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We present numerical solutions to the Landau-de Gennes free-energy model under the one-constant
approximation for systems of single and double spherical colloidal particles immersed in an otherwise uniformly
aligned nematic liquid crystal. A perfect homeotropic surface anchoring of liquid-crystal molecules on the
spherical surface is considered. A large parameter space is carefully examined, including those in the free-energy
model and those describing the dimer configurations and the background liquid-crystal orientation. The stability
of the resulting liquid-crystal defects appearing in the neighborhood of the colloidal dimer pair is analyzed in
light of the numerical results for their free energies. A number of scenarios are considered: a free dimer pair in a
nematic fluid where the free-energy ground states are described in terms of a phase diagram, and a constrained
dimer pair where the interparticle distance and the relative orientation of the distance vector to the nematic
director can be manipulated. We pay particular attention to the nonsymmetric solutions, which yield several
metastable defect states that can be observed in real systems. The high-precision numerical calculations are based
on a spectral method, which is an enabling factor that allows us to compare the subtle difference in the free
energies of different defect structures.
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I. INTRODUCTION

Topological defects, which occur in an otherwise homo-
geneously ordered medium as disruptions of the ordering
field, display a wide range of different configurations in the
physics of liquid crystals [1–5]. In recent decades, there has
been considerable progress in understanding defect structures
occurring in a nematic liquid-crystal fluid resulted from the
geometric frustrations between a liquid-crystal field and the
intrusion colloidal particles. The presence of colloidal particles
disrupts the orientational order of liquid crystals locally and
leads to the formation of topological defects near the particle’s
surfaces [6]. The research efforts include direct experimental
observations on the defect structures induced by single or
multiple particles through suspension of colloidal particles in
liquid crystals [7–18], and manipulations of colloidal dimers,
which probe the effective interaction energies between the
colloidal particles [19–29]. On the theoretical side, models
of the free energy of liquid crystals were solved to produce
defect structures and energies in various cases [30–55], the
induced defects were directly analyzed through the topological
arguments [56–58], and at a microscopic level particle-based
molecular simulations are also available [40,59–61]. The
interdisciplinary topic itself lands on a number of branches
in physics, materials science, and mathematics, forming
problems of fundamental importance.

The early theoretical studies of this type of system are
mostly based on the Oseen-Frank theory [30–38,41], which
uses a unit vector field n(r) to describe the overall orientational
properties of the liquid-crystal molecules as a function of
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the spatial coordinate r. Qualitative features of the defect
structures can be established by an examination of the optimal
vector field, obtained from minimizing the Oseen-Frank free
energy, either numerically [35] or through the trial-function
approach [34]. Because of the discrete nature of the magnitude
of a unit vector, the theory leads to an abrupt singularity of
the vector field at a defect location; the evaluation of the free
energy around defects, which requires the spatial derivatives of
n(r), is conceptually difficult and one resorts to, for example,
the introduction of a cutoff [43].

The Landau-de Gennes theories describe the liquid crystal’s
orientational properties by an orientational order-parameter
tensor Q(r), which continuously varies in the vicinity of defect
locations and enables the calculation of defect’s contribution
to the free energy, locally. This is particularly useful, as
the short-range field variation is a critical contribution that
eventually determines the liquid-crystal mediated interaction
in the defect-particle complexes, changing their equilibrium
structures. As well, the introduction of such a tensor descrip-
tion overcomes the drawback of the Oseen-Frank description,
which specifies directions to a headless vector field. This
is a popular approach [39,40,43–55] and is also adopted
here. Within the one-constant approximation, the structural
properties are dominated by two reduced parameters, a reduced
temperaturelike parameter τ and a reduced coherence length
ξR , which is basically the ratio between the distortion rigidity
of the liquid crystal and the particle’s radius. Section II is a
brief account of the Landau-de Gennes theory used in this
work.

It is now widely verified experimentally that when a single
spherical particle is immersed in a nematic liquid crystal, two
possible defect configurations can occur in the presence of
strong homeotropic surface anchoring [7–9,12,19]. This came
as a crucial testimony of the success of some of the theoretical
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tools used in studying these systems [30,33–36,39,41–43]. In
both cases, the defects form a circular line, located either
outside the equator of the sphere (a Saturn-ring structure) or at
the top of the north pole coaxial with the sphere (a dipole
structure). The qualitative features of these structures are
reasonably well understood presently. In a typical theoretical
study, this is based on a solution of the minimization problem
in which the Landau-de Gennes free energy is treated as a
functional of Q(r). The radius of the defect ring of the dipole
structure, for example, is relatively small in comparison with
the spherical radius; a high-precision numerical solution is
required to distinguish it from a point defect at the similar
location as it was initially proposed for the dipolelike structure
[39]. As a prelude to the much more complicated case of two
immersed spherical particles (the dimer problem), in Sec. III
we present a defect phase diagram in terms of τ and 1/ξR

under the one-distortion-constant assumption.
The major body of this paper provides a systematic

theoretical study of all possible liquid-crystal defect structures
that can be stabilized in a dimer problem. This is a system
that has been widely explored in the literature and multiple
configurations have been proposed [7,11,14–17,19,26,40,44–
48,50,52,62]. On top of the structures that can be traced
back to possible combinations of single-sphere structures,
the sphere-to-sphere distance vector in relationship with
the far-field nematic director becomes a critical factor that
influences the final outcome of the structures [26,44]. Using
the Landau-de Gennes theory, we thoroughly search the
parameter space including the parameters associated with this
vector-director relationship and describe the stability of defect
phases and the evolution of the phase transitions between them;
these are aspects that have not been adequately addressed in
the literature and are important issues in relationship with
structures appearing in real three-dimensional systems.

In the current study, we assume that the spherical particles
are immersed in a liquid-crystal bath of infinite size. Other fac-
tors that could significantly contribute to real systems are not
considered here and these could severely affect our comparison
with experiments and simulations of nematic colloids. Among
these, most experimental observations have been conducted
in confined environments, not in a three-dimensional bulk,
to enable direct visualization [7,9,11–14,19–22]; the confine-
ment can affect the equilibrium location of defects [37,41],
the stability of each configuration [9,12,17,37,41,63], and the
fluid-mediated interaction [21,64–66], especially when the
thickness of nematic layer is small. It is also believed that the
surface anchoring energy can play a crucial role in establishing
the structures of defects [35,36,55], their stabilities [8,35,36],
and the fluid-mediated interaction [28,50,52]. We start by
summarizing our findings in Sec. IV and then dissect each
case individually in relationship with previous theoretical and
experimental studies in Secs. V–VIII.

Over the wide parameter space, our study is based on
a high-precision numerical solution to the minimization
problem. From the computational perspective, one of the
difficulties in performing numerical study of this type of
systems is that the size of the defect core and the size of
colloidal particles could be largely different [39,67]. The
finite-difference [14,40,48] and finite-element [39,43,50,68]
methods were popular choices to divide the considered region

of the studied space into a mesh system on which the tensor
function Q(r) can be represented. To capture the detailed
defect information, and hence the free energy of the entire
system used for determination of the phase diagram, a refined
mesh is required; for a nonaxisymmetric system considered
here, in three dimensions the computational cost would
be high for an accurate free-energy calculation by using
these methods. To combat this problem, here we adopt the
spectral method [69], by expanding the three-dimensional
tensor function Q(r) in terms of the orthonormal special
functions and treating the unknown expansion coefficients
as minimization variables. This method can be used to solve
the current problem efficiently in high accuracy, including
systems where attention needs to be paid to both contrasting
large and small length scales. It enables us to investigate the
physical problems in more depth with free energies determined
for various structures. We note that Armas-Pérez et al. have
recently explored another numerical idea—the free energy
can be minimized through a Monte Carlo procedure, which
explores the landscape stochastically and is different from the
traditional, deterministic minimization techniques [70].

As with other deterministic approaches, the current numer-
ical algorithm solves the minimization problem by providing a
configuration of the Q(r) field corresponding to a free-energy
minimum, when the system parameters such as τ and ξR are
specified. In a complex free-energy landscape, this can be a
local or global minimum. For consideration of the so-called
phase diagrams in terms of τ and ξR, stable states with the
(presumably) global energy minima are described (see Secs. III
and IV). Metastable states, which correspond to local minima
in a theoretical model, are still significant here, as a real
system can be trapped in such states and become observable
experimentally (Sec. IV). The numerical method allows us
to set constraints on the system such as the center-to-center
distance of the dimer particles and the far field nematic
director. With these constraints and a suitable initial guess,
we can determine how a trapped local minimum moves as
a function of these constraints. This provides a mechanism
to study stability of the final states, as well as the kinetic
pathways that the system must go through to achieve a final
state (with the assumption that the system is trapped at a local
minimum at each time frame) (see Sec. V). To find a metastable
state, we can prepare the initial guess by a suitable ansatz
function or by starting with a random field. The former traps the
minimization procedure in a desirable state (see, for example,
in Refs. [44,46]) and the latter is numerical quenching from a
random state, which could be viewed qualitatively as thermal
quenching, although temperature is not directly involved in the
numerical procedure (see, for example, in Refs. [14,48,49]).

II. LANDAU-DE GENNES THEORY

Within the Landau-de Gennes theory for liquid crystals,
the orientational ordering is described by the traceless Q
tensor, which has 3 × 3 elements. In a nematic fluid typically
represented by a liquid made of rodlike molecules (although
the theory itself ignores the shape of molecules making up
the fluid), the axial direction of a rod, as the measurement
of rod orientation, can be stated by a unit vector u. In the
vicinity of a spatial point specified by a positional vector r,
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the molecular axes point to different directions and can be
collectively described by an orientational distribution function.
In terms of the vector notation, the Q tensor is defined by

Q(r) = 〈
uu − I

3

〉
, (1)

where the spatial dependence of Q is maintained after the
average 〈. . .〉 is taken over the orientational distribution func-
tion. In a spatially inhomogeneous system, such a distribution
function has an r dependence, and hence, Q is a function of r.
Here, I is a diagonal 3 × 3 unit tensor and a tensor product is
taken between the two unit vectors. An element of this 3 × 3
symmetric and traceless matrix is denoted below by Qij where
in a typical Cartesian system, i = x,y,z [1].

