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A TENSOR MODEL FOR NEMATIC PHASES OF BENT-CORE
MOLECULES BASED ON MOLECULAR THEORY\ast 

JIE XU\dagger , FANGFU YE\ddagger , AND PINGWEN ZHANG\S 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . We construct a tensor model for nematic phases of bent-core molecules from molec-
ular theory. The form of free energy is determined by molecular symmetry, which includes the
couplings and derivatives of a vector and two second-order tensors, with the coefficients determined
by molecular parameters. We use the model to study the nematic phases resulting from the hard-
core potential. Unlike most macroscopic models, we are able to obtain the phase diagram about
the molecular parameters, but not merely some phenomenological coefficients. The tensor model is
applicable to other molecules with the same symmetry, which we demonstrate by studying the phase
diagram of star molecules.

\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs . liquid crystals, bent-core molecules, tensor model, molecular theory, modulated
nematic phases, twist-bend phase

\bfA \bfM \bfS \bfs \bfu \bfb \bfj \bfe \bfc \bft \bfc \bfl \bfa \bfs \bfs \bfi fi\bfc \bfa \bft \bfi \bfo \bfn \bfs . 76A15, 82D30

\bfD \bfO \bfI . 10.1137/16M1099789

1. Introduction. The ability to show complex orientational order has drawn
much attention from the liquid crystal community to bent-core molecules. This feature
originates from the C2v

1 molecular symmetry that breaks the axisymmetry of a rod-
like molecule. The polar and biaxial order is notable in layer or columnar structures
[8, 31]. The homogeneous biaxial nematic phase is also observed [20, 1], spontaneously
formed by bent-core molecules without imposing external forces. Moreover, bent-core
molecules are able to exhibit modulated nematic phases that have constant number
density in space but show modulation in orientational distribution. The prediction was
made very early [22, 10]. Later, the twist-bend phase was identified experimentally
[27, 11, 26, 24, 5, 7].

The modulated nematic phases have also been discussed theoretically with dif-
ferent macroscopic phenomenological models [19, 30, 33, 34, 29]. They are helpful in
understanding the phase behaviors. However, since these models focus on particular
phase transitions only, the order parameters and terms in the free energy are incom-
plete. In particular, all of these models do not include the biaxial nematic phase,
which is studied separately in the literature (see [4] and the references therein). Also,
these models provide little information about the effect of molecular interaction on
the phase transition. Some models incorporate microscopic interaction [13, 32], but
the desired phases are induced under artificial external forces that resemble the struc-
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1582 JIE XU, FANGFU YE, AND PINGWEN ZHANG

ture of the phases. On the other hand, molecular simulations [6, 23, 17, 9, 25] have
also been carried out for bent-core molecules. A recent work [12] uses both molec-
ular theory and molecular simulation to study a curved molecule that can exhibit
the twist-bend phase. Molecular theory or molecular simulation can, indeed, build
a connection between molecular interaction and phase behaviors, but they are also
costly in computation.

Understanding the connection between the molecular interaction and the resulting
phase behaviors is the fundamental problem for liquid crystals. It is more significant
for bent-core molecules because ample experimental results suggest that the phase
behaviors of bent-core molecules can be sensitively dependent on specific molecular
architecture [31]. To achieve this goal, it is necessary that we are armed with a
model that (1) clearly reflects the role of molecular interaction and that (2) can
be solved efficiently, so that we can systematically examine the effect of physical
parameters without spending a very long time. Of all the models we mentioned
above, microscopic models only meet the first requirement, while macroscopic models
only meet the second, although some efforts are made to match both goals [16, 28].

In [14], a tensor model is constructed for rod-like molecules, which takes a macro-
scopic form, while carrying information of the microscopic interaction. Starting from
the molecular theory that includes the entropy and the pairwise interaction, the model
is derived by the expansion of the spatial moments of the kernel function, along with
the Bingham approximation [3] that minimizes the entropy term with the value of
the second-order tensor fixed. By adopting the hard-core interaction and a simple
molecular geometry, analytical calculations can be done in the expansion. In the re-
sulting model, the free energy is expressed by some tensors, with the coefficients being
functions of molecular parameters.

For general cases where analytical calculations are not available, we have dis-
cussed the expansion for homogeneous phases [35]. First, we analyze the symmetries
of the spatially homogeneous kernel function that originate from the molecular sym-
metry. Then, we are able to choose a finite-dimensional polynomial space satisfying
the symmetries. Since we can separate variables for each monomial, the free energy
can be expressed by some tensors if we use any function in the polynomial space to
approximate the kernel function. When the truncation criterion is fixed, the polyno-
mial space is determined by the symmetries. Therefore, the form of free energy, as
well as the tensors that appear in the free energy and serve as order parameters, is
determined by molecular symmetry. For bent-core molecules, if we truncate at second
order, the order parameters include three tensors, one first order and two second order.
Finally, we calculate the projection of the kernel function in the polynomial space to
derive the coefficients. In this way, the coefficients receive the information of molec-
ular interaction in the kernel function and are expressed as functions of molecular
parameters.

The purpose of this paper is to construct a tensor model for inhomogeneous
phases. Now the kernel function is not spatially homogeneous, so we need to ap-
proximate its spatial moments as in [14]. In this case, the procedure for spatially
homogeneous phases is still applicable with significant extensions technically. In par-
ticular, we need to find a suitable representation of spatial moments before writing
down the approximation polynomial space. The resulting free energy is still a func-
tional of the three tensors obtained for the homogeneous phases but contains couplings
and derivatives that enable us to study modulated nematic phases. For the entropy
term, we follow the idea for rod-like molecules by minimizing it with the value of three
tensors fixed. The model has the following features.
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TENSOR MODEL FOR BENT-CORE MOLECULES 1583

Fig. 1. A bent-core molecule (left) and a star molecule (right).

\bullet The form of free energy is determined by the molecular symmetry. Thus,
the model is applicable to any molecule with the same symmetry. More-
over, the free energy is independent of the choice of the reference space-fixed
orthonormal frame.

\bullet Under a certain truncation criterion, the model includes all the terms allowed
by the molecular symmetry. Thus, the model is not specifically designed for
certain phase transitions.

\bullet For molecules with the same symmetry and different architecture or interac-
tion, they are differentiated by the coefficients that are derived as functions
of molecular parameters.

\bullet As a special case, the model reduces to a model for rod-like molecules if the
bending is straightened.

We use the model to study the nematic phases of bent-core molecules resulting
from the hard-core interaction and find that the uniaxial and biaxial nematic phases,
as well as the modulated twist-bend phase, can possibly occur, which cover all the
nematic phases found experimentally so far. We obtain the phase diagram about
molecular parameters, showing how the molecular parameters affect the modulation in
the twist-bend phases. In addition, we examine the nematic phases of star molecules,
a variant of bent-core molecules, to illustrate the effect of the molecular shape on the
phase behavior. To our knowledge, it is the first result in which the phase behavior
about the molecular shape is systematically examined in a theoretical model.

The rest of paper is organized as follows. In section 2, we derive the tensor model
from molecular theory. The numerical results are presented in section 3. A concluding
remark is given in section 4. Some details are given in Appendices A and B.

2. The tensor model.

2.1. Notation. We consider bent-core molecules and star molecules, drawn in
Figure 1. A bent-core molecule has two identical arms jointed with fixed angle \theta . Each
arm is a cylinder with two spherical caps, with the length l/2 and the diameter D. A
star molecule has a third arm of the length l2 along the arrowhead direction. Both
molecules are regarded as fully rigid. Thus, the position and orientation of a molecule
are represented by those of the orthonormal frame ( \^O;\bfitm 1,\bfitm 2,\bfitm 3) mounted on it.
As shown in Figure 1, \bfitm 1 points toward the arrowhead direction, and \bfitm 2 is along the
connection of the farther ends of two arms. Both molecules have the C2v symmetry,
which allows the symmetry plane \^O\bfitm 1\bfitm 2 and the twofold rotational symmetry round
\bfitm 1. Denote by \bfitx \in \BbbR 3 the position of \^O and by P \in SO(3) the orientation of the
frame. The matrix representation of P , which consists of the components of \bfitm i, canD

ow
nl

oa
de

d 
02

/2
2/

21
 to

 1
15

.2
7.

