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Abstract. Defects arise when nematic liquid crystals are under topological constraints
at the boundary. Recently the study of defects has drawn a lot of attention because
of the growing theoretical and practical significance. In this paper, we investigate the
relationship between two-dimensional defects and three-dimensional defects within
nematic liquid crystals confined in a shell. A highly accurate spectral method is used
to solve the Landau-de Gennes model to get the detailed static structures of defects.
Interestingly, the solution is radial-invariant when the thickness of the shell is suffi-
ciently small. As the shell thickness increases, the solution undergoes symmetry break
to reconfigure the disclination lines. We study this three-dimensional reconfiguration
of disclination lines in detail under different boundary conditions. In particular, we
find that the temperature plays an important role in deciding whether the transition
between two-dimensional defects and three-dimensional defects is continuous or dis-
continuous for the shell with planar anchoring condition on both inner and outer sur-
faces. We also discuss the characterization of defects in two- and three-dimensional
spaces within the tensor model.

PACS: 61.30.Jf, 64.70.mf
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1 Introduction

Nematic liquid crystals (LCs) are composed of rigid rod-like molecules which tend to
parallel align with each other due to inter-molecular interaction. When the alignment
of LC molecules is under topological constraints at the boundary, discontinuity in the
alignment direction of LCs can form, which is known as defect. Typically, there are point
defects and disclination lines [18]. The prediction of defect patterns is of great theoretical
and practical interests, and remains to be a difficult problem. Because defect patterns are
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not only affected by the temperature and the constraints, but also affected by the shape
of the geometric regions bounding them.

In the past decade, many systematic work has been done on nematic LCs confined on
the spherical droplets and the regions outside solid balls. Mkaddem and Gartland [16]
investigated the defect patterns of nematic LCs confined in spherical droplet under radial
anchoring condition. They obtained the radial hedgehog, ring disclination and split-core
solutions by assuming rotational symmetry around the z-axis. Hu et al. [1] obtained three
configurations (single-core, double-core and split-core) in the spherical droplet under
planar anchoring condition. When spherical colloids are dispersed in nematic LCs with
radial anchoring condition on the surface, two configurations (Saturn-ring and dipole)
are obtained in the article of Ravnik and Zumer [11]. After enforcing planar anchoring
condition on the surface, three stable configurations of boojum cores (single-core, double-
core and split-core) are obtained [7].

In this paper, we investigate the defect patterns of nematic LCs confined in spherical
shells, which is a recent interesting topic of researches. Such as Vitelli et al. [30] experi-
mentally investigated the defect structures of nematic LCs shells; [10] studied the defect
texture of nematic LCs shells by a vector model; [28] and [29] exploited the experiments
and computer simulations simultaneously to study the defect in nematic LCs shells; Bates
et al. [14] utilized the Monte Carlo simulation to study the nematic ordering confined in
shells; and Seyednejad et al. [27] used a finite element method to minimize the free energy
functional of nematic LCs shells. Although many experiments and simulation methods
were designed to investigate the defect patterns in nematic shells, but they didn’t give
the local structure of the defect patterns clearly. Due to the complexities of the defect
patterns, we need high-fidelity simulations with advanced numerical methods for the
nematic LCs shells. In this article, we use the spectral method based on Zernike polyno-
mial expansion [23] and BFGS algorithm [24] to solve the Landau-de Gennes model of
nematic LCs shells. By these methods, the relationships between defect patterns and the
thickness of the shell, the temperature, and the boundary conditions are investigated sys-
tematically. We show that when the shell thickness is small, the defect patterns tend to be
radial-invariant, which means that the configuration of every layer is same up to a scaling
constant in the shell. We call this kind of structures as two-dimensional (2D) structure.
When the shell becomes thicker, defects may undergo dramatic reconfigurations and do
not hold the radial-invariant property. We call these defect patterns as three-dimensional
(3D) structure. The reconfiguration of the defect patterns between 2D and 3D structures
is the emphasis of our study.