A. Free energy

Rather than dealing with the complete r and u dependencies
of a distribution function of molecules, the Landau-de Gennes
theory assumes that the structure of a spatially inhomogeneous
nematic liquid crystal can be represented by the tensor field
Q(r) where the orientational properties at r are reflected by
the properties of the Q tensor. Phenomenologically, the free
energy contains two parts,

F [Q(r)] =
∫

[fb(Q) − fb,0 + fe(Q,∇Q)]dr, (2)

where the integration is carried over the region filled with
the nematic liquid crystal. The free energy is a functional
of the function Q(r), which can be determined after the free
energy is minimized with respect to this tensor function, for
a specific problem. The r-independent constant fb,0 is the
free-energy density of the spatially uniform reference state,
given in Eq. (14) below.

The bulk free-energy density is written in an expansion of
Q after truncation at the fourth order,

fb(Q) = A

2
tr(Q2) − B

3
tr(Q3) + C

4
[tr(Q2)]2, (3)

where trace (tr) is taken on a matrix, and Q2 = Q · Q as well
as Q3 = Q · Q · Q are tensor matrix products. The coefficients
A,B, and C are material-dependent parameters.

The elastic free-energy density is commonly written as [71],

fe(Q,∇Q) = L1

2
Qij,kQij,k + L2

2
Qij,jQik,k

+ L3

2
Qik,jQij,k + L4

2
QklQij,kQij,l, (4)

in which the notation Qij,k refers to a spatial derivative of
the element Qij (r) with respect to the kth spatial variable.
In principle, to completely analyze the nematic structure, we
must consider this expression with the presence of all material-
dependent coefficients Li . In the so-called one-constant ap-
proximation, it is customary in the literature to consider the first
term only by letting L1 = L and L2 = L3 = L4 = 0, which
neglects possible effects of the elastic anisotropy in liquid
crystals. We follow this approximation in the current work.

The current work is concerned with the immersion of (hard)
spherical particles of radius R in a nematic fluid; the radius
can be conveniently used to reduce physical quantities in the

system. We use a dimensionless spatial variable

r′ ≡ r/R, (5)

dimensionless system parameters

τ = 27AC

8B2
(6)

and

ξ 2
R = 27CL

8B2R2
, (7)

reduced Q tensor

Q′ =
√

27C2

8B2
Q, (8)

and reduced free energy

F ′ = 272C3

26B4R3
F. (9)

Dropping all primes on the reduced symbols with the under-
standing that we have adopted these scalings, we write

fb(Q) = τ

2
tr(Q2) −

√
6

4
tr(Q3) + 1

4
[tr(Q2)]2, (10)

and

fe(Q,∇Q) = ξ 2
R

2
Qij,kQij,k. (11)

This free-energy expression, including (2), (10), and (11), is
exactly the same as the one used in Refs. [44,46,62,72].

B. Bulk phase

Here we review the main result of the isotropic-nematic
transition in a spatially homogeneous system, for which fe = 0
and all r dependence can be dropped in (10). The minimization
of the free energy produces a uniaxial solution where a nematic
director n can be defined. In this case the Q tensor can be
represented in a simple form, Q = S0

2 (3nn − I), where S0 is
an orientational order parameter [6,73,74]. The system has a
first-order isotropic-nematic transition at

τin = 1/8. (12)

Above τin, the isotropic state is stable and we have S0 = 0 and
fb,0 = 0. Below τin, the nematic state is stable and we have

S0 =
√

2

3

(
3 + √

9 − 64τ

8

)
(13)

and

fb,0 = 3τ

4
S2

0 − 3
√

6

16
S3

0 + 9

16
S4

0 . (14)

The isotropic-nematic transition is represented in Fig. 1 by the
horizontal line at τ = 1/8.

C. Surface anchoring

Our main concern is the insight into the nematic ordering
field represented by Q(r) in the presence of spherical particles.
In this paper, we consider the homeotropic alignment of liquid-
crystalline molecules only and leave other types of alignment
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(a) (b) (c) quadrupole

(d) (e) (f) dipole
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FIG. 1. Defect configurations in a nematic liquid crystal sur-
rounding a spherical particle: (a)–(c) quadrupolar (Saturn-ring) state,
(d)–(f) dipolar state, as well as the corresponding regimes in the
phase diagram (g) where these states have the lowest free energies.
Each state is illustrated by using three views: side views of the
Q-tensor element Qxx [in (a) and (d)], the same side views of
the biaxiality coefficient β [in (b) and (e)], and top view of the
defect location, indicated by the black circles produced from plotting
the isosurface of cl = 0.1. (e) is an enlarged version of the defect
area on top of the sphere, where the tensor field (white ellipsoids)
indicates a −1/2 defect line. The reduced parameters used in
producing these configurations are: [τ,ξR] = [−0.2234,0.07209] and
[−0.2234,0.007071] (R ≈ 0.1 μm and R ≈ 1 μm in 5CB) for the
quadrupolar and dipolar states, respectively. The dashed line in (g)
represents the stability limit of the dipolar state.

for future work. This entails a rodlike molecule prefer to align
perpendicularly to the surface of a spherical particle.

More specifically, we consider a Dirichlet boundary con-
dition such that at any given parameter pair τ, ξR , the tensor
field Q(r) is required to exactly match a surface field defined
by Qs(r) = S0

2 (3r̂r̂ − I) at the spherical surface, where r̂ is the
surface normal direction. Computationally, this is realized by
introducing an energy-penalty term (surface energy) when r is
a point on a spherical surface,

Fs = w

2

∫
|Q(r) − Qs(r)|2dA, (15)

where the integration is carried over the spherical surfaces
containing the surface element dA. This penalty term is
considered together with F as we minimize the combination
F + Fs with respect to Q(r). All the results presented below
are obtained by letting w � 1 so that the Dirichlet condition is
numerically satisfied in high precision. The exact choice of w,
as long as it is large, has a negligible effect on the free-energy
data presented in this work. Our computational approach here
is the same as or similar to previous treatments of liquid-crystal
surface anchoring [39,40,43–46,62,72].

Although our focus is the Dirichlet boundary condition, our
numerical method could be used to study the effects of a finite
w as an additional system parameter. Indeed, in real systems,
it has been argued that the anchoring strength influences the
defect properties, such as the equilibrium locations of defects
[35,36,55], the stability of the defect structures [8,35,36], and
the fluid-mediated interaction between the instructing particles
[28,50,52]. There is an expectation that these effects are more
profound in systems with nanoscale particles [27,28,52,75].
For example, the theoretical studies by Stark indicate that
the quadrupole structure is more stable and the Saturn ring
moves closer to the particle surface, at a weaker surface
anchoring [35,36]. These theoretical results are in agreement
with the experimental observation conducted by Mondain-
Monval et al., who observed a transition from the dipole to
quadrupole structures for a particle with radius R = 50 nm,
after decreasing the anchoring strength [8]. The numerical
study of Tomar et al. based on the Landau-de Gennes theory
demonstrated that the magnitudes of interactions between
nanoparticles in a nematic liquid crystal are sensitive to the
anchoring energy.

Adding w as another parameter dimension is a natural
extension of the current work; here we focus on the ide-
alized case of a Dirichlet boundary condition. The com-
parison between our numerical results and real systems
where the boundary condition is not ideal, can be only
qualitative.

D. Numerical method

The details of the numerical method can be found in the Ap-
pendix and are summarized here. We use the spectral method
to minimize the free energy, which is a functional of the tensor
function Q(r). The target function Q(r) is expanded in terms
of proper basis functions after the appropriate identification
of a coordinate system. Neglecting the high-order terms in
a truncated series, we express the free energy in terms of
undetermined coefficients.

A multivariable minimization scheme is then used to
minimize the free energy with respect to these coefficients,
now as variables. A deterministic procedure such as the
limited-memory Broyden–Fletcher–Goldfarb–Shanno algo-
rithm (L-BFGS) [76] is handy to achieve this goal. Standard
computational packages are available for this purpose.

After specifying all system parameters such as τ and ξR , we
are required to find the free-energy minimum. Depending on
the initial guess for Q(r), the numerical system can converge
to a local or global minimum, giving rise to a defect structure.
To analyze the stability of a particular defect state, sometimes
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we take an existing solution as an initial guess for a different
region of the parameter space.

E. Selection of parameters

There are two basic parameters in the current model. The
reduced free energy only contains reduced parameters τ and
ξR . While we examine a large range of these parameters
generally in this paper, here we specifically take 5CB liquid
crystal as an example to make sense of the range in real units.