20
4.

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1584 JIE XU, FANGFU YE, AND PINGWEN ZHANG

be expressed by Euler angles,

P = (\bfitm 1,\bfitm 2,\bfitm 3) =

\left(  m11 m21 m31

m12 m22 m32

m13 m23 m33

\right)  
(2.1)

=

\left(  cos\alpha  - sin\alpha cos \gamma sin\alpha sin \gamma 
sin\alpha cos\beta cos\alpha cos\beta cos \gamma  - sin\beta sin \gamma  - cos\alpha cos\beta sin \gamma  - sin\beta cos \gamma 
sin\alpha sin\beta cos\alpha sin\beta cos \gamma + cos\beta sin \gamma  - cos\alpha sin\beta sin \gamma + cos\beta cos \gamma 

\right)  .

The uniform probability measure on SO(3) is given by

dP =
1

8\pi 2
sin\alpha d\alpha d\beta d\gamma .

We can also view \bfitm i and mij as functions of P . In what follows, we use the notation
\bfitm i(P ) and mij(P ) to represent the \bfitm i and mij determined by a certain P .

The summation over repeated indices will be used. The product \bfitm 1\bfitm 1 is recog-
nized as the tensor product and results in a second-order tensor, while \bfitm 1 \cdot \bfitm 2 is the
inner product. For a second-order tensor Q, we use | Q| 2 = Q : Q = QijQij .

2.2. The derivation of tensor model. Our starting point is the second virial
expansion. The free energy includes the entropy and the contribution of pairwise
molecular interaction,

F [f ]

\beta 0
=

\int 
dPd\bfitx f(\bfitx , P ) log f(\bfitx , P ) +

1

2

\int 
dPd\bfitx dP \prime d\bfitx \prime f(\bfitx , P )G(\bfitr , P, P \prime )f(\bfitx \prime , P \prime ),

(2.2)

where \bfitr = \bfitx \prime  - \bfitx is the relative position of two molecules. The energy is measured by
\beta 0, the product of the Boltzmann constant and the temperature. The number density
f is a function of the position \bfitx and the orientation P . We define c(\bfitx ) =

\int 
dPf(\bfitx , P )

as the spatial concentration and \rho (\bfitx , P ) = f(\bfitx , P )/c(\bfitx ) as the orientational density.
They satisfy \int 

d\bfitx dPf(\bfitx , P ) =

\int 
d\bfitx c(\bfitx )

\int 
dP\rho (\bfitx , P ) = c0V,

where V is the volume of the system, and c0 is the average concentration. The kernel
G(\bfitr , P, P \prime ) is the Mayer functionG = 1 - exp( - U/\beta 0) [21] about the pairwise potential
U . In the case of hard-core potential, if two molecules touch, then U(\bfitr , P, P \prime ) = +\infty ,
leading to G(\bfitr , P, P \prime ) = 1; otherwise, U(\bfitr , P, P \prime ) = 0, namely G(\bfitr , P, P \prime ) = 0.

To derive the form of the tensor model, we expand the pairwise interaction term
in (2.2) about \bfitr and P . After the expansion, we are able to express the pairwise
interaction term by the three tensors identified in [35]. Then, we minimize the entropy
term with the value of these tensors fixed, so that it is also expressed as a functional
of the three tensors. This approach has also been adopted for rod-like molecules
[2, 15, 14], where the density function becomes the Bingham distribution.

2.2.1. Spatial and orientational expansion. First, we do Taylor expansion
on f(\bfitx \prime , P \prime ) = f(\bfitx + \bfitr , P \prime ) with respect to \bfitr , yielding

F [f ]

\beta 0
=

\int 
dPd\bfitx f(\bfitx , P ) log f(\bfitx , P )(2.3)

+
\sum 
k\geq 0

1

2k!

\int 
d\bfitx dPdP \prime f(\bfitx , P )M (k)(P, P \prime )\nabla kf(\bfitx , P \prime ),
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TENSOR MODEL FOR BENT-CORE MOLECULES 1585

where

(2.4) M (k)(P, P \prime ) =

\int 
G(\bfitr , P, P \prime ) \bfitr . . . \bfitr \underbrace{}  \underbrace{}  

k times

d\bfitr ,

a kth-order symmetric tensor, is the kth moment of G. For the hard-core interaction,
the integration is taken on the region where G = 1. By determining this region, we
are able to calculate M (k) numerically. The details are described in Appendix A.
Because the size of the region is proportional to l3, we have M (k) \propto lk+3.

Next, we expand M (k)(P, P \prime ) with respect to P and P \prime . To clearly present the
idea, we briefly review the expansion of M (k) for rod-like molecules discussed in [14].
In particular, we only look at M (0) and M (2) because they are sufficient for nematic
phases (note that M (1) = 0). In this case, M (k) = M (k)(\bfitm ,\bfitm \prime ), where \bfitm and \bfitm \prime 

are the directors of two rods (or, in the context of the current work, we may let
\bfitm = \bfitm 1(P ) and \bfitm \prime = \bfitm 1(P

\prime ); see Theorem 3.4 in [35]). Analytical calculations
give

M (0)(\bfitm ,\bfitm \prime ) = M (0)(\eta ),(2.5)

M (2)(\bfitm ,\bfitm \prime ) = B1(\eta )I +B2(\eta )(\bfitm \bfitm +\bfitm \prime \bfitm \prime ) +B3(\eta )(\bfitm \bfitm \prime +\bfitm \prime \bfitm ),(2.6)

where \eta = \bfitm \cdot \bfitm \prime is the inner product of the two directors, and I is the identity
matrix. Then, M (0)(\eta ) and Bi(\eta ) are expanded as polynomials of \eta . In the resulting
approximation formulas, M (0) and M (2) are expressed as polynomials of \bfitm and \bfitm \prime .
In this way, the variables \bfitm and \bfitm \prime are separated, leading to the approximate free
energy as a function of tensors. An important point to be noted is the truncation
of M (0)(\eta ) and Bi(\eta ). The truncation is according to the order of each of \bfitm and
\bfitm \prime . Specifically, M (0) and B1 are truncated at fourth order, B2 at second order,
and B3 at third order. This is because \bfitm \bfitm + \bfitm \prime \bfitm \prime contribute to the order by
two, and \bfitm \bfitm \prime + \bfitm \prime \bfitm contribute to the order by one. By this truncation, the
approximation formulas include all the terms such that each of \bfitm and \bfitm \prime is not
larger than fourth order, respectively. This truncation is adopted because the order
of \bfitm and \bfitm \prime determines the order of tensor in the free energy. Under the above
truncation, the corresponding free energy is a function including all the allowed terms
of tensors up to fourth order.

Returning to bent-core molecules, we aim to approximate each component of
M (k) as a polynomial of \bfitm j(P ) and \bfitm \prime 

j = \bfitm j(P
\prime ). Similar to rod-like molecules

[14], we will only consider k = 0, 1, 2 because we only examine nematic phases. Since
we cannot do analytical calculations, we will follow the procedure in [35] with some
extensions to determine the form of approximation formula by symmetric properties.
The case k = 0 has been discussed previously and will be reviewed shortly. For
k \geq 1, we will first write down expressions similar to (2.6), followed by polynomial
approximations. For the truncation of the polynomials, we only retain the terms such
that the degrees of \bfitm j and \bfitm \prime 

j are no more than second order, respectively. This
makes the free energy as a function of tensors up to second order. The choice is largely
based on keeping the model concise. One can also choose to truncate at fourth order
like what is done for rod-like molecules, but at the expense of having over 100 terms
in the free energy.

