set there are different ways to select the train-
ing period to construct the training set. For this study, the origin-
al  training  set  can  be  improved  to  some  training  periods  that
are more suitable for this problem (example in section 3.3.1).

y = ym,n,t,S x ∈ X0

On the other hand, for a sample S at fixed (m, n, t) in this
problem, the label  and the features  can be di-
vided  into  different  forms  according  to  the  various  ways  of
adding the time series and the spatial structure. In order to se-
lect the features x that are suitable for solving this problem, it
is necessary to construct a suitable dataset that contains the spa-
tial structure and then add an effective historical forecast data-
set that contains the time series (example in section 3.3.2).

θ̂

Second,  by  using  the  machine  learning  regression  func-
tion f and the training data, the parameter  that minimizes the
loss function Lossf on the training dataset can be learned,Ă

θ̂ =argmin
θ

Loss f
[
f (xtrain;θ),ytrain

]
, xtrain ∈ Xtrain ,

ytrain ∈ Ytrain ,

θ̂

where  argmin  stands  for  arguments  of  the  minimum,  and
are the points of domain of some function at which the func-
tion values are minimized, and the machine learning regres-
sion function f and the parameter  are applied to calculate
the  predicted  value ypredict on  the  test  dataset  and  evaluate
the method according to TRMSE,Ă

ypredict = f (xtest; θ̂), xtest ∈ Xtest ,
Ă

TRMSE( f ; θ̂) =
∥∥∥ypredict− ytest

∥∥∥
2,ytest ∈ Ytest .

The flow diagram of the MOML method is shown in Fig. 2.
The MOML diagram uses multi-layer structures to represent his-
torical  time series.  The extracted square  of  the  diagram refers
to selecting the required data from all the features to form predict-
ors on the one hand, and on the other hand it represents the spa-
tial  structure  around a  single  grid  point.  MOML can  calibrate
not  only  the  forecasts  of  a  single  point,  but  also  those  of  all
points on the grid by constructing a suitable dataset. Feature en-
gineering is the first and most important step of MOML, which
includes the processing of both the training period and datasets.
In terms of the training period, a year-round training period and
running  training  period  are  considered.  For  datasets,  temporal
and spatial grid data are considered and combined into three data-
sets.

3.3.1.ĂĂĂĂFeature engineering: training period

The data of 366 days (from 1 December 2015 to 30 Novem-
ber 2016) from those of 1827 days (from 1 January 2012 to 30
November 2016) from the ECMWF model are taken as the test
set, i.e.,Ă

(Xtest,Ytest) = (Xi,Yi)|S=1442,1443,··· ,1796., i = 1,2,3 .

The training period is a set of times throughout the origin-
al training set, and the training set in this problem concerns the
following two types of training period.

1160 MODEL OUTPUT MACHINE LEARNING METHOD VOLUME 36

Ă

ĂĂ



3.3.1.1.ĂĂĂĂYear-round training period

One of the most natural ideas is for any month on the test
set,  all  the  previous  data  are  taken as  the training set.  For  ex-
ample, when the temperatures from 1 February to 29 February
2016 need to be forecast, the training period is 1 January 2012
to 31 January 2016. This training period is named as the year-
round training  period.  This  training  period  is  simple  and  suit-
able for most machine learning algorithms, but the training peri-
od is fixed for some samples.

3.3.1.2.ĂĂĂĂRunning training period

Some  optimal  training  periods  have  been  proposed  in  re-
cent  years. Wu  et  al.  (2016) used  the  running  training  period
scheme of MOS to forecast temperature (Wu et al., 2016). The
idea  of  the  running training  period  is  that,  for  any day on  the
test  set,  the  data  for  35  days  before  the  forecast  time  and  35
days  before  and  after  the  forecast  time  for  previous  years  are
taken as a training set. For example, when the temperature of 1
May 2016 needs to be forecast,  the training period is from 27
March to 30 April 2016 and from 27 March to 5 June 2012−15.
This training period can be adjusted as the date changes.

3.3.2.ĂĂĂĂFeature engineering: dataset

The original dataset D0 = (X0, Y0) is reconstituted into data-

sets 1−3 separately, Di = (Xi, Yi), i = 1, 2, 3. The labels of data-
sets 1 and 2 are the same as that of the original data set, i.e.,
Ă

Y1 = Y2 = Y0

=
{
ym,n,t,S

}
m=2,3,··· ,6, n=2,3,··· ,7, t=24,48,··· ,360,S=1,2,··· ,1796 .