At the room temperature, it is customary to adopt the param-
eters A = −0.172 × 106 Jm−3,B = −2.12 × 106 Jm−3, C =
1.73 × 106 Jm−3, and L = 4 × 10−11 Jm−1 [6,12,14–
17,48,50]. This prompts us to conduct most calculations by
setting

τ = −0.2234 (room temperature for 5CB). (16)

It is generally assumed that A = a(T − T ∗
NI ), where T ∗

NI is the
surpercooling temperature [6], hence τ = ã(T − T ∗

NI ) from
(6). For 5CB, assuming that τ = −0.2234 corresponds to
Troom = 25 ◦C and that τ = 1

8 corresponds to T ∗ = 35 ◦C [77],
we have

T = T ∗ − Troom − T ∗

0.3484
(τ − 0.125)

≈ (31.38 + 28.99τ ) ( ◦C) (for 5CB). (17)

The pure 5CB undergoes a phase transition from a nematic
phase to a crystalline at about T = 22.5 ◦C [77]; so strictly
speaking, for 5CB the lower bound of τ is −0.3063. While
in most cases, we stay with τ = −0.2234 in (16), we also
extend our study to the range [−1,1/8], in Secs. III and VI,
to illustrate the general trend and to accommodate possible τ

range in other materials.
Another important parameter is the coherence length ξR in

(7). For a given material where B,C, and L are fixed, it can be
viewed as the inverse radius of the intruding particle in reduced
units. Hence, below we also refer to 1/ξR as the reduced radius
directly. For 5CB, this implies that ξR = 0.07209 for a particle
of radius R = 0.1 μm, or the relationship

R = 0.007209ξ−1
R (μm) (in 5CB). (18)

The range we considered [0,400] for 1/ξR is approximately
the range [0,3] (μm) for a spherical particle in 5CB.

The mappings in (16)–(18), of course, are material-
dependent. Some of physics described below could be ob-
served at different length scales and temperatures when other
liquid-crystal materials are used.

F. Visualization of defect structures

The solution to the Landau-de Gennes theory yields an
optimal tensor field Q(r), which is reasonably smooth over
the entire space outside the spherical particles. The location of
nematic defects in this region, if any, can be detected by the
singularities of the eigenvector corresponding to the largest
eigenvalue, S, of this 3 × 3 tensor [78]. The following physical
quantities are considered in visualization.

The first is an element of the tensor Q(r), such as Qxx(r),
the values of which are nearly constant in the far field but
change significantly near a particle. The colors in all displays

are arranged such that the high to low values correspond to
variations from red to blue.

A biaxial distribution of the molecular orientations can also
be used to detect the existence of the topological defect in this
problem. An effective way to measure the biaxial effects is to
introduce a biaxial coefficient, our second physical quantity,
which is defined by [79]

β(r) = 1 − 6
[trQ3(r)]2

[trQ2(r)]3
. (19)

One can show that 0 < β � 1 in the biaxial regions and β = 0
in the uniaxial region. Again, all color displays are arranged
such that the high to low values correspond to variations from
red to blue.

At a given point represented by r, the tensor field Q(r)
can be diagonalized to form three principal directions. In
some illustrations, white ellipsoids with axes along the three
principal directors are plotted in selected locations. The most
obvious feature of such a plot is the long axes that indicate
local nematic directors.

The largest eigenvalue (in magnitude) of the tensor Q(r)
defines the orientational order parameter S(r). The defect line
can be visualized by the isosurface of the orientational order
parameter S(r) [6] or the isosurface of the Westin metric cl ,
which is the difference between the two largest eigenvalues
[80]. The resulting effect is a thick, connected curve.

III. SINGLE SPHERICAL PARTICLE IN A
NEMATIC FLUID

We first present the phase diagram for the relatively simple
single-particle problem, which provides a basis for the analysis
of the two-particle problem. With strong homeotropic anchor-
ing, two types of defect configurations arise, containing defect
structures of quadrupolar (the so-called Saturn-ring structure)
and dipolar states, both being illustrated in Fig. 1. With the
bulk nematic director pointing in the vertical direction, the
defect ring is located near the spherical equator in the first
case, and near the spherical top in the second case.

The Saturn-ring defect structure was predicted by Terentjev
theoretically for the current problem [30]. It contains a defect
ring curve encircling the axis of the spherical particle. The
entire Q(r) tensor has an axisymmetry about the z axis and
reflection symmetry with respect to the x-y plane through
the spherical center [see Fig. 2(a)]. The functions used in
plotting the illustration, Qxx and β, were produced from
the numerical minimization of the Landau-de Gennes model.
The location of the Saturn ring is a line defect, around
which the nematic director field forms a −1/2 topological
disclination [see Figs. 1(b) and 1(c)].

The dipolar solution has been known to exist in this system
for a long time, with an axisymmetric configuration of Q(r)
that contains no reflection symmetry with respect to the x-y
plane [7,34,39]. Previous studies based on the Oseen-Frank
theory suggested that the nematic directors form a typical
hyperbolic hedgehog pattern about a single point defect, with a
winding number −1 in a cross section [34]. This configuration
can be obtained from the free-energy minimization of the
Landau-de Gennes model, by mathematically enforcing Q(r)
to be uniaxial in the entire space.
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FIG. 2. (a) Sketch of the coordinate system for a dimer problem;
(b) entangled hyperbolic defect (H) state where γ = π/2; (c) unen-
tangled defect rings (Uγ ) where γ �= π/2; (d) parallel dipole-dipole
state (D0) where γ = 0; and (e) the phase diagram that describes the
regimes where these defect states have free-energy minima in terms
of a reduced temperature τ and reduced spherical radius 1/ξR . The
phase diagram was determined based on the ground-state calculation,
after consideration of all other possibilities including minimization
with respect to the particle distance D and tilt angle γ . (b) and
(c) are illustrations of the defect lines determined from isosurface
S = 0.25. (d) is the cross-section view of Qxx . (b) and (c) are
produced from numerical solutions at [τ,ξR] = [−0.2234,0.07209]
(R ≈ 0.1 μm in 5CB). (d) is produced from numerical solutions at
[τ,ξR] = [−0.2234,0.007071] (R ≈ 1 μm in 5CB).

The uniaxial solution, however, is biaxially unstable in the
Landau-de Gennes theory as has been pointed out in a number
of theoretical studies [81,82]. Using the adaptive finite element
method, Fukuda et al. showed that the defect region displays
a defect ring, co-centered about the z axis [39]. Our current
calculation also verifies the ring structure, which can be seen
from the illustrations in Fig. 1(d) where the side view Qxx

displays a blue gap in the defect region, and the detailed side
view of the tensor field clearly indicates a −1/2 defect line
on spherical top. Once the uniaxial constraint is removed from
the minimization procedure, the uniaxial solution gradually
evolves to the final biaxial result. The uniaxial solution itself
is not a metastable state.

From a comparison of the free energies, the stable state
corresponding to the free-energy global minimum can be
determined. Shown in Fig. 1(g), a first-order isotropic-nematic
phase transition occurs at τin = 1

8 , determined by the bulk free
energy. Once the intruding hard particle is introduced, the
defect patterns form. The dipolar state is stable in large 1/ξR

systems. Over the region considered in the phase diagram, the
quadrupolar pattern can be found, as the stable or metastable
state, over the entire parameter space below τin; the dipolar
state can only be found to the right of the dashed curve,
which represents the stability limit of this phase. The dipole-
quadrupole transition was experimentally produced in 5CB by
using a μm-sized gas bubble as a colloid particle with varying
radius [13]. Our results suggest that the dipole-quadrupole
transition can be induced by a variation of temperature through
τ . For fixed 1/ξR , the location of the transition temperature in
terms of T for 5CB, can be referred to from the figure and the
conversion in (17).

Overall, the phase diagram follows the general principles
in phase transitions regarding symmetry breaking. For a fixed
ξR , as the temperature τ is lowered, the system undergoes
phase transitions from a high-symmetry phase (isotropic) to
a low-symmetry phase (quadrupolar with axisymmetry and
mirror symmetry), and then, to an even-lower-symmetry phase
(dipolar with axisymmetry only). Although it has been known
for a long time that dipolar solution is energetically preferred
for larger particles [36,43], here we present a quantitative phase
diagram for ξR and τ , which covers a large radius range.

IV. TWO SPHERICAL PARTICLES IN A NEMATIC FLUID:
GROUND AND METASTABLE STATES

The emergent nematic defect structures when two spherical
particles of equal radii R are placed in a background nematic
fluid are rather complicated. In addition to the two parameters
τ and ξR in the current Landau-de Gennes model, two other
parameters are expected to enter the theory: the reduced dis-
tance between the centers of the two spherical particles, D/R,
and the tilt angle between the center-to-center vector and the
far-field nematic director, γ [Fig. 2(a)]. Because of the variety
of structures in the single-particle system, a series of recent
works suggested that the dimer complex can be composed
of dipole-dipole pair [11,15,19,44], quadrupole-quadrupole
pair [14,17,40,47,48,50,61], dipole-quadrupole pair [16,62],
or even a new bubble-gum structure, which is unique for the
dimer case [19,46].

The parameter ξR is material related and as such it is fixed
when the particle size and liquid-crystal material are selected
in an experimental system. The temperaturelike parameter
τ depends on the experimental environment and is usually
adjusted through temperature and sometimes through density
(at least theoretically). Both γ and D/R are configurational
parameters, which, in a free system without any constraint,
are self-adjusted to yield a free-energy minimum. There are,
however, a number of experimental techniques that can be used
to fix one or both of these parameters [14,22,26].

Here we describe the ground-state topological defects in
the dimer system, after the free energy is minimized with
respect to both γ and D/R. Three states, entangled hyperbolic
defect (H), unentangled defect rings (Uγ ), and parallel dipoles
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(D0), displayed in Figs. 2(b)–2(d), have the lowest free energy
in the corresponding regimes of the phase diagram shown
in Fig. 2(e). The phase diagram can be compared with the
single-particle phase diagram presented in Fig. 1(g).

The stability region of the dipole-dipole pair is very similar
in size with that of the single-particle problem. We show in
later sections that out of all dipole-dipole configurations, the
parallel arrangement with γ = 0 has the lowest free energy,
consistent with the observation made by Poulin et al. for μm-
sized particles (R = 1.6 ∼ 5 μm) [19]. Both H and Uγ states
are variations of the original, quadrupolar Saturn-ring structure
in Fig. 1(a). The size and location of the combined H and Uγ

regions in Fig. 2(e) are similar to the phase region where the
quadrupolar structure is stable in Fig. 1(g).