Denote the relative orientation and its components as

(2.7) \=P = P - 1P \prime = (pij)3\times 3 = (\bfitm i \cdot \bfitm \prime 
j)3\times 3, i, j = 1, 2, 3,
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1586 JIE XU, FANGFU YE, AND PINGWEN ZHANG

where we denote\bfitm \prime 
i = \bfitm i(P

\prime ). The following equalities shall be satisfied for molecules

with the symmetry plane \^O\bfitm 1\bfitm 2:

G(T\bfitr , TP, TP \prime ) = G(\bfitr , P, P \prime ) \forall T \in SO(3),(2.8)

G( - \bfitr , P \prime , P ) = G(\bfitr , P, P \prime ),(2.9)

G( - \bfitr , PJ, P \prime J) = G(\bfitr , P, P \prime ) for J = diag( - 1, - 1, 1).(2.10)

The above equalities have been stated in [35]. The meaning of the three equalities
is that G is invariant when two molecules rotate together, when two molecules are
switched, and when one molecule is reflected about the plane \^O\bfitm 1\bfitm 2 of the other
molecule.

As the simplest case, we review the key points in the expansion of M (0). By
setting T = P - 1 in (2.8), we can see that M (0)(P, P \prime ) = M (0)(I, P - 1P \prime ). Thus, M (0)

is a function of the relative orientation \=P . Then, from (2.10), we deduce that

(2.11) M (0)( \=P ) = M (0)(J \=PJ).

Note that \=P and J \=PJ are the only two elements in SO(3) when (p11, p12, p21, p22) is
fixed. Hence M (0) is reduced to a function of the above four scalars. By (2.9), we
have M (0)( \=P ) = M (0)( \=PT ), leading to

(2.12) M (0)(p11, p12, p21, p22) = M (0)(p11, p21, p12, p22).

We use a polynomial of p11, p12, p21, p22 to approximate M (0), denoted by \^M (0).
It shall satisfy (2.12) as well. Furthermore, it has the \bfitm 2 \rightarrow  - \bfitm 2 and \bfitm \prime 

2 \rightarrow  - \bfitm \prime 
2

symmetries. Since pij = \bfitm i \cdot \bfitm \prime 
j , only the terms where both \bfitm 2 and \bfitm \prime 

2 appear
even times can be retained. For example, the term p22 = \bfitm 2 \cdot \bfitm \prime 

2 will be discarded
since both \bfitm 2 and \bfitm \prime 

2 appear one time. Thus, we obtain the following quadratic
approximation:

(2.13) \^M (0) = c00 + c01p11 + c02p
2
11 + c03p

2
22 + c04(p

2
12 + p221).

The first index of the coefficients c0j is zero, corresponding to the zeroth moment
M (0). These coefficients are independent of P and P \prime .

When we apply the above procedure to the expansion of M (k) for k \geq 1, some
modifications need to be made since M (k) is a kth-order tensor. We will first seek a
representation similar to (2.6). The representation (2.6) conveys two messages:

1. M (2) can be expressed as a linear combination of some tensors generated by
\bfitm and \bfitm \prime and I. Moreover, the expression is symmetric about \bfitm and \bfitm \prime .

2. The coefficients Bi depend only on \bfitm \cdot \bfitm \prime , which describes the relative ori-
entation of \bfitm and \bfitm \prime .

Actually, these two statements hold for any M (k) (see (3.22) in [14] for the fourth mo-
ment M (4)). With this observation, for bent-core molecules, we first seek a represen-
tation of M (k) by a linear combination of tensors generated by \bfitm i(P ), \bfitm \prime 

i = \bfitm i(P
\prime ),

and I, which is symmetric about P and P \prime . Then, we figure out the symmetry of
the coefficients in this representation, followed by the polynomial approximation. We
pay particular attention to the effect of the symmetry plane \^O\bfitm 1\bfitm 2. It eliminates
the appearance of \bfitm 3 and \bfitm \prime 

3 in M (0) by (2.11). We can also eliminate them in any
M (k), as we will show below. We will only discuss M (1) in detail because M (2) follows
the same way.

Now we start to discuss M (1).
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TENSOR MODEL FOR BENT-CORE MOLECULES 1587

Step 1. We show that for fixed (P, P \prime ), M (1) can be expressed as

(2.14) M (1)(P, P \prime ) = \~c1\bfitm 1 + \~c2\bfitm 2 + \~c1\prime \bfitm 
\prime 
1 + \~c2\prime \bfitm 

\prime 
2,

where \~cj (j = 1, 2, 1\prime , 2\prime ) are functions of (P, P \prime ).
We begin with writing

(2.15) M (1)(P, P \prime ) = \~c1\bfitm 1 + \~c2\bfitm 2 + \~c3\bfitm 3.

To write down a representation symmetric about P and P \prime , we express \bfitm 3 by a
linear combination of \bfitm 1, \bfitm 2, \bfitm 

\prime 
1, and \bfitm \prime 

2. Note that this cannot be done when
\bfitm 3 = \pm \bfitm \prime 

3 because in this case span\{ \bfitm 1,\bfitm 2,\bfitm 
\prime 
1,\bfitm 

\prime 
2\} = span\{ \bfitm 1,\bfitm 2\} , and \bfitm 3 /\in 

span\{ \bfitm 1,\bfitm 2\} . However, if the molecule has the symmetry plane \^O\bfitm 1\bfitm 2, we show
that \~c3 = 0 when \bfitm 3 = \pm \bfitm \prime 

3. Actually, the condition \bfitm 3 = \pm \bfitm \prime 
3 can be rewritten

as \=P = P - 1P \prime = diag(W,\pm 1), where W is a 2\times 2 orthogonal matrix. Thus, we have
J \=PJ = \=P , with J = diag( - 1, - 1, 1). Together with (2.8) and (2.10), we have

G(\bfitr , P, P \prime ) = G(P - 1\bfitr , I, \=P ) = G( - P - 1\bfitr , J, \=PJ)(2.16)

= G( - JP - 1\bfitr , I, J \=PJ) = G( - JP - 1\bfitr , I, \=P ) = G( - PJP - 1\bfitr , P, P \prime ).

Note that  - PJP - 1\bfitr = \bfitr  - 2(\bfitr \cdot \bfitm 3)\bfitm 3. Taking (2.16) into (2.4), we obtain

2\~c3 = 2\bfitm 3 \cdot M (1)(P, P \prime ) = 2

\int 
G(\bfitr , P, P \prime )(\bfitr \cdot \bfitm 3)d\bfitr (2.17)

=

\int \bigl( 
G(\bfitr , P, P \prime ) +G( - PJP - 1\bfitr , P, P \prime )

\bigr) 
(\bfitr \cdot \bfitm 3)d\bfitr 

=

\int 
G(\bfitr , P, P \prime )(\bfitr  - PJP - 1\bfitr ) \cdot \bfitm 3d\bfitr 

= 0.

Therefore, when the molecule has the symmetry plane \^O\bfitm 1\bfitm 2, we are allowed to
use the representation (2.14).

Remark. Whether the molecular has a symmetry plane affects the form of the
representation of M (k). If the molecule is chiral, we have to include \bfitm 3. It is also
the case for rod-like molecules. Actually, we have M (1) \not = 0 even if a chiral rod-like
molecule has the head-to-tail symmetry.

Step 2. We analyze the symmetric properties of the scalars \~cj in (2.14). Appar-
ently, the representation (2.14) is not unique. In what follows, when we say that \~cj
satisfy certain symmetries, it means that there exists a representation in which the
symmetries hold.

First, we can require that they are functions of \=P . We deduce from (2.8) that for
any T \in SO(3),

M (1)(TP, TP \prime ) =

\int 
\bfitr G(\bfitr , TP, TP \prime )d\bfitr =

\int 
\bfitr G(T - 1\bfitr , P, P \prime )d\bfitr 

=

\int 
(T\bfitr )G(\bfitr , P, P \prime )d\bfitr = TM (1)(P, P \prime ).