It is generally known that defects can be classified by their topological invariants.
Lavrentovich [4] elaborated the topological charge by homotopy group theory, which is
also called winding number in 2D space [6]. In the case of 2D space, winding number
is an appropriate metric, and easy to be understood. But in the case of 3D space, wind-
ing number and topological charge are different. We use the winding number on the
normal plane of defect points to measure the disclination line in this paper, and discuss
the distinctions between the winding number and the topological charge of disclination
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lines in Section 3.2. The rest of this paper is organized as follows. In Section 2, We first
introduce the Landau-de Gennes model, and then discuss the boundary conditions after
nondimensionalizing the model. In Section 3, we obtain the free-energy minimum and
visualize the main numerical results by numerically solving the model. Finally, some
concluding remarks are made in Section 4.

2 Model and method

2.1 Landau-de Gennes model

Landau-de Gennes (LdG) model is a widely used model for nematic LCs systems [18], in
which the alignment of nematic LCs is described by a symmetric, traceless 3×3 matrix,
known as the Q-tensor order parameter. Here the three eigenvalues of Q are written as
λ1,λ2,λ3. Q is isotropic when λ1 = λ2 = λ3 = 0. Q is uniaxial and can be expressed as
Q= s(nn− I

3) (n is the director vector) when any two of the eigenvalues equal to each
other. Otherwise Q is biaxial.

In LdG model, the energy functional in the region Ω takes the following form:

F[Q]=
∫

Ω
fb(Q)+ fe(Q)dx. (2.1)

Here the bulk energy density is

fb(Q)=
A

2
TrQ2− B

3
TrQ3+

C

4
(TrQ2)2, (2.2)

and the elastic energy density is

fe(Q)=
L

2
Qij,kQij,k, (2.3)

where A, B and C are the temperature and material dependent parameters, and L is
the elastic parameter. Summation over repeated indices is implied and the comma in-
dicates spatial derivative. In this paper, we study the defect patterns in spherical shell
(the middle area between two concentric spherical surfaces) Ω={x | R1≤‖x‖≤R2}. We

nondimensionalize the model by defining the characteristic length ξ0 =
√

27CL
B2 , reduced

temperature t= 27AC
B2 and region constants R̃i =

Ri
ξ0

, and rescaling the variables by x̃= x

ξ0
,

x∈Ω, Q̃=
√

27C2

2B2 Q, F̃= ξ3
0

√

27C3

4B2L3
1

F. After dropping all the tildes in F̃(Q̃), we obtain

F[Q]=
∫

Ω

t

2
TrQ2−

√
6TrQ3+

1

2
(TrQ2)2+

1

2
Qij,kQij,kdx. (2.4)

The integration is taken over the rescaled computational domain Ω. After scaling, the

eigenvalues of the scaled Q take values in (λmin,λmax), with λmin=− 1
3

√

27C2

2B2 and λmax=

2
3

√

27C2

2B2 .
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The reduced temperature t appears only in the bulk energy term in the LdG model.
For −∞< t < 1, the nematic phase is energetically favored by the bulk energy. We use
Q+ to represent the solution of the global energy minimum of the bulk energy with no
boundary constraint, and it is given as follows

Q+= s+
(

nn− I

3

)

, (2.5)

with

s+=

√

3

2
· 3+

√
9−8t

4
. (2.6)

Under certain boundary condition (BC), Q+ may no longer be the minimum of the total
energy, and defects may arise. Defect patterns are the results of the delicate balance
between bulk energy, elastic energy and surface free-energy. The anchoring of molecules
on spherical surface can be controlled by adding surface free-energy to the total energy.
In the following, we consider two kinds of BCs, namely the radial anchoring condition
and the planar anchoring condition.

1. Radial anchoring condition

First we consider the radial anchoring condition, in which the surface free-energy
density is given by

fs =ω(Q(x)−Q+(x))2, (2.7)

where Q+ is given in Eq. (2.5) at x∈∂Ω. ω is the constant which controls the relative
strength of BC. The physical meaning of this BC is that all the LC molecules align
perpendicular to the sphere surface, with alignment strength equals to s+ which
minimize the bulk energy.