Notice that the ground Uγ state determined here has a
nontrivial tilt angle γ , which was suggested by several previous
studies for μm-sized particles [14,17,48,54]. Qualitatively, due
to the fact that the two defect Saturn rings both have the
same winding number −1/2, the portions of the defect Saturn
rings near the sphere-sphere center locally repel each other,
following the general principle of defect-defect interactions
[1]. As these portions are twisted upwards and downwards,
the original spherical axes tilt in order to accommodate a
larger distance between these two repelling portions. The value
of the optimal γ deviates from γ = π/2 starting from the
isotropic-nematic transition line, and increases as the system
moves to a low-1/ξR state. The exact value of γ that minimizes
the free energy depends on the location [τ,ξR] as will be more
quantitatively described in Sec. V.

The H state (adapted from “entangled hyperbolic defect”
[14,48], also known as “figure of theta” in the literature
[56,61,83]) was reported by Guzmán et al. based on the
Monte Carlo simulations of soft Gay-Berne molecules and
a numerical solution to the Landau-de Gennes theory for
nanoscale particles [40]. We demonstrate here that it is the
only stable configuration in the systems with extremely small
1/ξR (R < 68 nm in 5CB at room temperature). This result
is consistent with the numerical study of Hung on the basis
of the Landau-de Gennes theory [50], in which no other
entangled or unentangled defect structures were found, for
nanoparticles with R = 50 nm. For a μm-sized particle, the
H state was reported by Ravnik et al. for R = 0.5 μm using
the Landau-de Gennes approach in Ref. [14]. By using glass
microspheres with radius ranging from R = 2.35−9.5 μm in
5CB liquid crystal cells with thickness from 5−22 μm, they
also successfully observed the H state experimentally [14]. It
is possible that H in the above experiment with a rather large R

was further stabilized by the finite cell thickness, or it remained
intact in a metastable region. Due to the structural symmetry,
in particular the mirror symmetry about the x-y plane, the H
state is very stable against any perturbations from γ = π/2, as
tested by our numerical experiments. The relationship between
H and other related γ = π/2 states is addressed in Sec. VII.

Beyond the three free-energy ground states discussed here,
out of quite a number of configurations discussed below, six
configurations are found metastable, after the free energy is
minimized with respect to the liquid-crystal order parameter
Q(r) and dimer configuration-parameters D/R and γ , as
illustrated in Fig. 3. The first two were nicknamed “figure
of eight” (E) and “figure of omega” (O) previously by

(a) E (b) O

(c) B (d) Dγ

(e) DQ0 (f) DQγ

FIG. 3. Metastable colloidal dimer configurations in a nematic
fluid determined from the Landau-de Gennes free energy in the
current work: (a) figure-of-eight (E), (b) figure-of-omega (O), (c)
bubble-gum (B), (d) tilted antiparallel dipoles (Dγ ), (e) axisymmetric
dipole-quadrupole (DQ0), and (f) asymmetric dipole-quadrupole
(DQγ ). For clarity, the defect configurations are shown by using
different physical quantities. The black curves in plots (a) and (b)
are illustrations of the defect lines determined from the isosurface of
S = 0.25. (c) is a cross-section view Q2

zz(r) on the x-z plane where
the far-field nematic director is along the z axis. (d), (e), and (f) are
cross-section views of Qxx(r) on the x-z plane where the far-field
director makes an angle γ = 38.4◦, 0◦ and γ = 46.8◦ from the z

axis, respectively. (a) and (b) are produced from numerical solutions
at [τ,ξR] = [−0.2234,0.07209] (R ≈ 0.1 μm in 5CB). (c) and (d) are
produced from numerical solutions at [τ,ξR] = [−0.2234,0.007071]
(R ≈ 1 μm in 5CB). (e) and (f) are produced from numerical
solutions at [τ,ξR] = [−0.2234,0.01179] (R ≈ 0.6 μm in 5CB).

Ravnik et al. [14]. The E state was reported by Araki
and Tanaka [47] who numerically solved the hydrodynamic
equation for the dimer problem based on the Landau-de
Gennes theory for particles with radius R = 25 ∼ 60 nm. Both
E and O structures were found by Ravnik et al. for R = 0.5 μm
based on Landau-de Gennes theory [14]. Recently, the O state
was also reported for nanoscale particles by using molecular
simulations [61]. Experimentally, the E and O structures
were observed by Ravnik et al., who used laser tweezers to
manipulate and assemble a pair of glass microspheres with
radius R = 2.35 and 9.5 μm in 5CB liquid crystal cells with
thickness from 5−22 μm [14]. They also demonstrated that
the same mechanics can lead to the formation of colloidal
wires from multiple particles.

The bubble-gum configuration is rather metastable, which
was observed in an experiment for particles with radius R =
5 μm by Poulin et al. [19]. The other three, Dγ , DQ0, and DQγ ,
can be traced back to different combinations of single-particle
structures, which were previously observed experimentally
and some of which were addressed theoretically [11,15,16,62].

The phase diagram in Fig. 2 is determined by a comparison
of the calculated free energies of different defect states. For
example, each data point in Fig. 4(a) represents the free energy
calculated after minimization with respect to Q,D/R, and γ
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FIG. 4. (a) Reduced free-energy branches of Uγ (circle), D0

(squares), and DQ0 (triangles) as functions of 1/ξR at τ = −0.2234,
and (b) reduced free energies of D0 (squares) and DQ0 (trian-
gles) obtained when D/R is fixed as a constraint at [τ,ξR] =
[−0.2234,0.007071] (R ≈ 1 μm in 5CB).

for selected ξR and fixed τ = −0.2234. The interpolation of the
calculated data indicates that Uγ and D0 branches cross each
other at 1/ξR = 190.2, which determines a single transition
point on the Uγ -D0 phase boundary in Fig. 2(e). The DQγ

branch is always higher than the lower values of the other two,
hence is deemed metastable.

The notion of stability and metastability, however, is
relative. As an example, the kinetic pathway of reaching the
stable D0 state can go through the metastable DQ0 formation.
Figure 4(b) contains a description of the reduced free energies
for both D0 and DQ0 as functions of D/R, when D/R is used as
a constraint in the minimization procedure. In a single-particle
phase diagram, this particular system is represented by a
point to the left of the quadrupole-dipole transition line
[see Fig. 1(g)]; hence at a large distance, the uncorrelated
dipole-quadrupole pair, DQ0, has a lower free energy than
D0’s and can be regarded as more stable. As D/R decreases to
a small distance, the defect structures start to interact. The
D0 state reaches a free-energy minimum approximately at
D/R = 2.5, which has a lower value than that of the DQ0
state at approximately D/R = 2.6. Both states experience
defect-mediated attractions. In a real system, if its parameters
can be adjusted to the left-hand side of the quadrupole-dipole
transition line, one may observe a DQ0-D0 phase transition
as the two spherical particles kinetically approach each other.
Of course, whether a transition actually happens or the system
remains at the DQ0 metastable state in small D/R depends on
the free-energy barrier between the DQ0 and D0 states, which
is calculable through an advanced numerical procedure, for
example the string method [84], but is beyond the scope of this
paper. The difference between the two minima in Fig. 4(b) is
about 2.2 × 103 kBT in real units in terms of 5CB parameters.

V. FORMATION OF A COUPLED DIPOLE-DIPOLE STATE

The three most discussed dipole-dipole states are those
with sphere-sphere center vector in parallel with the far-field
nematic director, γ = 0 [22,44]. Shown in Figs. 5(a)–5(c)
are cross-section plots of Qxx of these configurations at
[τ,ξR] = [−0.2234,0.007071] (corresponding to R ≈ 1 μm
in 5CB), for fixed D/R = 4 and γ = 0. In this work, the
stability of a configuration is assessed by a study of the

(a)

(b)

(c)

(d)

2 4 6 8 10

1.00

1.08

1.16

(e)
×10−2

2 3 4 5 6 7
30
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(f)

2 3 4 5 6 7

0.97

1.01

1.05

(g)
×10−2

FIG. 5. (a)–(d) Three possible dipole-dipole configurations at
γ = 0 (parallel, p-p type antiparallel, and h-h type antiparallel) and
Dγ configuration for D = 4R shown by Qxx , (e) reduced free energies
F calculated as functions of D/R for the first three configurations
[squares, diamonds, and circles for (a), (b) and (c)], (f) optimal γ

determined when the free energy is minimized with a D/R-constraint
in the Dγ state, and (g) reduced free energies of Dγ (triangles) and
D0 (squares) as functions of D/R. The configuration in (d) has
γ = 83.6◦. All figures are produced from numerical solutions at
[τ,ξR] = [−0.2234,0.007071] (R ≈ 1 μm in 5CB); in this example,
the free energy at the reduced units 1 × 10−4 corresponds to about
8.3 × 103 kBT .

numerical solution for the free-energy difference

�F (D/R,γ ) = F (D/R,γ ) − F (D/R = ∞,γ ) (20)

as a function of both D/R and γ , where F (D/R = ∞,γ ) is
the sum of the free energies of two single-sphere solutions at
the same [τ,ξR], which is γ independent.