It implies that if we already know the value of \~cj(I, P
 - 1P ), we may let \~cj(P, P

\prime ) =
\~cj(I, P

 - 1P \prime ) in (2.14) to obtain a representation. From now on, we will omit this
kind of explanation and just write

(2.18) \~cj(TP, TP
\prime ) = \~cj(P, P

\prime ) = \~cj(I, P
 - 1P \prime ) \triangleq \~cj( \=P ), j = 1, 2, 1\prime , 2\prime .
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Next, we substitute (P, P \prime ) with (PJ, P \prime J) in (2.14). Using (2.10), we obtain

M (1)(PJ, P \prime J) =  - M (1)(P, P \prime )

= \~c1(J \=PJ)( - \bfitm 1) + \~c2(J \=PJ)( - \bfitm 2) + \~c1\prime (J \=PJ)( - \bfitm \prime 
1) + \~c2\prime (J \=PJ)( - \bfitm \prime 

2)

=  - \~c1( \=P )\bfitm 1  - \~c2( \=P )\bfitm 2  - \~c1\prime ( \=P )\bfitm \prime 
1  - \~c2\prime ( \=P )\bfitm \prime 

2,

yielding (cf. (2.11))

(2.19) \~cj( \=P ) = \~cj(J \=PJ) \triangleq \~cj(p11, p12, p21, p22), j = 1, 2, 1\prime , 2\prime .

At this point, we have eliminated the appearance of \bfitm 3 and \bfitm \prime 
3 in (2.14). Then, we

switch P and P \prime in (2.14). By (2.9), we have

M (1)(P \prime , P ) =  - M (1)(P, P \prime )

= \~c1( \=P
T )\bfitm \prime 

1 + \~c2( \=P
T )\bfitm \prime 

2 + \~c1\prime ( \=P
T )\bfitm 1 + \~c2\prime ( \=P

T )\bfitm 2

=  - \~c1( \=P )\bfitm 1  - \~c2( \=P )\bfitm 2  - \~c1\prime ( \=P )\bfitm \prime 
1  - \~c2\prime ( \=P )\bfitm \prime 

2.

Thus, we have \~c1( \=P ) =  - \~c1\prime ( \=P
T ) and \~c2( \=P ) =  - \~c2\prime ( \=P

T ), leading to (cf. (2.12))

\~c1(p11, p12, p21, p22) =  - \~c1\prime (p11, p21, p12, p22),(2.20)

\~c2(p11, p12, p21, p22) =  - \~c2\prime (p11, p21, p12, p22).

Step 3. With the symmetric properties (2.20), we write down the polynomial
approximation of \~cj with attention to the \bfitm 2 \rightarrow  - \bfitm 2 and \bfitm \prime 

2 \rightarrow  - \bfitm \prime 
2 symmetries.

The degree of polynomial is chosen such that both \bfitm i and \bfitm \prime 
i are truncated at second

order in (2.14). For example, the term p21\bfitm 2 can be rewritten as (\bfitm 2 \cdot \bfitm \prime 
1)\bfitm 2, in

which the order of \bfitm 2 is two. As an example, we look into \~c2. The \bfitm 2 \rightarrow  - \bfitm 2

symmetry allows only one term ap21 in the polynomial approximation, where a is the
coefficient. Similarly, in the polynomial approximation of \~c2\prime , there is also only one
term a\prime p12. Then, we use (2.20) to arrive at a =  - a\prime . In this way, the polynomial
approximations are written as

\~c1 =  - c10  - c11p11, \~c1\prime = c10 + c11p11, \~c2 =  - c12p21, \~c2\prime = c12p12,(2.21)

where we denote the coefficients by c1j . The first index of c1j becomes one to indicate
that they come from M (1). The coefficients c1j are independent of P and P \prime .

The expansion of M (2) follows the same way as M (1) and is described briefly. We
start from

M (2)(P, P \prime ) =
\sum 

l1,l2=1,2,3

\~cl1l2\bfitm l1\bfitm l2 .

Then, we express \bfitm 3 by a linear combination of \bfitm 1, \bfitm 2, \bfitm 
\prime 
1, and \bfitm \prime 

2 if \bfitm \prime 
3 \not = \pm \bfitm 3.

In the case \bfitm \prime 
3 = \pm \bfitm 3, we use (2.16) to obtain \~c13 = \~c23 = \~c31 = \~c32 = 0 (cf. (2.17))

and utilize the equality \bfitm 3\bfitm 3 = I - \bfitm 1\bfitm 1 - \bfitm 2\bfitm 2 to take care of the term \bfitm 3\bfitm 3.
In any of the above two cases, we are allowed to use the following representation that
is symmetric about P and P \prime :

M (2)(P, P \prime ) = \~c00\prime I +
\sum 

l1,l2=1,2

\~cl1l2\bfitm l1\bfitm l2 +
\sum 

l\prime 1,l
\prime 
2=1\prime ,2\prime 

\~cl\prime 1l\prime 2\bfitm 
\prime 
l1\bfitm 

\prime 
l2(2.22)

+
\sum 

l=1,2,l\prime =1\prime ,2\prime 

\~cll\prime (\bfitm l\bfitm 
\prime 
l\prime +\bfitm \prime 

l\prime \bfitm l),
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where we require that

\~cl1l2 = \~cl2l1 , \~cl\prime 1l\prime 2 = \~cl\prime 2l\prime 1

because M (2) is symmetric. Repeating the derivation of (2.18) and (2.19) for M (1),
we can deduce that \~cj1j2 are functions of (p11, p12, p21, p22). Then, by switching P
and P \prime in (2.22) and using (2.9), we obtain (cf. (2.20))

\~c00\prime (p11, p12, p21, p22) = \~c00\prime (p11, p21, p12, p22),(2.23)

\~c11(p11, p12, p21, p22) = \~c1\prime 1\prime (p11, p21, p12, p22),

\~c12(p11, p12, p21, p22) = \~c1\prime 2\prime (p11, p21, p12, p22),

\~c22(p11, p12, p21, p22) = \~c2\prime 2\prime (p11, p21, p12, p22),

\~c12\prime (p11, p12, p21, p22) = \~c21\prime (p11, p21, p12, p22).

By noting the \bfitm 2 \rightarrow  - \bfitm 2 and \bfitm \prime 
2 \rightarrow  - \bfitm \prime 

2 symmetries and keeping the truncation at
second order for both \bfitm i and \bfitm \prime 

i in (2.22), we obtain the polynomial approximations
of \~cj1j2 ,

\~c00\prime =  - c20  - c21p11  - c22p
2
11  - c23p

2
22  - c24(p

2
12 + p221),(2.24)

\~c11 = \~c1\prime 1\prime =  - c25,

\~c22 = \~c2\prime 2\prime =  - c26,

\~c11\prime =  - c27  - c28p11,

\~c22\prime =  - c29p22,

\~c12 = \~c21 = \~c1\prime 2\prime = \~c2\prime 1\prime = 0,

\~c12\prime =  - c2,10p12, \~c21\prime =  - c2,10p21.

Just as the notation for M (0) and M (1), the first index of c2j is two. Again the
coefficients c2j do not depend on P and P \prime .

Summarizing (2.13), (2.14), (2.21), (2.22), and (2.24), we obtain the expansion of
M (0), M (1), M (2), denoted by \^M (0), \^M (1), \^M (2):

\^M (0) = c00 + c01p11 + c02p
2
11 + c03p

2
22 + c04(p

2
12 + p221),(2.25)

\^M (1) = ( - c10  - c11p11)(\bfitm 1  - \bfitm \prime 
1) - c12(p21\bfitm 2  - p12\bfitm 

\prime 
2),

\^M (2) =  - 
\bigl( 
c20 + c21p11 + c22p

2
11 + c23p

2
22 + c24(p

2
12 + p221)

\bigr) 
I

 - c25(\bfitm 1\bfitm 1 +\bfitm \prime 
1\bfitm 

\prime 
1) - c26(\bfitm 2\bfitm 2 +\bfitm \prime 

2\bfitm 
\prime 
2)

 - (c27 + c28p11)(\bfitm 1\bfitm 
\prime 
1 +\bfitm \prime 

1\bfitm 1)

 - c29p22(\bfitm 2\bfitm 
\prime 
2 +\bfitm \prime 

2\bfitm 2)

 - c2,10 [p12(\bfitm 1\bfitm 
\prime 
2 +\bfitm \prime 

2\bfitm 1) + p21(\bfitm 2\bfitm 
\prime 
1 +\bfitm \prime 

1\bfitm 2)] .