2. Planar anchoring condition

Then we consider the more complex planar anchoring condition

Qx=λνx, (2.8)

where x is the normal direction of the surface and λmin ≤ λν < 0 is a constant. λν

measures the strength of compression imposed on the LC molecules at the bound-
ary along the normal direction. When λν = λmin, all the molecules aligned in the
plane perpendicular to x. We define the surface free-energy density as

fs =ω‖(Q−λνI)x‖2, x∈∂Ω, (2.9)

where λν can be different values and we assume λν =− s+

3 , in which s+ is given in
Eq. (2.6).

A spherical shell is built by two concentric spheres, and they can have different topo-
logical constraints for LC molecules. For example, we can take a boundary condition
combination which has radial anchoring condition for the inner surface and planar an-
choring condition for the outer surface, or vice versa.
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2.2 Numerical method

An equilibrium configuration corresponds to an energetically favored state, so our goal
is to find Q(x) that minimize the total free-energy. Here we numerically solve the LdG
model with the spectral method based on Zernike polynomial expansion. By using
Zernike polynomial to expand Q-tensor, we treat the expansion coefficients as variables
and use BFGS algorithm to minimize the objective function. A function defined in a unit
ball can be expanded in terms of Zernike polynomials, and the method is introduced in
Ref. [1], so we do not go through the detail here.

In order to expand Q-tensor by using Zernike polynomials, we change the compu-
tational region to the region inside unit ball. For the shell Ω= {x | R1 ≤‖x‖≤ R2}, we
rescale the variables by r̂= r−R1

2(R2−R1)
+ 1

2 , θ̂=θ, φ̂=φ ((r,θ,φ) are spherical coordinates). This

transformation is valid only for the normal spherical shell, which means that R1 6=0 and
R2 6= ∞. The corresponding coordinate transformation under the Cartesian coordinate
system is

x̂=
x

2(R2−R1)
+

R2−2R1

2(R2−R1)

x

r
,

ŷ=
y

2(R2−R1)
+

R2−2R1

2(R2−R1)

y

r
, (2.10)

ẑ=
z

2(R2−R1)
+

R2−2R1

2(R2−R1)

z

r
.

The rescaled computational domain is Ω̂= {x | 1
2 ≤‖x‖≤1}. The free-energy functional

becomes

F[Q]=
∫ 2π

0

∫ π

0

∫ 1

1
2

(

t

2
TrQ2−

√
6TrQ3+

1

2
(TrQ2)2

+
1

2R2
Qij,kQij,k

)

E(r̂)sin θ̂dr̂dθ̂dφ̂, (2.11)

where E(r̂)=Ar̂2+Br̂+C,

A=8(R2−R1)
3,

B=8(R2−R1)
2(2R1−R2), (2.12)

C=2(R2−R1)(2R1−R2)
2,

where Qij,k still expresses the partial derivatives of Q respect to original coordinates x,y,z.
Using (qx,qy,qz) express the partial derivatives of components of Q respect to x,y,z, the
partial derivatives can be calculated by the following formula





qx

qy

qz



=







∂x̂
∂x

∂ŷ
∂x

∂ẑ
∂x

∂x̂
∂y

∂ŷ
∂y

∂ẑ
∂y

∂x̂
∂z

∂ŷ
∂z

∂ẑ
∂z











qx̂

qŷ

qẑ



= J





qx̂

qŷ

qẑ



, (2.13)
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where J is the transformation matrix.
Because Q is a traceless symmetrical matrix, so it can be expressed as the following

form:

Q=





q1 q2 q3

q2 q4 q5

q3 q5 −q1−q4



. (2.14)

Here we expand qi, i=1,··· ,5 in Zernike polynomials as follow

qi(r,θ,φ)=
M−1

∑
m=1−M

L−1

∑
l=|m|

N−1

∑
n=l

A
(i)
nlmZnlm(r,θ,φ), (2.15)

where N≥L≥M≥0. The choice of N,L,M need to be adjusted to get the best performance.
What we did is to start with some moderate N,L,M and gradually increase some or all
of them until the numerical solution converge, i.e., no significant change in the value of

free-energy. So given A
(i)
nlm, we can calculate the free-energy and partial derivatives of

free-energy function respect to A
(i)
nlm by numerical integration.