The parallel configuration in Fig. 5(a), D0, always has
a negative �F (D/R,0), implying a nematic-fluid-induced
attraction between the two spheres, consistent with the results
provided by Fukuda et al. [44] on the basis of the same model
for [τ,ξR] = [−0.054,0.005] at a higher temperature but with
a similar particle size. As demonstrated in Fig. 5(e), a free-
energy minimum is achieved at approximately D/R = 2.5,
indicating a closely coupled equilibrium dimer configuration
shown in Fig. 2(d). This parallel configuration, in which two
particle-defect dipoles align in the head-tail arrangement, was
experimentally observed in the seminal work of Poulin and
his coworkers for μm-sized particle (R = 1.6 ∼ 5 μm) [7].
They have also demonstrated that the same mechanism can
lead to additional binding of multiple spherical particles, as
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the result of the mediated attractive force between parallel
dipoles, forming a linear chain of colloids. An effective,
particle-particle potential energy curve was later deduced
by Takahashi et al. experimentally [22], for D0 where the
minimum appears between (2,3), similar to Fig. 5(e) here and
Fig. 4 in Ref. [44].

As demonstrated by the plots in Fig. 5(e), the free-energy
differences of the antiparallel configurations at fixed γ =
0, shown in Figs. 5(b) and 5(c), are all positive, which
indicate that the spherical particles interact with each other
through a nematic-fluid-mediated repulsion; hence a finite-
D/R configuration cannot be stable at all in a free dimer
system. On the other hand, using optical tweezers to ma-
nipulate a pair of polystyrene particles of size R = 2.55 μm
in liquid crystal MJ032358, Takahashi et al. were able to
enforce antiparallel configurations to form experimentally at
large distances [22]; they have directly observed that indeed
these types of configurations experience solvent-mediated
repulsion.

In the rest of this section, we highlight our successful
determination of the stable Dγ state with a nontrivial γ (i.e.,
γ �= 0 or π/2). This configuration, illustrated in Fig. 3(d), is
not often discussed in the theoretical literature related to this
topic. Experimentally, the Dγ state was first reported by Yada
et al. in Ref. [11]. Using PS particles (radius: 7.5–15 μm) in
a nematic liquid crystal (ZLI-4792 confined with a thickness
50 μm), they successfully manipulate the PS pair to arrive
at Dγ with γ ≈ 30◦. Inspired by their experiments and other
related experimental studies [12,85], we conducted a series
of computations according to the current model by placing
dipoles at a fixed distance D/R in a D90 form as the starting
point [see Fig. 5(d)]. The numerical solutions are obtained here
in a procedure where the γ constraint is relaxed. Taking the
particular set of [τ,ξ ] = [−0.2234,0.007071] (corresponding
to R ≈ 1 μm in 5CB), the optimal γ as a function of D/R is
shown by triangles in Fig. 5(f). In this case, as a function of
D/R, the free-energy minimum is located at D/R = 2.3, at
which the optimal γ reaches a finite, nontrivial value of 38.4◦.
The final configuration is shown in Fig. 3(d).

Although previously not often addressed theoretically,
binding of dipole dimers at a nontrivial γ has been observed
in a number of other studies experimentally. Using multiple
silica beads (R = 1.16 μm) immersed in 5CB liquid crystal,
Muševič et al. made a two-dimensional crystal of these beads
formed according to a self-assembly physical mechanism that
is similar to the strong binding in the D0 and Dγ states [12].
Instead of using D90 as the initial condition, several groups
used the h-h type configurations at large distance, which is
unstable against a γ perturbation, as the starting point [15,22].
Škarabot et al., for example, observed the kinetic binding
pathway of two large silica spheres (R = 1.16 μm), which
leads to the final Dγ state in 5CB in a matter of 140 s
[15]; they reported a final tilt angle γ = 36◦ by releasing two
particles from a laser trap starting from a h-h type antiparallel
configuration; Takahashi et al. measured the variation of γ

as two polystyrene particles with radius R = 2.55 ± 0.1 μm
in a nematic liquid crystal (MJ032358 with cell thickness of
h = 10 μm) bind from an initial h-h type antiparallel state
from far distance to a final (meta)stable state with a distance
D/R near 2.5; the final configuration has a γ ≈ 40◦ [22]. All

the final γ angles, depending on the experimental conditions,
are qualitatively comparable to the value 38.4◦ determined by
the current theoretical work.

In comparison with D0, how stable is Dγ with a nontrivial
γ ? An example of the free energies are shown in Fig. 5(g),
which demonstrates that Dγ has a negative free-energy
difference, but is always higher than that of the axisymmetric
solution, D0; as it turns out, this is a general trend in
other parameter regimes. According to this assessment, D0

is more stable. Škarabot et al. have produced the effective
particle-particle potentials as functions of D/R of two kinetic
trajectories starting from the D0 and h-h configurations by
integrating the force-separation measurements from their
optical-tweezer experiment. Their conclusion seems to be
the opposite: D0 state is less stable. The discrepancy may
come from the confinement effect as their experiments were
conducted in a 5CB cell with cell thickness of 6 μm. Indeed,
some previous experiments have shown that in thicker nematic
layers, dipoles tend to spontaneously form linear chains along
the rubbing direction [7,10], while in thinner nematic layers,
2D dipolar colloidal crystals can form [12].

VI. FORMATION OF A COUPLED
DIPOLE-QUADRUPOLE STATE

In this section, we examine the configurations when two
spherical particles, initially accompanied by dipolar and
quadrupolar defect patterns in the nematic fluid, approach each
other. Within the parameter regime considered in Fig. 2, the
two coupled dipole-quadrupole states can be metastable. Two
solutions have been obtained for systems with a fixed γ = 0 by
initially making different arrangements for the quadrupole and
dipole directions [62]: with the center-to-dipole-defect-ring
vector pointing towards and backwards from the quadrupole
configuration, as illustrated in Figs. 6(a) and 6(b). We mainly
discuss the case of [τ,ξR] = [−0.2234,0.01179] (correspond-
ing to R ≈ 0.6 μm in 5CB) here; according to the phase
diagram in Fig. 1(g), the single-particle quadrupole and dipole
states are stable and metastable, respectively, near this point in
the phase diagram. Again, the stability of these configurations
are evaluated by an examination of the free-energy difference
defined in (20).

The reduced free energy as functions of the interparticle
distance D/R are shown in Fig. 6(d) for the two configurations
[Figs. 6(a) and 6(b)]. The free-energy difference of configu-
ration (b) is always positive, indicating that the nematic-fluid-
mediated interaction is repulsive for all D/R. Hence, configu-
ration (b) is unstable. In contrast, the free-energy difference of
configuration (a) (a DQ0 state) is always negative, hence the
nematic-fluid-mediated interaction is attractive. A free-energy
minimum is achieved at approximately D/R = 2.6 in the
second case. Corresponding to this distance, the optimal
configuration is shown in Fig. 3(e). The physical picture
present here is consistent with that provided by Kishita et al.
on the basis of the same model at [τ,ξR] = [−0.054,0.005],
and with their experiments in which latex particles with radius
R = 2.55 ± 0.1 μm were used in a 20 μm liquid-crystal film
[62]. Strictly speaking, the original quadrupole configuration is
not exactly quadrupole anymore; there is a weak polarity in the
surrounding nematic fluid, induced by the interaction with the
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FIG. 6. (a)–(b) Two possible configurations of dipole-quadrupole
pair aligned with γ = 0 for D = 4R (shown by a Qxx plot), (c)
DQγ configuration shown by a Qxx plot for D = 4R, (d) reduced
free energies F as functions of D/R for the first two configurations
[circles for (a) and squares for (b)], (e) the optimal γ for DQγ at a
given D/R, and (f) the reduced free energies as functions of D/R

for DQγ [triangles] and DQ0 [circles]. All figures are produced from
numerical solutions at [τ,ξR] = [−0.2234,0.01179] (R ≈ 0.6 μm in
5CB); in this example, the free energy at the reduced units 1 × 10−4

corresponds to about 1.8 × 103 kBT .

dipole configuration, and the Saturn ring slightly moves away
from the dimer center. The axisymmetric DQ0 state is stable
against small-γ perturbations, as tested by our computation.

In this paper we provide concrete numerical evidence that
an asymmetric state, DQγ with a nontrivial γ [Fig. 6(c)], is
a solution to the free-energy model; this is a reminiscence of
Dγ discussed in the preceding section. The configuration can
be calculated from an initial condition in which the dipole
and quadrupole axes are arranged to have a sideways direction
from the far-field director, γ = 90◦. This DQ90 state, however,
is not stable and for fixed D/R, it converges to a configuration
where a nontrivial γ angle always accompanies the free-energy
minimum. As D/R decreases, the optimal γ shifts from π/2
to a smaller angle, eventually reaches γ = 46.8◦ as the dimer
finds an optimal distance D/R = 2.5. At this point, the free
energy is minimized with respect to both γ and D/R. The final
configuration is shown in Fig. 3(f), where the original Saturn
ring is now strongly bent and moves to a new position.

On the experimental side, by conducting the experiments
in wedge-type 5CB cells with thickness ranging from almost
0–8 μm, Ognysta et al. observed the convergence of two
silica microspheres with radius R = 2 μm originally arranged
far away. Using the DQ pair as the template, they further
assembled silica spheres in a higher-order, two-dimensional

colloidal crystal; in such a case the defect lines are further
distorted [16].

Figure 6(f) is an example of comparison between the
free-energies of both DQγ and DQ0. It indicates that DQ0
is a more stable state than DQγ as it has a lower free-energy
difference. Ravnik and Žumer also suggested that both states
exist according to their study of the same Landau-de Gennes
model [6] but did not provide the parameter stability region.
By carefully searching through the parameter space, here we
determine that both states are metastable rather than stable,
strictly speaking, as the dipole-dipole D0 or the quadrupole-
quadrupole Uγ states have lower free energies, depending on
the location of the parameters in the phase diagram, Fig. 2.
On the other hand, the dimer system can be easily trapped into
a metastable state by different kinetic pathways, hence both
DQγ and DQ0 are experimentally realizable [16].