We substitute M (k) with \^M (k) in (2.3). The purpose is to separate the variables
P and P \prime . In this way, each term in \^M (k) corresponds to a term in the free energy.
Moreover, each term can be expressed by three tensors \bfitp , Q1, Q2, defined as

(2.26) \bfitp = \langle \bfitm 1\rangle , Q1 = \langle \bfitm 1\bfitm 1\rangle , Q2 = \langle \bfitm 2\bfitm 2\rangle ,

where \langle \cdot \rangle =
\int 
dP (\cdot )\rho (P ) denotes the average about the orientational density \rho . As
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an example, the term  - p212I in \^M (2) generates the term \nabla (cQ1) : \nabla (cQ2),\int 
d\bfitx dPdP \prime  - p212I : f(\bfitx , P )\nabla 2f(\bfitx , P \prime )(2.27)

= - 
\int 

d\bfitx 

\biggl( 
c(\bfitx )

\int 
dPm1im1j\rho (\bfitx , P )

\biggr) 
\partial kk

\biggl( 
c(\bfitx )

\int 
dP \prime m\prime 

2im
\prime 
2j\rho (\bfitx , P

\prime )

\biggr) 
= - 

\int 
d\bfitx (c(\bfitx ) \langle m1im1j\rangle ) \partial kk (c(\bfitx ) \langle m2im2j\rangle ) ,

=

\int 
d\bfitx \partial k (c(\bfitx )Q1ij) \partial k (c(\bfitx )Q2ij) .

Here we have done integration by parts and assume that the boundary terms vanish.
We will write down all the terms afterwards in (2.35). One shall also observe that the
three tensors are all the nontrivial tensors about \bfitm 1 and \bfitm 2 up to second order.

Finally, we point out that the derivation described in this section is applicable to
any M (k), which is necessary if we aim to model smectic and columnar phases.

2.2.2. The entropy term. By the expansion discussed above, we have defined
three tensors as order parameters. Now we can express the entropy term as a function
of these tensors by a constrained minimization problem (cf. [2]). The entropy term
can be rewritten as\int 

d\bfitx dP c\rho (log c+ log \rho ) =

\int 
d\bfitx c log c+

\int 
d\bfitx 

\biggl( 
c(\bfitx )

\int 
dP\rho log \rho 

\biggr) 
.

We minimize
\int 
dP\rho log \rho with the values of \bfitp , Q1, and Q2 fixed. The Euler--Lagrange

equation is written as

(2.28) 1 + log \rho = \lambda + \bfitb \cdot \bfitm 1 +B1 : \bfitm 1\bfitm 1 +B2 : \bfitm 2\bfitm 2,

where the Lagrange multipliers are chosen such that

\int 
dP\rho (P ) = 1,

\int 
dP\bfitm 1\rho (P ) = \bfitp ,

\int 
dP\bfitm 1\bfitm 1\rho (P ) = Q1,

\int 
dP\bfitm 2\bfitm 2\rho (P ) = Q2.

(2.29)

The Euler--Lagrange equation gives the Boltzmann distribution,

(2.30) \rho =
1

Z
exp(\bfitb \cdot \bfitm 1 +B1 : \bfitm 1\bfitm 1 +B2 : \bfitm 2\bfitm 2),

where Z is the normalization factor,

(2.31) Z =

\int 
dP exp(\bfitb \cdot \bfitm 1 +B1 : \bfitm 1\bfitm 1 +B2 : \bfitm 2\bfitm 2).

We require that Q1 and Q2 share an eigenframe and that \bfitp be their eigenvector.
This approximation comes from a theoretical result for homogeneous phases [36]. In
other words, we assume that there exists a T = (\bfitn 1,\bfitn 2,\bfitn 3) \in SO(3) such that

\bfitp = s\bfitn 1, Q1 = q11\bfitn 1\bfitn 1 + q12\bfitn 2\bfitn 2 + q13\bfitn 3\bfitn 3, Q2 = q21\bfitn 1\bfitn 1 + q22\bfitn 2\bfitn 2 + q23\bfitn 3\bfitn 3,
(2.32)
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with qi3 = 1 - qi1  - qi2. The eigenvalues shall satisfy

qij > 0, s2 < q11,(2.33)

q11 + q12, q11 + q21, q12 + q22, q21 + q22 < 1,

q11 + q12 + q21 + q22 > 1.

They originate from Q1  - \bfitp \bfitp , Q2, I  - Q1  - Q2 being positive definite. Furthermore,
if (s, qij) lies in a subregion given by the above constraints, there exists a unique
(\bfitb , B1, B2) of the form

\bfitb = T (b1, 0, 0)
T , B1 = Tdiag(b11, b12, 0)T

T , B2 = Tdiag(b21, b22, 0)T
T ,(2.34)

such that the moments of the corresponding Boltzmann distribution are (\bfitp , Q1, Q2).
We state and prove the result rigorously in Appendix B (cf. Theorem B.1).

2.2.3. The free energy. Because we focus on nematic phases, we assume that
c(\bfitx ) = c0 is constant, still denoted as c. By (2.3), (2.25), (2.30) and integration by
parts, the tensor model is written as follows:

F [\bfitp , Q1, Q2]

\beta 0
=

\int 
d\bfitx 
\Bigl\{ 
c(\bfitb \cdot \bfitp +B1 : Q1 +B2 : Q2  - logZ)(2.35)

+
c2

2
(c01| \bfitp | 2 + c02| Q1| 2 + c03| Q2| 2 + 2c04Q1 : Q2)

+ c2(c11pj\partial iQ1ij + c12pj\partial iQ2ij)

+
c2

4

\bigl[ 
c21| \nabla \bfitp | 2 + c22| \nabla Q1| 2 + c23| \nabla Q2| 2 + 2c24\partial iQ1jk\partial iQ2jk

+ 2c27\partial ipi\partial jpj + 2c28\partial iQ1ik\partial jQ1jk

+ 2c29\partial iQ2ik\partial jQ2jk + 4c2,10\partial iQ1ik\partial jQ2jk]
\Bigr\} 
,

where the components of \bfitp and Qk are denoted as pi and Qkij . The first line comes

from the entropy term. The second line comes from \^M (0). The third line comes from
\^M (1), referred to as first-order elastic energy. They are crucial for modulated nematic
phases to emerge. The rest of the terms come from \^M (2), referred to as second-order
elastic energy.

2.3. The coefficients. Now we describe how to calculate the coefficients in
(2.35). We emphasize that the coefficients in the free energy are just those in \^M (k).
Note that \^M (k) is the approximation of M (k) that is determined by molecular param-
eters. Hence we minimize the distance between \^M (k) and M (k), defined as\int 

SO(3)

dPdP \prime | | M (k)(P, P \prime ; l,D, \theta ) - \^M (k)(P, P \prime ; \{ ckj\} )| | 2F ,(2.36)

where | | \cdot | | F is the Frobenius norm | | M | | 2F =
\sum 

i1...ik
| Mi1...ik | 2. By solving this

linear least-square problem, we can express ckj as functions of the molecular param-
eters l, D, and \theta . Furthermore, we have ckj \propto lk+3 because M (k) has the same
scaling. Therefore, we can further nondimensionalize the model by the substitution
\=\bfitx = \bfitx /l, \=c = cl3, \=ckj = ckj/l

k+3. Now \=ckj become functions of two dimensionless

parameters \eta = D/l and \theta . For star molecules, \^M (k) also depends on l2, and thus
\=ckj are also functions of l2/l. For convenience, we still express these dimensionless
quantities by the original notation.
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The second-order elastic energy shall be positive definite to ensure the lower
boundedness of the free energy. This can be guaranteed if the following inequalities
hold:

c21, c22, c23, 2c27 + c21, 2c28 + c22, 2c29 + c23 \geq 0,(2.37)

c224 \leq c22c23,

(2c2,10 + c24)
2 \leq (2c28 + c22)(2c29 + c23).

These inequalities can be easily observed after we rewrite the c2j terms for 7 \leq j \leq 10,
for which we explain by the term c27. First, we observe that \partial ipi\partial jpj  - \partial jpi\partial ipj is a
boundary term. Thus, we can substitute \partial ipi\partial jpj with \partial jpi\partial ipj by doing integration
by parts and assume that the boundary term vanishes by adopting suitable boundary
conditions (for example, periodic boundary conditions that will be used later). Then,
we write

\partial ipj\partial ipj = \partial ipj\partial jpi +
1

2
| \partial ipj  - \partial jpi| 2.