The features are different according to diverse ways of deal-
ing with the spatial structure.

3.3.2.1.ĂĂĂĂDataset 1

ym,n,t,S

m = 2,3, · · · ,6, n = 2,3, · · · ,7, t = 24,48, · · · ,360
xm,n,t,S

For the label  of the MOML regression equation, Eq.
(4), at a fixed spatial point (m, n) and a fixed forecast time tth
hour  ( ),  the
features  of  dataset  1  take the predicted data  of  the last
66 hours from t, every 6 hours, which is denoted as
Ă

xm,n,t,S =
{
xm,n,t,S ,TTem,C

}
Tem=t−66,t−60,··· ,t,C∈{10U,10V,··· ,TP} ,

xm,n,t,S ,TTem,C

xm,n,t,S ,CTTem
xm,n,t,S

CTTem

if t  60, TTem = 0, 6…, t. Then, reshape the array 
into ,  and thus the number of features of 
is the number of elements in , which is 21 × 12 = 252,
Ă

xm,n,t,S =
{
xm,n,t,S ,CTTem

}
C∈{10U,10V,··· ,TP}, TTem=t−66,t−60,··· ,t ,

Ă

X1 =
{
xm,n,t,S

}
m=2,3,··· ,6, n=2,3,··· ,7, t=24,48,··· ,360,S=1,2,··· ,1796 ,

xm,n,t,S =
{
xi, j,t,S ,TTem,C

}
i=m−1,m,m+1, j=n−1,n,n+1,TTem=t−66,t−60,··· ,t,C∈{10U,10V,··· ,TP} ,

xi, j,t,S ,TTem,C xm,n,t,S ,Ci, j,TTem

if t  60, TTem =  0,  6 …, t.  Then,  reshape  the  array
 into ,  and thus  the  number  of  fea-

xm,n,t,S Ci, j,TTemtures of  is the number of elements in , which
is 21 × 12 × 3 × 3 = 2268,

xm,n,t,S =
{
xm,n,t,S ,Ci, j,TTem

}
C∈{10U,10V,··· ,TP},i=m−1,m,m+1, j=n−1,n,n+1, TTem=t−66,t−60,··· ,t ,

Ă

X2 =
{
xm,n,t,S

}
m=2,3,··· ,6, n=2,3,··· ,7, t=24,48,··· ,360,S=1,2,··· ,1796 ,

and dataset 2 D2 = (X2, Y2). Figure 3b depicts dataset 2 dia- grammatically.

Ă

0-T hour
Original data

Features
MxN

0-T hour data

MxN

Machine Learning

Predictors

Ă

Fig.  2.  Flow  diagram  of  the  MOML  method.  The  blue  cuboids  are  the
original  data  in  the  Beijing  area,  and  the  green  cuboids  are  the  dataset  with
proper  feature  engineering.  The  yellow  cuboid  represents  the  process  of
machine learning, and the orange rectangle represents the output.
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and dataset 1 D1 = (X1, Y1). Figure 3a depicts dataset 1 dia-
grammatically.

3.3.2.2.ĂĂĂĂDataset 2

ym,n,t,S

m = 2,3, · · · ,6, n = 2,3, · · · ,7,
t = 24,48, · · · ,360 xm,n,t,S

For  the  label  at  a  fixed  spatial  point  (m, n)  and  a
fixed  forecast  time tth  hour  (

), the features  of dataset 2, plus the sur-
rounding  eight  grid  points  of  the  spatial  point  (m, n),  are  de-
noted as

3.3.2.3.ĂĂĂĂDataset 3

t = 24,48, · · · ,360

By using the idea of spatial interpolation, for a fixed spa-
tial point (m, n), the longitude, latitude and altitude of the grid
point are uniquely determined (m = 2,  3…, 6 and n = 2,  3…,
7).  At  a  fixed forecast  time tth  hour  ( )  of  a
sample S, all the 30 spatial points of the Beijing area are taken in-
to account separately, and thus there are 1796 × 30 samples SL

(S = 1, 2…, 1796 and L = 1, 2…, 30). The labels of dataset 3 areĂ

Y3 =
{
yt,S L

}
t=24,48,··· ,360,S=1,2,··· ,1796, L=1,2,··· ,30

.