VII. FORMATION OF A COUPLED
QUADRUPOLE-QUADRUPOLE STATE

A. State stability

When a single spherical particle is immersed in a nematic
fluid, the quadrupolar defect structure with a clearly defined
Saturn-ring defect line is stable at low 1/ξR . As we place two
such particles in the same system, the two Saturn rings in
the liquid crystal begin to interact and a number of possible
structures containing entangled or decoupled defect lines occur
[14,48].

A relatively simple case is to consider the interaction
between two coaxial Saturn rings (CR) initially separated
by a distance D with γ = 0 [see Fig. 7(a)]. Over the entire
D/R range considered, as shown by the example in Fig. 7(h)
the free-energy difference �F (D/R,0) always monotonically
increases as D/R decreases. This indicates that such a
configuration cannot exist in a real system and so far has not
been observed without constraints.

In contrast, five defect structures were previously suggested
when the separation vector of the two particles is constrained
to make an angle γ = π/2 with the nematic director [14,48].
At a close distance, the defect lines interact and make exotic
entangled defect lines, shown in Figs. 7(b)–7(f).

At a large distance, γ = π/2 requires that the two Saturn
rings are coplanar and the defect rings around each particle
are minimally influenced by each other. In most large-1/ξR

cases, the spherical pair experience a liquid-crystal mediated
repulsion, as demonstrated by the free-energy plot in Fig. 7(g)
(up triangles). This is consistent with the fact that R is hardly
observed in real systems at a close distance, without further
constraints.

In smaller-1/ξR systems, the defect regions around the
spheres are relatively extended; as the two spheres approach
each other from a large distance, they experience a repulsion;
however, at an intermediate distance, the portions of defect
rings between the two spheres start to influence each other. At
an even closer distance, these portions manifest into a single
merged defect area to reduce the free energy. This results in
an attraction, and the R state finally crosses over to H, as will
be discussed in more detail below.
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FIG. 7. (a)–(f) Illustration of CR, R, U90, H, E, and O, (g)
reduced free energies F of R, U90, H, E, O and Uγ at [τ,ξR] =
[−0.2234,0.07209] (R ≈ 0.1 μm in 5CB), (h) reduced free energy of
CR at [τ,ξR] = [−0.2234,0.3604] (R ≈ 20 nm in 5CB), (i) optimal
γ in Uγ at [τ,ξR] = [−0.2234,0.07209], and (j) optimal γ in Uγ as
a function of 1/ξR for a fixed D/R = 2.1 at τ = −0.2234. (a) is a
β plot and (b)–(f) contain defect lines visualized by an isosurface
S = 0.25. The inset shows the details of the minimum region in (g).
In (g) and (h), the reduced free energies having a value 1 × 10−2

correspond to about 8.3 × 102 kBT and 6.6 kBT , respectively.

The R state is not sustainable at a small distance, and yields
to the formation of other structures that have lower energies
at low D/R. Enforced by the γ = π/2 = 90◦ constraint, a
structure that bifurcates from the R state is an unentangled
structure (U90) where the portions of the two repulsive defect
rings that are close to each other are strongly bent to avoid
direct contact [Fig. 7(c)]. As shown in Fig. 7(g), at [τ,ξR] =
[−0.2234,0.07209] (corresponding to R ≈ 0.1 μm in 5CB),
the bifurcation starts at approximately D = 3.6 R, and �F

dives into a negative territory as D decreases. During the
process, near the bifurcation point, a very weak free-energy
barrier exists.

The U90 state is obtained with a γ = π/2 constraint. Once
the constraint is lifted, the Saturn-ring axes start to tilt and
γ immediately moves away from γ = π/2 to form a Uγ

state. Taking a static, far liquid-crystal field perspective, this
means that the center-to-center vector of the two spheres starts
to rotate. A new free-energy branch, shown in Fig. 7(g) by
the left triangles, is reached by the system. The relationship
between the optimal-γ and the interparticle distance D/R is
displayed in Fig. 7(i) based on our numerical calculations, for
[τ,ξR] = [−0.2334,0.07209] (corresponding to R ≈ 0.1 μm
in 5CB). As D/R decreases, a final free-energy minimum
located approximately at D/R = 2.1 is reached and the
optimal γ rises to γ = 84.3◦. A different calculation for
[τ,ξR] = [−0.2334,0.01442] (corresponding to R ≈ 0.5 μm
in 5CB) yields a final equilibrium γ = 78.3◦, which agrees
well with a recent experimental observation reported in Fig. 2
of Ref. [48], in which γ = 79◦. From another perspective,
by fixing τ = −0.2334 and D/R = 2.1, the evolution of the
optimal γ can be seen as a function of 1/ξR , shown in Fig. 7(j).
It indicates that larger colloid particles have a more profound
effect on the optimal value of γ .

The formation of entangled defect states has been ex-
tensively reported by both experimental observations and
theoretical calculations [14,40,47,48,50,52]. The discovery of
entangled topological defects opens a new field to study the
topology of disclination lines [56,58,83,86,87]. In a nematic
liquid crystal, the colloidal particles can be self-assembled into
high-order structures by optimizing the entangled disclination
lines, which form the nematic wires and braids [14,48,49,57].
In a chiral nematic liquid crystal, the disclination lines
stabilized by arrays of colloidal particles can even form
reconfigurable knots and links [87–89].

Based on the current study, we verify that defect lines
that show entangled-hyperbolic-defect [H, Fig. 7(d)] (i.e.,
figure-of-theta [56,61,83]), figure-of-eight [E, Fig. 7(e)], and
figure-of-omega [O, Fig. 7(f)] patterns, following the names
adopted by previous authors [14,48], can indeed be stabilized
for relatively large 1/ξR (from nanoscale to multi-μm-scale).
An H structure has a mirror symmetry with respect to the x-z
plane and contains two intersection defect points, as was also
observed in previous studies base on the Landau-de Gennes
theory [40,50,52]. The numerical calculations by Ravnik et al.
for μm-sized particles indicate that the intersection of the
defect loops only occurs with small particles [14]. Recently,
the molecular simulations by Humpert et al. suggest that the
intersection of the disclination lines for nanosized particles is
a consequence of the time average over fluctuations among
all entangled structures [61]. Both E and O structures are
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chiral, breaking the mirror symmetry. At a fixed D/R value, all
three states are stable against γ perturbations from γ = π/2,
as the symmetry of the defect lines prefers such an optimal
angle. Typical free-energy curves as functions of D/R can
be found in Fig. 7(g) for [τ,ξR] = [−0.2234,0.07209] and
have steep slopes before reaching minima. Hence, in a free
state, each configuration is settled at its own free-energy
minimum around D/R = 2.1. It can be noticed from the
inset of Fig. 7(g) that the differences between the free-energy
minima of all entangled and unentangled structures are quite
small, less than 50 kBT for R ≈ 0.1 μm in 5CB. Although
E, O (over the entire phase diagram in Fig. 2) and H (in a
large area of of the phase diagram) have free-energy minima
higher than that of Uγ , these structures are quite stable against
both D and γ perturbations. As a consequence, they can be
realized experimentally and an optical-tweezer experiment has
demonstrated that stretching of the sphere-to-sphere separa-
tion D resulted in an observable increase in the stretching
force [14].

B. Pathways in a fixed-γ system

Inspired by the optical-tweezer experiment, in this section
we explore the structures that can be observable associated
with a fixed γ = π/2 pathway. The assumption here is that
structures can be manipulated through controlling the distance
D. The demonstration of the pathway is based on the sequence
of equilibrium profiles and not on a real kinetic simulation,
which requires consideration of dynamic properties of the
colloids, liquid-crystal solvent, and their mutual interaction
on the surface.

Although to a large extent the intermediate observable
states can be trapped in a particular defect state, it is helpful
to establish the free energies of different branches for fixed
γ = π/2. The precision of the current numerical approach
allows us to analyze the fine details of the free energies,
which enables us to construct a phase diagram in terms of
1/ξR and D, displayed in Fig. 8 at two fixed τ . The basic
structures of these phase diagrams are similar. On nanosized
particles, the molecular simulations by Humpert et al. show
that transitions can occur between different states since the
energy barriers between them are quite small [61]. In a previous
study, using a Landau-de Gennes model, Tasinkevych and
Andrienko showed that by decreasing D/R to a small value,
rearrangements of topological defects can occur, going through
transitions U90 → E → H [51]. The same trajectory can be
found in our phase diagram.

According to Fig. 8, the low-D and low-1/ξR regime is
where H (large area) and E (small area) phases can be stable.
The free energy of the O state is always higher than the H or
E state, hence is metastable only. In terms of 5CB parameters,
the region where E can be stabilized has a small particle radius
0.3 μm, even at high temperatures. This, however, does not
preclude the existence of entangled states in larger pairs of
particles, as the system can be trapped in a metastable state (see
pathways below). By switching to a 5CB nematic state abruptly
from an isotropic state, Ravnik et al. produced all the entangled
structures and Uγ for particles of radius R = 19 μm in a 21 μm
thick 5CB cell. Among their 124 quenching experiments, 48%
were ended with Uγ and 36% were ended with E, only 3%
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FIG. 8. Phase diagrams of energetically preferred configurations
at a fixed γ = π/2 in terms of 1/ξR and D/R for fixed (a) τ = 0.0625
and (b) τ = −0.2234. The range 1/ξR = [0,40] approximately
corresponds to R = [0,0.3 μm] in 5CB at a room temperature.

were ended with H. Their experiments suggested that for
μm-sized particles, Uγ is more stable than E, and E is more
stable than H. The experiment reflects the fact that all the
entangled structures are most likely to be metastable states
for liquid crystals containing μm-sized particles, which is
also supported by their numerical calculations, as all three
entangled structures have higher free energy compared to the
free energy of Uγ [14].