By doing the same thing to the other three terms, the second-order elastic energy
becomes\int 

d\bfitx 
c2

4

\biggl[ 
1

2
c21| \partial ipj  - \partial jpi| 2 + (2c27 + c21)(\partial ipi)

2 +
1

2
c22| \partial iQ1jk  - \partial jQ1ik| 2

+
1

2
c23| \partial iQ2jk  - \partial jQ2ik| 2 + c24(\partial iQ1jk  - \partial jQ1ik)(\partial iQ2jk  - \partial jQ2ik)

+ (2c28 + c22)| \partial iQ1ik| 2 + (2c29 + c23)| \partial iQ2ik| 2 + 2(2c2,10 + c24)\partial iQ1ik\partial j(Q2jk)

\biggr] 
.

Moreover, if (2c2,10 + c24)
2 < (2c28 + c22)(2c29 + c23) or c21 > 0, it controls the

first-order elastic energy. For example, we have

(2c28 + c22)| \partial iQ1ik| 2 + (2c29 + c23)| \partial iQ2ik| 2 + 2(2c2,10 + c24)\partial iQ1ik\partial j(Q2jk)

 - 4\partial ipj(c11Q1ij + c12Q2ij) \geq  - C| \bfitp | 2

for C large enough, and the right-hand side is bounded from below since | \bfitp | < 1.
When \theta = \pi , the molecule becomes a rod. In this case, all the coefficients involving

\bfitp and Q1 shall be zero, which is verified in our numerical calculation. Furthermore,
it can be shown with Theorem B.1 that in the entropy term we have \bfitb = B1 = 0, for
which we omit the details. Thus, the free energy depends only on Q2, written as

F [Q2]

\beta 0
=

\int 
d\bfitx 

\Biggl\{ 
c(B2 : Q2  - logZ) +

c2

2
c03| Q2| 2(2.38)

+
c2

4

\bigl( 
c23| \nabla Q2| 2 + 2c29\partial iQ2ik\partial jQ2jk

\bigr) \Biggr\} 
.

It is a simplified version of the model proposed for rod-like molecules in [14] (see (3.15)
in [14]), including only the terms involving the second-order tensor. The condition
(2.37) becomes c23, 2c29 + c23 \geq 0. It is weaker than what is proposed in [18] for
rod-like molecules. This is because in [18], the derivatives of the tensors are viewed as
independent functions, and the coercivity is assumed pointwise, which is a stronger
condition than requiring the free energy to be lower bounded.
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Fig. 2. The coefficients c2j in the second-order elastic energy for bent-core molecules, measured
in the unit (l/2)5, as functions of the bending angle \theta when \eta = 1/40.

Now we examine the coefficients calculated from (2.36). The coefficients of the
square terms for bent-core molecules are plotted in Figure 2. When \theta = \pi , we have
c23, 2c29 + c23 > 0, and all the other c2j are zero. As the bending angle decreases,
c23 and 2c29 + c23 monotonely decrease, and the absolute values of other c2j increase
monotonely and thus do not change sign. We find that all of the inequalities in (2.37)
hold strictly except c21 < 0. This is also the case for star molecules.

The signs of coefficients reflect a different modulation mechanism. The term
c21| \nabla \bfitp | 2 can be stabilized if we truncate up to M (4). In fact, we write down the
polynomial approximation \^M (4) following the procedure described above, calculate
the coefficients by (2.36), and find that the coefficient c41 > 0 for the corresponding
term c41| \nabla 2\bfitp | 2. The pair c21| \nabla \bfitp | 2+ c41| \nabla 2\bfitp | 2 describes the tendency of independent
modulation of \bfitp without coupling to Q1 and Q2. We can see this by taking the plane
wave \phi = exp(i\bfitk \cdot \bfitx ) into the energy\int 

d\bfitx | \nabla 2\phi | 2 + 2K| \nabla \phi | 2 = (| \bfitk | 4 + 2K| \bfitk | 2)| | \phi | | 2.

If K \geq 0, the preferred frequency is \bfitk = 0; if K < 0, the preferred frequency becomes
| \bfitk | =

\surd 
 - K > 0. On the contrary, the quadratic terms about \nabla Q1 and \nabla Q2 are

positive, indicating that Q1 and Q2 do not tend to show independent modulation,
but may show modulation coupled with \bfitp through the terms pi\partial jQ\sigma ij . Currently, we
choose not to include the independent modulation of \bfitp as an approximation, and we
discard the term c21| \nabla \bfitp | 2 to avoid the lower unboundedness of the energy.

When we consider molecules with other shapes or interactions and calculate the
coefficients from (2.36), we may obtain signs of the coefficients different from those
above. If this is the case, it indicates that the molecular interaction induces a different
modulation mechanism, and we need to do a different truncation in accordance with
the mechanism.

3. Results and discussion. We examine the phases where inhomogeneity oc-
curs only in the x-direction. To find modulated phases, we need to minimize the
free energy density under the periodic boundary condition about the tensors and the
period length L,

min
\bfitp (x),Q1(x),Q2(x),L

F [\bfitp (x), Q1(x), Q2(x)]

L
.
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3.1. Numerical methods. We use the finite volume method to discretize the
free energy. Generally, in [xk, xk+1], a function g(x) is approximated by 1

2 (g(xk) +
g(xk+1)), and its derivative is approximated by (g(xk+1)  - g(xk))/(xk+1  - xk). For
example, the term \int xk+1

xk

dxpi
d

dx
Q1,1i

is approximated by

(xk+1  - xk) \cdot 
pi(xk+1) + pi(xk)

2
\cdot Q1,1i(xk) - Q1,1i(xk+1)

xk+1  - xk
.

A single period is discretized using 32 points. The tensors are represented by their
eigenvalues and co-owned eigenframe T (x), which is represented by the Euler angles
(\alpha (x), \beta (x), \gamma (x)) by (2.1),

\bfitp (x) = T (x)(s(x), 0, 0)T ,

Q1(x) = T (x)diag(q11(x), q12(x), q13(x))T (x)
T ,

Q2(x) = T (x)diag(q21(x), q22(x), q23(x))T (x)
T .

The eigenvalues are calculated from (b1, bij) using (2.30) and (2.34). We will use
(b1(x), bij(x)) and the Euler angles as the basic variables.

The derivatives of the free energy about the eigenvalues are given by

(3.1)
\partial F

\partial qij(x)
= bij(x) +

\partial Fr

\partial qij(x)
.

Here Fr stands for the part of free energy from the pairwise interaction, and the
derivatives of the entropy term are calculated by (B.3). The derivatives about the
Euler angles are given by

\partial F

\partial \alpha (x)
=

\partial Fr

\partial \alpha (x)

since the entropy term is independent of T (x). We use the following stationary point
iteration:

b
(k+1)
ij (x) = b

(k)
ij (x) - \lambda 

\partial F

\partial q
(k)
ij (x)

= (1 - \lambda )b
(k)
ij (x) - \lambda 

\partial Fr

\partial q
(k)
ij (x)

,(3.2)

\alpha (k+1)(x) = \alpha (k)(x) - \mu 
\partial Fr

\partial \alpha (k)(x)
.(3.3)

The iteration is along a descending direction of the free energy (see (B.6)).
The free energy density may have several local minima. Various initial guesses are

adopted to obtain as many metastable phases as possible, including but not limited
to all the phases presented in the current work. Then, we compare free energy density
of each metastable phase and label the minimum one as the stable phase. In seeking
metastable phases, we have also tried with phenomenological coefficients. It turns
out that many phases can be stable under phenomenological coefficients, but they
are found unstable or only metastable under coefficients derived from the hard-core
potential. In this paper, we only report the stable phases under coefficients derived
from the hard-core potential and leave other metastable phases to a future work.
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Fig. 3. Left: phase diagram of bent-core molecules with \eta = D/l = 1/40. Right: phase diagram
of star molecules with \theta = 2\pi /3, \eta = 1/40.