xt,S L

Then, add the longitude, latitude and altitude of the 30 spa-
tial points as the new predictors to the features  of dataset
3, which is denoted asĂ

xt,S L ={
xt,S L,T,C

}
TTem=t−66,t−60,··· ,t,C∈{10U,10V,L,TP,Lon,Lat,Alt} ,

xt,S L,TTem,C
xt,S L,CTTem

xt,S L
CTTem

if t  60, TTem= 0, 6…, t. Then, reshape the array 
into ,  and  thus  the  number  of  features  of  is
the number of elements in ,  which is (21 + 3) × 12 =
288,Ă

xt,S L ={
xt,S L,TTem,C

}
C∈{10U,10V,L,TP,Lon,Lat,Alt} TTem=t−66,t−60,··· ,t ,

if t  60, TTem = 0, 6…, t. Also, we haveĂ

X3 =
{
xt,S L

}
t=24,48,··· ,360,S=1,2,··· ,1796, L=1,2,··· ,30

,

and dataset 3 D3 = (X3, Y3). Figure 3c depicts dataset 3 dia-
grammatically.

4. Results and discussion

In order  to evaluate the forecast  results  of  these methods,
the  root-mean-square  error  (RMSE)  and  temperature  predic-
tion accuracy are used to test the results of these algorithms.

The RMSE is one of the most common performance met-
rics for regression problems, and the RMSE of temperature is de-
noted by TRMSE,Ă

TRMSE( f ; D) =

⎧⎪⎪⎨⎪⎪⎩
1
K

K∑

k=1

[
f (xk)− yk

]2
⎫⎪⎪⎬⎪⎪⎭

1
2

,

where f is the machine learning regression function, D is the
dataset, K is the total number of samples of dataset D, xk is
the input, and yk is the label.

The temperature forecast accuracy (denoted by Fa) in this
study is defined as the percentage of absolute deviation of the
temperature forecast not being greater than 2°C,Ă

Fa =
Nr

Nf
×100% ,

where Nr is  the number of samples in which the difference
between  the  forecast  temperature  and  the  actual  temperat-
ure  does  not  exceed  ±2°C  and Nf is  the  total  number  of
samples to be forecast.

lr 1 lr 3
lr 1 lr 3

mos r

In  this  section,  the  MOML method  with  the  multiple  lin-
ear  regression  algorithm ( “lr ”)  and  Random Forest  algorithm
( “rf ”)  is  used  to  solve  the  problem  of  grid  temperature  fore-
casts, mentioned in section 2.3, and datasets 1−3 with two train-
ing periods,  a  year-round training period and running training
period, are adopted. It is worth noting that the multiple linear re-
gression algorithm is unsuitable for dataset 2 because it has too
many features, and the running training period is unsuitable for
Random Forest because of the heavy computation. The univari-
ate linear MOS method is a linear regression method that uses
only  temperature  data  and  does  not  require  the  datasets  intro-
duced in the last section. In fact, dataset 1 contains 21 features,
dataset 2 contains 2268 features, and multiple linear regression
is  used  on datasets  1  and 2  to  obtain  models  and .  It
can be considered that  and  are extensions of multi-fea-
ture  MOS.  The  running  training  period  of  univariate  linear
MOS is  an  optimal  training  period  scheme  (Wu et  al.,  2016).
Thus, univariate linear running training period MOS results in
the  running training period  are  used as  a  contrast.  The
methods used in the problem are listed in Table 2.

Table 2. Ă List of methods used and their notation.

Method Dataset Training period Notation

ECMWF − − ECMWF
Univariate linear MOS − Running mos_r
MOML (lr) 1 Year-round lr_1_y

3 Year-round lr_3_y
3 Running lr_3_r

MOML (rf) 2 Year-round rf_2_y
3 Year-round rf_3_y

Ă

)c()b()a(

Ă

Fig.  3.  Diagram  of  datasets  1−3.  Dataset  1  focuses  on  the  fixed  spatial  point,  and  dataset  2  adds  the
surrounding eight grid points.  Dataset 3 takes all  the 30 spatial points of the Beijing area into account in a
unified way.
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4.1. Whole-year comparison of the ECMWF model, uni-
variate  linear  running  training  period  MOS,  and
MOML

lr 3 r
rf 2 y

In this  subsection,  a  whole-year  comparison of  the ECM-
WF model, univariate linear running training period MOS, and
MOML is presented. The results of MOML with the multiple lin-
ear regression algorithm,  (Fig. 4), and Random Forest al-
gorithm, , are reported.