H-R pathway. This typically happens in a small-1/ξR

system, when H and R have a common phase boundary, shown
in Fig. 8. When the two coupled spheres are stretched away
from H, the free energy drastically increases, as demonstrated
by Fig. 7(g) and by Fig. 9(b), along the H branch. While in
a large-1/ξR system the H and R branches are clearly defined
separately [Fig. 7(g)], in a small-1/ξR system they cross over to
each other [Fig. 9(b)]. In the latter case, an extended domain of
weakly varying singularity forms in the middle portion, which
can be viewed as a crossover point to R. Both H and R share
the same spatial symmetry, and the defect domain in the Q
field follows this symmetry. As the particles are stretched even
further, the free energy increases and the configuration now
mainly resembles an R state. Once the system is settled in R, as
the interparticle distance increases further, the free energy now
decreases because of the fluid-mediated repulsive interaction.
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FIG. 9. (a) Illustration of the H-R pathway as the two particles
in H are stretched apart, with distances from D/R = 3.1, 3.2, to
3.3, respectively, from left to right. (b) Corresponding reduced
free energies of H (diamonds) and R (triangles) branches, and (c)
behavior of the two order parameters defined for H (diamonds)
and R (triangles). The calculation was performed for [τ,ξR] =
[−0.2234,0.3604] (R ≈ 20 nm in 5CB); with this choice, a free
energy at the reduced units 1 × 10−2 corresponds to about 6.6 kBT

in 5CB. Shown in color are β plots. The defect lines are visualized
by an isosurface cl = 0.05.

A weak maximum in the free energy located at approximately
D/R = 4.4 exists, shown in the inset of Fig. 9(b).

To demonstrate that indeed the H and R states are connected
in this example, we consider two order parameters, which are
specific to these configurations separately. On the x-z plane,
we define a vertical radius rH for the vertical ring at the center
of the defect H structure. On the same plane, we define a
horizontal distance rR between the two nearest Saturn-ring
intersections. These quantities are plotted in Fig. 9(c) by
diamonds and triangles, respectively, where rR > 0 for R and
rH > 0 for H. This plot clearly demonstrates that a crossover
point at D/R = 3.2 exists.

H-U90-R pathway. On the basis of Fig. 8, one can see that at
a relatively small 1/ξR , an H-U90-R pathway is possible when
the two spheres are stretched away from H. The properties
of the H and R branches of the free energy are quite similar
to those in the previous case; they make a smooth crossover.
In the example shown in Fig. 10(b), the H (diamonds) and
R (triangles) free energies are connected at approximately
D/R = 2.92.

The appearance of the U90 state, however, undermines this
smooth connection and creates another possible scenario. In
the example shown in Fig. 10(c), there is a free-energy branch
that smoothly bifurcates from the R branch at approximately
D/R = 3.24 and intersects with the H branch at approximately
D/R = 2.673 [see the inset in Fig. 10(c)].

In order to define an order parameter for U90, we consider
the first diagonal element of the qlnm tensor, denoted by q

(xx)
lnm ,

defined in the Appendix [see expansion (A3)]. Among positive
m terms, one can show that all q(xx)

lnm terms with odd m vanish in

FIG. 10. Illustration of a possible two-stage transition when the
particles in H is stretched away as D/R increase. The H state can
make a first-order transition to jump into a U90 state [shown in (a),
where D/R = 2.6, 2.7 and 2.8, respectively, from left to right], and
the U90 state smoothly crosses over to R [shown in (b), where D/R =
3,3.1 and 3.2, respectively, from left to right]. The H state could
be trapped in its metastable form, directly makes an H-R transition
described in Fig. 9. These transitions are assessed by the free energies
displayed in (c), where diamonds, circles, and triangles represent
data points calculated for the H, U90, and R branches. The inset of
(c) shows FU − FH near the transition point. The order parameter
for the U90, PU90, is displayed in (d). The system considered here
has reduced parameters [τ,ξR] = [−0.2234,0.1768] (R ≈ 40 nm in
5CB); with this choice, a free energy at the reduced units 1 × 10−2

corresponds to about 53 kBT in 5CB. Shown in color are β plots.
The defect lines are visualized by an isosurface S = 0.2.

H and R, due to the particular symmetries. On the other hand,
because U90 breaks the mirror symmetry of the director field
with respect to the x-y plane, some of these terms survive.
Hence, a characteristic measure for the U90 state is PU90 =
Maxq

(xx)
lnm where m > 0 and odd. Figure 10(d) is a plot of PU90

as a function of D/R. At the H-U90 intersection, it makes a
jump to a finite value (which is characteristic of a first-order
phase transition) and at the U90-R bifurcation point, it displays
a continuous transition (which is characteristic of a second-
order phase transition).

Here is a possible H-U90-R pathway in two stages, shown
in Fig. 10(a) and 10(b). At the first stage, the typical H defect
pattern is stretched in the z direction until D/R reaches 2.7.
Because of the first-order phase transition characteristics, the
system can be trapped in the H state beyond this transition
point. At a certain D/R, depending on the experimental
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FIG. 11. (a) Illustration of a possible H-E pathway in a stretching
experiment starting from H, where D/R = 2.1, 2.2, and 2.3, respec-
tively, from left to right, (b) reduced free energies as functions of D/R

for H (diamonds) and E (squares), and (c) the order parameter for E.
The inset shows FE − FH near the transition point. A jump in the order
parameter exists after the two free energy curves cross each other.
The calculation was performed for [τ,ξR] = [−0.2234,0.08839]
(R ≈ 80 nm in 5CB); with this choice, the free energy at the reduced
units 1 × 10−2 corresponds to about 4.3 × 102 kBT in 5CB. The
defect lines are visualized by an isosurface S = 0.25.

condition, the H configuration can jump into a U90 configura-
tion by lowering its free energy. As the particles are stretched
further, at a distance D/R = 3.24, the bent rings recover their
coplanar feature and the U90 state crosses over to the R state.

H-E pathway. Figures 8(a) and 8(b) show that in a narrow
region for relatively large 1/ξR , the E state is energetically
stable. As a system in H is stretched away, crossing the H-E
phase boundary, a possible H-E transition can occur, as
illustrated in Fig. 11(a).

We take an example of relatively large 1/ξR and calculated
the free energies of both states, shown in Fig. 11(b) by
diamonds (H) and squares (E). As shown in details, the H
and E branches cross each other at D/R = 2.167, indicating a
first-order phase transition between the two states. Below this
transition distance, the H branch has a lower value.

Again, we can define an order parameter for E by examining
q

(xx)
lnm on the basis of symmetry analysis. One can show that all

q
(xx)
lnm terms with negative m vanish in H, but some survive in E.

Thus, a characteristic measure for E is PE = Maxq
(xx)
lnm where

m < 0. A plot of PE as a function of D/R can be seen in
Fig. 11(c). At the free-energy crossing point, PE jumps from
0 to a finite value. Hence, as a function of D/R, the H-E
transition is first-order-like.

As the system crosses the first-order boundary, it can be
trapped in the original state by maintaining its metastable state,
without making a jump to another state. This explains the fact
that both H and E states were experimentally stabilized and
in a stretching experiment, the transition from H to E has not
been observed to take place [14].

(a)
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×10−2

FIG. 12. (a) Orientational profiles in the bubble-gum configura-
tion shown by Q2

zz plot at D = 4R, (b) detailed map between the
two spheres at D = 2.2R where the white ellipsoids are illustrated
according to Q to display the main directors, and (c) reduced free
energy F in B (circles), which can be compared with that of D0

(squares). The example given here corresponds to a system having
[τ,ξR] = [−0.2234,0.007071] (R ≈ 1 μm in 5CB); with this choice,
a free energy at the reduced units 1 × 10−4 corresponds to about
8.3 × 103 kBT .

VIII. BUBBLE-GUM CONFIGURATION

Poulin et al. unraveled a rather unique structure in the
dimer case experimentally for particles with radius R = 5 μm
[19]. The configuration, in which a defect line with a winding
number −1 located at the center between the two spheres,
does not originate from any single-particle configurations. Due
to the resemblance of the orientational profile to a stretched
piece of bubble gum, this state is referred to as a bubble-gum
configuration (B) in the literature [see Fig. 12(a)]. The B state
was later confirmed theoretically and experimentally to exist
but is highly metastable and difficult to form in a nematic
liquid crystal [22,46].

For completeness, we assessed the free energy of this
configuration over the entire parameter space in Fig. 2(e).
For example, a system at [τ,ξR] = [−0.2234,0.007071] (cor-
responding to R ≈ 1 μm in 5CB) displays a free energy as a
function of D/R that is always higher than that of D0, shown
in Fig. 12(c). In the large D/R region, the free energy displays
a long-range linear behavior in D/R, which agrees with the
previous experimental and theoretical results [19,22,46]. From
the free-energy perspective, the B state is always metastable
in a nematic liquid crystal.

In a related development, the recent experiment conducted
by Tkalec et al., places particles of radius R = 2.36 μm in a
10 μm π/2-twisted nematic cell, in which the defect structure
shows a similar B pattern. The interaction potential also
displays a long-range linear behavior, but the interaction is
much stronger which by the end leads to the formation of
2D crystal structures [90]. The experimental results were also
supported by their calculation based on the Landau-de Gennes
theory [90].

IX. SUMMARY

The current state of the art in theoretical study of multiple
colloidal particles in a nematic liquid crystal relies on the so-
lution to the Landau-de Gennes theory. For the dimer problem,
many conclusions have been drawn about the possible steady
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states of the system, depending on the parameter regions. We
task ourselves here to make a complete free-energy analysis
over a significant range of variations of the system parameters
τ and ξR , paying particular attention to the stabilities of various
proposed and observed defect states by going through their
competitive free energies.