3.2. The phase diagram. We first list the phases that appear in the phase
diagram. Define Q3 = \langle \bfitm 3\bfitm 3\rangle = I  - Q1  - Q2, and denote its eigenvalues as q3j .
Because T is the eigenframe shared by Q1 and Q2, it is also the eigenframe of Q3.
For the phases discussed here, we can do permutation such that qii \geq qij and assume
this in the following. It should be noted that for homogeneous phases, the free energy
is independent of the eigenframe T :

\bullet Isotropic phase (I): s = qij = 0.
\bullet Uniaxial nematic phase (Ni): homogeneous with s = 0 and further classified
by the relation of the eigenvalues. In the N2 phase, we have q22 > 1/3 >
q12, q32 and qj1 = qj3. In the N3 phase, we have q33 > 1/3 > q13, q23 and
qj1 = qj2. The above relations of eigenvalues indicate that in the Ni phase,
\bfitm i aligns near \pm \bfitn i, and the other two \bfitm j align near the plane perpendicular
to \bfitn i.

\bullet Biaxial nematic phase (B): homogeneous with qii > qij , indicating that \bfitm i

is preferably along \pm \bfitn i.
\bullet Twist-bend phase (Ntb): the eigenvalues s and qij are constant with s \not = 0

and qii > qij , while T (x) shows the modulation
(3.4)

T (x) = (\bfitn 1,\bfitn 2,\bfitn 3) =

\left(   0  - cos \gamma sin \gamma 
cos \pm 2\pi x

L  - sin \gamma sin \pm 2\pi x
L  - cos \gamma sin \pm 2\pi x

L

sin \pm 2\pi x
L sin \gamma cos \pm 2\pi x

L cos \gamma cos \pm 2\pi x
L

\right)   ,

where the modulation of \bfitn 2 and \bfitn 3 is identical to the earlier prediction [10].
The above equation indicates that \bfitn 1 rotates on a circle and that \bfitn 2 rotates
on a conical surface. Thus, the Euler angle \gamma here becomes the conical angle.
The sign before 2\pi x represents whether T is rotated left- or right-handed.
The two cases share the same free energy density.

Although we only examine one-dimensional modulated phases, these phases have cov-
ered all the phases found experimentally so far.

The phase diagram of bent-core molecules is given in Figure 3(left), where we
fix \eta = 1/40 and use the volume fraction \pi clD2/4 to express the concentration.
It shows that I occurs at a low volume fraction, and homogeneous nematic phases
emerge when it becomes higher. As the bending angle \theta decreases from \pi , it shows
successively N2, B, and N3. When the volume fraction further grows, the Ntb phase
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Fig. 4. The conical angle \gamma and period length L as functions of the bending angle \theta when
\pi lD2/4 = 0.7.

occurs if the bending angle \theta is far from \pi . Experimentally, the I--N2--Ntb transition is
also observed on lowering the temperature for molecules with relatively large bending
angle \theta [5, 7]. We also plot the conical angle \gamma and period length L as a function of
\theta at \pi clD2/4 = 0.7 (Figure 4). We observe that as \theta increases, \gamma decreases while L
increases. It is worth noting that L is a few times the dimension of the molecule, giving
a very short periodicity that is consistent with the measurements of experiments [5, 7].

Next, we study the role of the third arm for star molecules. The phase diagram is
presented in Figure 3(right). Here we fix the bending angle \theta = 2\pi /3 and focus on the
length of the third arm l2/l. Now the volume fraction becomes \pi c(l + l2)D

2/4. The
nematic phases are among those we mentioned above and are sensitive to l2. While
the transition volume fraction to homogeneous nematic phases is almost unchanged,
the phase is altered from N2 to B and to N3 when l2 increases. The transition
volume fraction to Ntb is substantially lowered as l2 grows. We would view this
phase diagram as a typical example of phase behaviors being substantially altered by
slight modification on molecular architecture. This is a feature different from rod-like
molecules, commonly observed experimentally [31] but not yet well understood.

For bent-core molecules, the phase diagram about molecular parameters including
modulated nematic phases has not to our knowledge been given in existing theoretical
models. Moreover, in these models that focus on modulated phases, only one director
\bfitn or one second-order tensor Q is included, leading to the absence of the biaxial phase
B. The phase diagram about molecular parameters can only be found in preceding
molecular simulations [6, 23, 17, 9, 25]. In these works, the molecules studied are
thick with \eta \approx 1/5 \sim 1/10, and they did not find the Ntb phase. The results in [12]
indicate that curved structure can make Ntb easier to occur. Our results suggest that
thin molecules might have the same effect.

4. Conclusion. A tensor model is constructed based on molecular theory for
nematic phases of bent-core molecules. The free energy is suitable for molecules with
the C2v symmetry, with the coefficients derived from molecular interaction. We use
the model to study the nematic phases of bent-core molecules and their analogue,
star molecules, with the hard-core potential. We obtain the phase diagram about the
molecular parameters, including all the nematic phases found experimentally.

Provided that the molecular symmetry is preserved, the tensor model is able to
study molecules with arbitrary shape and interactions. Hence we aim to apply this
model to studying nematic phases of various molecules. We are also interested in two-
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Fig. 5. Left: the region W , consisting of four sphero-parallelograms, whose skeleton parallelo-
grams are drawn with a dashed line. Right: the intersection of a sphero-parallelogram with the plane
z = 0 in which the parallelogram lies.

and three-dimensional modulated phases that can be described by the model.

Appendix A. The computation of \bfitM (\bfitk ). We describe how to compute
M (k) for bent-core molecules. It works exactly the same way for star molecules.

Fix the orientation of a pair of molecules. Denote by Wij the region where the
relative position lets the ith arm of one molecule and the jth arm of the other touch.
Then, the region where two molecules touch, denoted by W , is the union of four Wij .
EachWij is a sphero-parallelogram, obtained by inflating each point in a parallelogram

to a sphere. One of the Wij is drawn in Figure 5(left). All four Wij contain \^O since

four arms share the point \^O when \bfitr = 0.
Denote

sij(\bfitn ) = max
t\bfitn \in Wij

t.

Then,
max
t\bfitn \in W

t \triangleq s(\bfitn ) = max
i,j=1,2

sij(\bfitn ).

For any vector \bfitn , the whole segment t\bfitn (t \in [0, s(\bfitn )]) lies within W because Wij are
convex. Hence we can express M (k) by an integral in spherical coordinates, which we
utilize for numerical calculation,

M (k)(P, P \prime ) =

\int 
W

\bfitr . . . \bfitr \underbrace{}  \underbrace{}  
k times

d\bfitr =

\int 
S2

\bfitn . . .\bfitn \underbrace{}  \underbrace{}  
k times

d\bfitn 

\int s(\bfitn )

0

rk+2dr

=

\int 
S2

1

k + 3
s(\bfitn )k+3 \bfitn . . .\bfitn \underbrace{}  \underbrace{}  

k times

d\bfitn .

Now it remains to compute sij . Place the parallelogram in the plane z = 0.
Denote by R the intersection point of the ray t\bfitn (t \geq 0) and the boundary of the
sphero-parallelogram. The boundary of a sphero-parallelogram consists of two planes
z = \pm D, four cylindrical surfaces at four edges, and four spherical surfaces at four
vertices. We need to determine where R lies, for which the procedure below is followed:
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\bullet Compute the intersection point of the ray t\bfitn and the plane z = \pm D. Then,
examine whether its projection on the plane z = 0 lies in the parallelogram
OACB, drawn in Figure 5(right). If it does, R lies on the flat surface of the
sphero-parallelogram.

\bullet Determine whether the ray t\bfitn intersects with any of the spheres on the corner.
If yes, compute the farthest intersection point and examine its projection on
the plane z = 0. If it lies in the corresponding sector (located at the corners
in Figure 5), R lies on the spherical surface of the sphero-parallelogram.

\bullet Now we know thatR lies on the cylindrical surface of the sphero-parallelogram,
and it is easy to distinguish which cylinder it locates.

Appendix B. The properties of the Boltzmann distribution.

B.1. The existence of the Lagrange multiplier. Let

\scrA =

\biggl\{ 
(s, qij)| \rho : SO(3) \rightarrow \BbbR +,

\int 
dP\rho = 1, s =

\int 
dP\rho m11, qij =

\int 
dP\rho m2

ij , i, j = 1, 2

\biggr\} 
.