Actually, the better the model data, the better the forecast
results. The forecast accuracy is negatively correlated with the
RMSE.  Generally  speaking,  the  lower  the  RMSE,  the  higher
the  forecast  accuracy.  The  forecast  ability  of  the  model  de-
creases  linearly  in  a  short  time  period,  and  nonlinearly  in  a
long time period.

mos rAccording  to Fig.  4,  all  of  the  three  methods  ( ,

lr 3 r rf 2 y

lr 3 r mos r

rf 2 y mos r

 and ) can revise the 2-m temperature data of the
ECMWF  model  quite  well  in  the  sense  of  the  annual  mean.
The result of  is better than that of  when the fore-
cast time is 1−9 days, which also explains why the multiple lin-
ear  regression  model  is  better  than  the  univariate  linear  MOS
model after extending the features with appropriate feature engin-
eering. In particular,  the forecast accuracy of the first  day can
reach more than 90%, which is 10% higher than that of the ECM-
WF model. The result of  is better than that of  in
the whole forecast period, especially in the longer period. Be-
cause the temperature forecasting problem has strong linearity
when the forecast period is short, multiple linear regression pro-
duces good results. However, the temperature forecasting prob-
lem  has  nonlinearity  when  the  forecast  period  is  longer,  and
thus  some  nonlinear  algorithms,  such  as  Random  Forest,  are
more suitable for solving it. Accordingly, the numerical perform-

Ă

1 2 3 4 5 6 7 8 9 101112131415
Forecast lead time (day)

0.5

1

1.5

2

2.5

3

3.5

4

4.5

T
R

M
S

E
 (

C
)

2015/12/01 08:00 - 2016/11/30 08:00

ECMWF
lr_3_r
mos_r

1 2 3 4 5 6 7 8 9 101112131415
Forecast lead time (day)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
F

a (%
)

2015/12/01 08:00 - 2016/11/30 08:00

ECMWF
lr_3_r
mos_r

1 2 3 4 5 6 7 8 9 101112131415
Forecast lead time (day)

0.5

1

1.5

2

2.5

3

3.5

4

4.5

T
R

M
S

E
 (

C
)

2015/12/01 08:00 - 2016/11/30 08:00

ECMWF
rf_2_y
mos_r

1 2 3 4 5 6 7 8 9 101112131415
Forecast lead time (day)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
a (%

)

2015/12/01 08:00 - 2016/11/30 08:00

ECMWF
rf_2_y
mos_r

(a)

(b)

Ă

lr 3 r rf 2 y mos r

lr 3 r rf 2 y

Fig.  4.  Results  of  the ,  and  models,  using  one-year  temperature  grid  data  in  the
Beijing area as the test  set.  Left: TRMSE (RMSE; units:  °C).  Right: Fa (forecast  accuracy; units:  %).  (a)
shows  has  obvious  advantages  when  the  forecast  time  is  1−9  days,  and  (b)  shows  is
superior to other models in the whole forecast period, especially in the longer period.
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lr 3 r

rf 2 y

lr 3 r
rf 2 y

ance of each algorithm in the running and year-round training
periods  conform  to  this  rule.  Therefore,  produces  the
best  result,  i.e.,  the  highest  accuracy  and  the  smallest  RMSE,
when the forecast time is 1−6 days, while  produces the
best  result  when the forecast  time is  7−15 days.  Thus,  a  feas-
ible solution (denoted by fMOML) is presented for the grid temper-
ature  correction  in  the  Beijing  area,  which  involves  using  the

 method for  days  1−6 of  the  forecast  lead  time and  the
 method for days 7−15 (as shown in Fig. 5).

The  average TRMSE and Fa of  the  solution fMOML and  the
ECMWF model  (or  univariate  linear  MOS)  are  calculated  re-
spectively, and these values are then used to evaluate the differ-
ence between the forecasting abilities of the two methods. In con-
clusion,  the  average TRMSE and  average Fa of  the  solution  for

the fMOML method  decreases  by  0.605°C  and  increases  by
9.61%  compared  with  that  for  the  ECMWF  model,  respect-
ively, and by 0.189°C and 3.42% compared with that of the uni-
variate linear running training period MOS, respectively.