We cover a large range of the coherence length scale ξR in
the calculations, or more physically, a large radius range of the
immersed particles, from nanoparticles to microparticles. All
defect states are placed in one, comparative physical picture,
backed up by a careful comparison of their free energies and a
thorough analysis of their stabilities. In doing so, the physics
of nontrivial γ states are explained in relationship with their
relative states, exhaustively. The effects of temperature have
not been carefully addressed before by theoretical studies. Our
results indicate that it may be easier to realize the quadrupolar
defects at higher temperatures, at which all interesting defect-
defect phase transitions occur with a relatively larger R. Most
experimental studies on these problems are based on optical
methods, which are more suitable for observation of μm-sized
structures. Only recently, by using some new experimental
methods, such as video-tracking dark-field microscopy [27],
have the direct experimental studies on the nanoscale particles
in liquid crystals become possible. Several studies have been
devoted to measuring the pair interaction between nanoparti-
cles in a nematic fluid [24,27,29].

We devote a large part of this paper to the behavior of a
colloidal-particle pair stretched away from their equilibrium
states. The transitions among several states are described as
kinetic pathways, as they either are already experimentally
observed or offer further opportunities in future experimental
probing. As the interparticle, center-to-center vector becomes
another decisive system parameter, the interplays between
stability and metastability display a full range of possibilities.
The indication of first-order phase transitions between some
of these states reveals the fact that some defect states are
trapped in their own free-energy minima and have difficulties
to overcome the energy barrier to jump to other states.

Our numerical study is conducted in an infinite space,
free of finite-size effects of the confining box on the liquid
crystal. This idealized approach is similar to the one adopted
by Refs. [34–36,39,43–46,62,72], and enables us to focus
on the effects due to the reduced temperature and particle
size. However, in the real experiments, the liquid crystals are
usually placed in a finite cell where the finite confinement
size can alter the physical picture, as has been addressed
by Refs. [9,17,21,37,41,63–66]. For example, a number of
experimental and theoretical studies demonstrated that the
quadrupolar structure appears to be more stable in a thin
nematic cell [9,12,17,37,41]. Placing particles with radius
R = 1.16 and 2.35 μm in a wedge-type 5CB cells with
a thickness range from almost 0–8 μm, Škarabot et al.
found that in the thinner wedge, the defect patterns are
all quadrupolar, and in the thicker wedge, all dipolar [17].
More recently, an interesting experiment shows, by placing
μm-sized particles near a wall with hills and dales that impose
perpendicular anchoring, that the confinement can drive the
topological transitions from Saturn rings to dipoles in deep
wells [63]. The experimental study by Ref. [21] shows that
the interaction potential decreases exponentially with the

decay length proportional to the sample thickness, when the
particle-particle separation goes beyond the cell thickness.
This behavior has been explained in several later theoretical
studies [64–66]. In the multiple-particle case, it has been
shown experimentally that with large cell thickness, dipoles
tend to spontaneously form linear chains along the rubbing
direction [7,10], while with thinner nematic layers, 2D dipolar
colloidal crystals can form [12]. Studying the confinement
effects within our numerical approach is possible, but brings in
another dimension in the parameter space. A systematic study
of confinement effects will be an interesting future direction.

Another interesting direction that has been taken in recent
years is to explore the formation of superstructures in these
systems. The liquid-crystal-mediated interactions are instru-
mental for self-assembly of multiple colloidal particles to
form a linear chain [7], two-dimensional colloidal crystals
[12,15,16] and three-dimensional colloidal crystals [18,57].
The numerical technique developed here paves the way for
further theoretical study of high-order structures.

We focus on the defect structures induced by spherical par-
ticles in a nematic liquid crystal. In recent years, attention has
also been paid to the defect structures induced by particles with
complex shapes and topologies in nematics and other states
of liquid crystals, such as chiral nematic, blue phases, and
smectics [23,87–89,91–99]. Solving the Landau-de Gennes
model for these cases brings new computational challenges. It
would be worthwhile to explore these problems by extending
the computational strategies developed in this paper.
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APPENDIX: NUMERICAL METHODS

The basic structure of the current numerical approach
consists of three steps: (i) appropriate identification of the
coordinate system for easy incorporation of the underlying ge-
ometry, (ii) expansion of the unknown function Q(r) in terms of
special functions so that the expansion coefficients can be used
as variational parameters, and (iii) the actual minimization of
the free energy with respect to these variational parameters.

1. Coordinate system for two spherical particles

In the case of the two-particle problem, we use the
bispherical coordinates, which were previously shown to be
useful for description of the geometry composed of either
a sphere and a nonintersecting infinite plane or two spheres
[44,100,101].

To start, we represent a space point r by the standard
cylindrical coordinates (ρ,z,φ). Then the transformation be-
tween the bispherical coordinates (ξ,μ,ϕ) and the cylindrical
coordinates is given by

ρ = a sin μ

cosh ξ − cos μ
, z = a sinh ξ

cosh ξ − cos μ
, φ = ϕ.

(A1)
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The parameter used in the transformation is a =√
(D/2)2 − R2.
At a fixed ϕ, the bispherical coordinates map the infinite

region in Cartesian coordinates onto a rectangle in the (ξ,μ)
space, bounded by −ξ0 � ξ � ξ0 and 0 � μ < π , where ξ0 =
cosh−1(D/2R) is a constant. One can show that ξ = μ = 0
corresponds to infinity, and that the surface of constant ξ

represents a sphere given by

x2 + y2 + (z − a coth ξ )2 = a2

sinh2 ξ
(A2)

in a Cartesian system. The surfaces of the two spherical
colloids are represented by ξ = ±ξ0, respectively. For com-
putational convenience, we further introduce ζ = ξ/ξ0, which
renders the variable ranges for ζ, μ, and ϕ to be [−1,1], [0,π ],
and [0,2π ].

2. Spectral approximation

The description of the nematic structure is governed by the
tensor function Q(r), which is expanded in terms of special
functions: real spherical harmonics of (μ,ϕ) and Legendre
polynomials of ζ . We write

Q(r) =
L−1∑
l=0

N−1∑
n=|m|

M−1∑
m=1−M

qlnmPl(ζ )Ynm(μ,ϕ), (A3)

where L,N,M specify the truncation limits of the expended
series, Ynm are defined by

Ynm = P |m|
n (cos μ)Xm(ϕ), (A4)

where P m
n (m � 0) are the normalized associate Legendre

polynomials and Xm are defined by

Xm(ϕ) =
{

cos mϕ m � 0,

sin |m|ϕ m < 0.
(A5)

Out of 3 × 3 elements of the traceless matrix qlnm, only five
elements are independent, because of the symmetry of the
original Q matrix.

Inserting the expression (A3) to (10) and (11), we obtain a
free energy in (2) as a function of all these unknown elements
of tensor parameters, qlnm. The free-energy function is then
minimized by using a standard optimization method, such as
L-BFGS [76], which treats the independent elements of tensor
qlnm as variables.

The exact cutoff values of L,N,M used depend on the
system parameters [τ,1/ξR]. We use the general guideline that
the produced free energy carries a precision that allows us to
determine the phase boundaries in Figs. 1 and 2 with an error
bar smaller than the sizes of the plotted symbols.

The solutions for the axisymmetric systems are relatively
simple to calculate, as we can reexpress

Q(ζ,μ,ϕ) = T(ϕ)Q(ζ,μ,0)T
′
(ϕ). (A6)

FIG. 13. Relative errors estimated for determination of the free
energies in a single-particle problem. In (a), the quadrupolar solution
was obtained at [τ,ξ ] = [−0.2234,0.07209] (R ≈ 0.1 μm in 5CB)
with grid number up to N = 128. In (b), the dipolar solution was
obtained at [τ,ξ ] = [−0.2234,0.01179] (R ≈ 0.6 μm in 5CB) with
the grid number up to N = 256.

where

T(ϕ) =
⎛
⎝cos ϕ − sin ϕ 0

sin ϕ cos ϕ 0
0 0 1

⎞
⎠. (A7)

Therefore, we can take M = 3. Figure 13 shows two numerical
examples of the single-particle problem by letting (N,L,M) =
(N,N,3), in which we used grid number up to N = 128 and
N = 256 as the reference solutions, respectively.

In general, larger L,N,M are required for larger 1/ξR and
lower τ . For most nonaxisymmetric solutions presented here,
we found that in small 1/ξR cases, the choice (N,L,M) =
(32,16,16) is adequate, and that in larger 1/ξR cases, the
choice (N,L,M) = (64,32,32) is required. Computationally,
for (N,L,M) = (64,32,32), the code runs at an efficiency of
3 s per L-BFGS step on a single-core CPU of 2.7 GHz clock
speed. With a carefully choice of the initial guess, it takes less
than 104 L-BFGS steps for a structure to converge.

3. Treatment of the far-field angle γ

The dimer case introduces two configurational parameters.
The distance between the two spherical centers can be fixed
by the use of the bispherical coordinates indicated above,
along the z axis. The angle γ between the z axis and the
far-field nematic director n0 is introduced by implementing
the following trick. We decompose

Q(r) = ψ(r)Q̃(r) + S0

2
(3n0n0 − I), (A8)

where S0 is the far-field orientational order parameter in (13).
Instead of consideration of a spectral expansion of Q(r) on
r, we expand the elements of tensor Q̃ on r. The amplitude
function ψ(r) is imposed on the first term, which decays to
zero at infinity. We take ψ(r) = (cosh ξ − cos μ)−β , where β

is a prespecified parameter. The angle γ is introduced through
n0 · ẑ = cos γ , where ẑ is the unit vector in the z direction.
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