Theorem B.1. Each (s, qij) \in \scrA is subject to the constraints in (2.33). For any
(s, qij) satisfying (2.33), with s2 < q11 substituted by s < q11, there exists a unique
solution to the minimization problem

inf

\int 
SO(3)

dP\rho (P ) log \rho (P )

s.t.

\int 
dP\rho (P ) = 1,\int 
dP\bfitm 1\rho (P ) = (s, 0, 0)T ,\int 
dP\bfitm 1\bfitm 1\rho (P ) = diag(q11, q12, 1 - q11  - q12),\int 
dP\bfitm 2\bfitm 2\rho (P ) = diag(q21, q22, 1 - q21  - q22).

The solution takes the form

\rho (P ) =
1

Z
exp

\Biggl( 
b1m11 +

\sum 
i,j=1,2

bijm
2
ij

\Biggr) 
,

where

Z =

\int 
dP exp

\Biggl( 
b1m11 +

\sum 
i,j=1,2

bijm
2
ij

\Biggr) 
.

Proof. Note that

m2
13 = 1 - m2

11  - m2
12 \geq 0,

m2
23 = 1 - m2

21  - m2
22 \geq 0,

m2
31 = 1 - m2

11  - m2
21 \geq 0,

m2
32 = 1 - m2

12  - m2
22 \geq 0,

m2
33 = m2

11 +m2
12 +m2

11 +m2
12  - 1 \geq 0
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and that for i, j = 1, 2, 3, the measure of the set \{ P : mij = 0\} is zero. Thus, the
inequalities about only qij in (2.33) are obtained. The inequality about s in (2.33)
comes from (

\int 
dPfm11)

2 \leq 
\int 
dPfm2

11, and the equality holds only if fm11 = \lambda f
holds for a constant \lambda , which implies that f = 0 for m11 \not = \lambda . Again we note that the
measure of the set \{ P : m11 = \lambda \} is zero.

The uniqueness of f is deduced immediately from the strict convexity of f log f
about f .

To prove the existence, consider the function

(B.1) J(b1, bij) =

\int 
dP exp

\Biggl( 
b1(m11  - s) +

\sum 
i,j=1,2

bij(m
2
ij  - qij)

\Biggr) 
.

A stationary point of J satisfies \partial J/\partial b1 = \partial J/\partial bij = 0, which yields

s =
1

Z

\int 
dP exp

\Biggl( 
b1m11 +

\sum 
i,j=1,2

bijm
2
ij

\Biggr) 
m11,

qij =
1

Z

\int 
dP exp

\Biggl( 
b1m11 +

\sum 
i,j=1,2

bijm
2
ij

\Biggr) 
m2

ij , i, j = 1, 2.

Because of the uniqueness, the stationary point of J solves the minimization problem.
We will prove that

(B.2) lim
b21+

\sum 
b2ij\rightarrow \infty 

J = +\infty .

Since J is bounded from below, (B.2) indicates the existence of a minimizer.
For (B.2), it is sufficient to prove that for any

(b1, b11, b12, b21, b22) \not = (0, 0, 0, 0, 0),

there exists a P such that

I(P ) = b1(m11  - s) +
\sum 

i,j=1,2

bij(m
2
ij  - qij) > 0.

Let

P1 =

\left(  1 0 0
0 0 1
0  - 1 0

\right)  , P2 =

\left(   - 1 0 0
0 0 1
0 1 0

\right)  ,

P3 =

\left(  1 0 0
0 1 0
0 0 1

\right)  , P4 =

\left(   - 1 0 0
0 1 0
0 0  - 1

\right)  ,

P5 =

\left(  0 1 0
0 0 1
1 0 0

\right)  , P6 =

\left(  0 0 1
1 0 0
0 1 0

\right)  ,

P7 =

\left(  0 0  - 1
0 1 0
1 0 0

\right)  , P8 =

\left(  0 1 0
1 0 0
0 0  - 1

\right)  .
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It is straightforward to verify that

\lambda iI(Pi) = 0

holds for arbitrary (b1, bij), where

\lambda 1 = (\lambda  - q22)

\biggl( 
1

2
+

s

2q11

\biggr) 
, \lambda 2 = (\lambda  - q22)

\biggl( 
1

2
 - s

2q11

\biggr) 
,

\lambda 3 = (q11 + q22  - \lambda )

\biggl( 
1

2
+

s

2q11

\biggr) 
, \lambda 4 = (q11 + q22  - \lambda )

\biggl( 
1

2
 - s

2q11

\biggr) 
,

\lambda 5 = 1 - \lambda  - q12, \lambda 6 = 1 - \lambda  - q21,

\lambda 7 = \lambda  - q11, \lambda 8 = q12 + q21  - (1 - \lambda ).

Here \lambda is a real number to be determined. We choose a \lambda such that \lambda i > 0. It is
equivalent to

\lambda  - q22, q11 + q22  - \lambda , \lambda  - q11, 1 - \lambda  - q12, 1 - \lambda  - q21, q21 + q12  - (1 - \lambda ) > 0,

which yields

max\{ q11, q22, 1 - q12  - q21\} < \lambda < min\{ 1 - q12, 1 - q21, q11 + q22\} .

From the constraints on qij , the upper bound is greater than the lower bound, which
guarantees the existence of \lambda . Note that

8\sum 
i=1

\lambda i = 1.

Let

A = b1s+
\sum 

i,j=1,2

bijqij .

We claim that I(Pi) > 0 for some i. Otherwise, I(Pi) = 0 for every i. Expanding
these equalities, we have

\pm b1 + b11 = \pm b1 + b11 + b22 = b21 = b12 = b22 = b12 + b21 = A.

It is easy to deduce that b1 = bij = 0.

B.2. Some equalities. The derivatives of Fentropy about the tensors are

(B.3)
1

\beta 0

\partial Fentropy

\partial (\bfitp , Q1, Q2)
= (\bfitb , B1, B2).

We prove it for \bfitp as an example. Note that

(B.4)
\partial logZ

\partial (\bfitb , B1, B2)
=

1

Z

\partial Z

\partial (\bfitb , B1, B2)
= (\bfitp , Q1, Q2).
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Hence

1

\beta 0

\partial Fentropy

\partial \bfitp 

=
\partial (\bfitb \cdot \bfitp +B1 : Q1 +B2 : Q2  - logZ)

\partial \bfitp 

= \bfitb + \bfitp \cdot \partial \bfitb 
\partial \bfitp 

+Q1 :
\partial B1

\partial \bfitp 
+Q2 :

\partial B2

\partial \bfitp 
 - \partial logZ

\partial \bfitp 

= \bfitb +
\partial logZ

\partial \bfitb 
\cdot \partial \bfitb 
\partial \bfitp 

+
\partial logZ

\partial B1
:
\partial B1

\partial \bfitp 
+

\partial logZ

\partial B2
:
\partial B2

\partial \bfitp 
 - \partial logZ

\partial \bfitp 

= \bfitb +
\partial logZ

\partial (\bfitb , B1, B2)
\cdot \partial (\bfitb , B1, B2)

\partial \bfitp 
 - \partial logZ

\partial \bfitp 

= \bfitb .

The derivatives of F about bij(x) can be written as

(B.5)
\partial F

\partial bij(x)
=

\partial qkl(x)

\partial bij(x)

\partial F

\partial qkl(x)
.

And note that

\partial qkl(x)

\partial bij(x)
=

\partial 2Z

\partial bij(x)\partial bkl(x)
=
\bigl\langle 
(m11,m

2
11,m

2
12,m

2
21,m

2
22)

T (m11,m
2
11,m

2
12,m

2
21,m

2
22)
\bigr\rangle 

is positive definite. Thus,

(B.6)

\biggl( 
\partial F

\partial bij(x)

\biggr) T
\partial F

\partial qij(x)
=

\biggl( 
\partial F

\partial qij(x)

\biggr) T
\partial 2Z

\partial bij(x)\partial bkl(x)

\partial F

\partial qij(x)
> 0.
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