4.2. Month-by-month comparison of the three algorithms

mos r
lr 3 r, rf 2 y, rf 3 y, lr 3 y, lr 1 y

Considering that the change in temperature is seasonal with-
in  a  year  and  fierce  in  some  months  in  the  Beijing  area,  a
month-by-month  comparison  of  the  ECMWF  model,  univari-
ate  linear  running  training  period  MOS  ( )  and  MOML
method ( ) is presented in
this subsection.

4.2.1.ĂĂĂĂWinter months

It is more important to improve the accuracy of temperat-
Ă
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Fig. 5.  A feasible solution fMOML to the grid temperature correction in the Beijing area. fMOML uses the

 method for days 1−6 of the forecast lead time and the  method for days 7−15, and it has a
lot of advantages in the whole forecast period.
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Fig. 6. Results of grid temperature forecasts in the Beijing area in November (a), December (b), January
(c) and February (d). In these months, the forecast results of the ECMWF model do not work well, and
the linear methods  are better than other methods.

1164 MODEL OUTPUT MACHINE LEARNING METHOD VOLUME 36

Ă

ĂĂ



ure forecasts in winter, because the forecast results of the ECM-
WF  model  do  not  work  well  in  winter  months.  The  forecast
data in winter months are revised by the six methods listed in

Table 2. Figure 6 shows the correction results of the grid temper-
ature  data  in  the  Beijing  area  in  November,  December,  Janu-
ary and February.
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Fig. 6. (Continued)
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lr 3 r

lr 3 r

From December to February, the average TRMSE and aver-
age Fa of  the  method  decreases  by  1.267°C  and  in-
creases by 27.91%, respectively, compared with that of the ECM-
WF model, and by 0.652°C and 15.52% compared with that of
the  univariate  linear  running  training  period  MOS,  respect-
ively. As shown in the figures, the forecast results of the ECM-
WF model do not work well in these four months, while the res-
ults of the MOML methods are all better than those of the ECM-
WF model. On the whole, in these months, the results of linear
methods  are  better  than  other  methods  when the  forecast  lead
time  is  relatively  short,  and  the  results  of  MOML  with  Ran-
dom Forest are better when the forecast lead time is relatively
long. The results of the running training period are better than
those of the year-round training period when applying a linear
method.  On  the  whole,  method  is  the  best  method  in
winter months.

4.2.2.ĂĂĂĂOther months

Figure 7 shows the results of the grid temperature data in

the Beijing area in March, June, July, August and October.  In
these five months, the forecast result of the ECMWF model are
better  than  those  in  winter  months,  and  the  results  of  some
MOML methods do not work better than the ECMWF model.
On the whole, in these months, the results of MOML with the
multiple linear regression algorithm are better than those of oth-
er  methods  in  the  first  few  days  of  the  forecast  period,  and
those with Random Forest are better than other methods when
the forecast time is relatively long. Also, the results of the run-
ning training period are better than those of the year-round train-
ing period when applying a linear method.

Figure 8 shows the correction results of the grid temperat-
ure data in Beijing in April, May and September. The forecast
results of the ECMWF model in these three months are better
than  those  in  the  other  months,  and  there  is  no  need  for  revi-
sion in selected times of the forecast period. On the whole, in
these three months, the results of MOML with the multiple lin-
ear regression algorithm are best in the first few days of the fore-
cast period, and those with the Random Forest algorithm are bet-
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Fig. 7. Results of grid temperature forecasts in the Beijing area in March (a), June (b), July (c), August
(d) and October (e). In these five months, the forecast results of the ECMWF model are better than those
in winter months. The linear methods are better than other methods when the forecast lead time is short,
and Random Forest algorithm are better when the forecast lead time is relatively long.
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ter than for other methods in the next few days. Also, the res-
ults  of  the  running  training  period  are  close  to  those  of  the
year-round training period when applying a linear method.

5. Conclusions

A  model  output  machine  learning  method  is  proposed  in
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Fig. 7. (Continued)

OCTOBER 2019 LI ET AL. 1167
Ă

Ă

ĂĂ



Ă

1 2 3 4 5 6 7 8 9 101112131415
Forecast lead time (day)

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
T

R
M

S
E

 (
C

)
2016/04/- 08:00

ECMWF
lr_4_r
mos_r
rf_2_y
rf_4_y
lr_4_y
lr_1_y

1 2 3 4 5 6 7 8 9 101112131415
Forecast lead time (day)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
a (%

)

2016/04/- 08:00

ECMWF
lr_4_r
mos_r
rf_2_y
rf_4_y
lr_4_y
lr_1_y

(a)

1 2 3 4 5 6 7 8 9 101112131415
Forecast lead time (day)

0.5

1

1.5

2

2.5

3

3.5

4

T
R

M
S

E
 (

C
)

2016/05/- 08:00

ECMWF
lr_4_r
mos_r
rf_2_y
rf_4_y
lr_4_y
lr_1_y

1 2 3 4 5 6 7 8 9 101112131415
Forecast lead time (day)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
a (%

)
2016/05/- 08:00

ECMWF
lr_4_r
mos_r
rf_2_y
rf_4_y
lr_4_y
lr_1_y

(b)

1 2 3 4 5 6 7 8 9 101112131415
Forecast lead time (day)

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

T
R

M
S

E
 (

C
)

2016/09/- 08:00

ECMWF
lr_4_r
mos_r
rf_2_y
rf_4_y
lr_4_y
lr_1_y

1 2 3 4 5 6 7 8 9 101112131415
Forecast lead time (day)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
a (%

)

2016/09/- 08:00

ECMWF
lr_4_r
mos_r
rf_2_y
rf_4_y
lr_4_y
lr_1_y

(c)

Ă

Fig. 8. Results of grid temperature forecasts in the Beijing area in April (a), May (b) and September (c). In
these three months, the forecast results of the ECMWF model in these three months are better than those in
the other months. The multiple linear regression algorithm is best in the first few days of the forecast period,
and the Random Forest algorithm is better than for other methods in the next few days.
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this paper and applied with multiple linear regression or the Ran-
dom  Forest  algorithm  to  forecast  grid  temperature  in  the
Beijing area in three datasets and two training periods. MOML
takes advantage of machine learning algorithms, which has fea-
ture engineering for existing data structures, so that it can bet-
ter fit the model and obtain more accurate results. The most im-
portant step of MOML is feature engineering. Feature engineer-
ing takes into account the temporal and spatial grids of the prob-
lem,  as  well  as  the  training  period,  and  processes  the  original
dataset into different datasets. The selection of the machine learn-
ing algorithm should ensure that  it  can match the correspond-
ing datasets.  Selecting other machine learning algorithms may
improve the results slightly, but this is not the focus of this pa-
per. The main work of this paper is the feature engineering of
MOML. In the sense of the annual mean, MOML with the mul-
tiple  linear  regression  algorithm,  dataset  3,  and  running  train-
ing  period  produces  the  best  result  when  the  forecast  time  is
1−6  days,  while  MOML  with  the  Random  Forest,  dataset  2,
and a year-round training period produces the best result when
the forecast time is 7−15 days. Generally, in each month, the res-
ults of MOML with the linear algorithm are better than others
when  the  forecast  time  is  relatively  short,  and  the  results  of
MOML with the nonlinear algorithm (Random Forest) are bet-
ter when the forecast time is relatively long. Also, the results of
the  running  training  period  are  better  than  those  of  the  year-
round training period when applying the linear algorithm, and
the results of datasets 2 and 3 are better than those of dataset 1.
The numerical experiments show that the ECMWF model pro-
duces  the  worst  temperature  forecast  results  in  winter.  Thus,
the  temperature  forecast  in  winter  is  urgently  in  need  of  revi-
sion.  Fortunately,  the  correction  effect  of  MOML  for  winter
months is better than other months. Finally, a feasible solution
of  MOML  is  presented  for  grid  temperature  correction  in  the
Beijing area.

In summary, the MOML method is better than the univari-
ate linear running training period MOS method with a running
training period, and has the ability to improve grid temperature
forecast  results  in  the  Beijing area.  In  addition,  as  a  post-pro-
cessing method, MOML can be applied to the weather consulta-
tion process. This approach has good application prospects and
can greatly reduce the manpower consumption during the con-
sultation. In terms of its practical applicability, the machine learn-
ing algorithm in this paper adopts a mature,  fast,  multiple lin-
ear  regression  algorithm  and  the  Random  Forest  algorithm,
which do not need a lot of parameter adjustment and are easy
to use. Constructing a more accurate and efficient machine learn-
ing algorithm to solve the problem will  be our focus in future
work.
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