3 Results and discussion

To visualize the tensor field, we use the ellipsoid to express Q. Here three semi-principle
axes of ellipsoid are the three eigenvectors of Q with lengths equal to the corresponding
λi+

1
3 , in which λi represents the eigenvalues of Q before rescaling. In this representation,

an isotropic Q is shown as a ball and a uniaxial Q with positive (negative) s is prolate
(oblate).

In order to describe the biaxial properties of the Q-tensor, we define [16]

β=1−6
(trQ3)2

(trQ2)3
. (3.1)

β = 0 represents that Q is pure uniaxial while β 6= 0 corresponds to the biaxial Q. To
visualize the defects, we define [20]

cl =λ1−λ2, (3.2)

where λ1 ≥ λ2 ≥ λ3. At the defect point, cl = 0. Here we use the iso-surface of cl = δ to
indicate where the defect is, in which δ is a small positive constant.

3.1 Transitions of defect patterns

First we consider planar anchoring condition on both inner and outer surfaces of the
shell. In the limit that the thickness of the shell goes to zero, the system becomes a 2D LC-
sphere, which has been studied by many other researchers [2, 3, 8, 13]. There are at least
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three defect configurations on the spherical surface [2,3], namely the splay, rectangle and
tennis-ball. Cheng [2] pointed out that the splay and rectangle configurations are meta-
stable in a 2D tensor model. In our simulation, the splay and rectangle configurations are
always unstable when the thickness of the shell is small but is not zero. Moreover, during
the optimization process, the local derivatives near these two configurations can be very
small but not zero, and these two configurations eventually lose stability and switch to
the tennis-ball configuration after a sufficiently long iteration. In this case, a very thin
spherical shell is not entirely equivalent to a spherical surface. It is unrealistic to treat
molecules on the sphere have zero thickness.

After combining the above inner and outer BCs, the defect structures become 2D de-
fect namely Q has similar, even equal distribution on arbitrary spherical surface of shell
when the shell is thin enough. Fig. 1 illustrates three 2D configurations for the different
temperature t and the outer radius R2. Fig. 1 (a) is a tennis-ball solution in which four
+1/2 short disclination lines are inscribed in the shell. The disclination lines start appear
from the inner surface and extend to the outer surface, and the lines form a regular tetra-
hedron on each layer between two surfaces. In the case of thin shell, Fig. 1 (b) and (c) give
two other 2D configurations which only exist at high temperature. Fig. 1 (b) shows a 2D
oblate solution which is similar to the radial hedgehog solution, in which Q is uniaxial
everywhere and satisfies radial symmetry. The director vector n align along the direction
of radius on each point in Fig. 1 (b), which gives no defect in this configuration. Fig. 1
(c) shows a 2D single-single core solution, which contains two +1 disclination lines. This
configuration is a compression form of the inner and outer single-core configurations in
the shell. This solution is rotationally symmetric around the disclination line and has
oblate Q-tensor along the symmetric axis. In addition, we find that the configuration
shown in Fig. 1 (c) disappears and converts to the configuration shown in (b) as the shell
becomes thinner.

Figure 1: The 2D solutions for the planar anchoring condition on both inner and outer spheres with different t
and R2 (a: t=−5, R2=1.2; b: t=0.8, R2=2; c: t=0.8, R2 =3.34) and fixed R1=1. β is shown in color with
red corresponds to biaxial and blue uniaxial. Ellipsoids represent the Q-tensor. (a): Three-dimensional view of
tennis-ball solution; (b): A sliced view of the uniaxial solution; (c): 2D single-single core solution. The black
pipes inside the shell are the iso-surface of cl with values equal to: (a) cl =0.04, (c) cl =0.002.
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Figure 2: Four stable solutions for the planar anchoring condition on both inner and outer spheres with different
t, R1 and R2 (a and e: t= 0.5, R1 = 1, R2 = 3.5; b and f: t= 0.1, R1 = 1, R2 = 3.5; c and g: t=−4, R1 = 1,
R2 = 3.15; d and h: t=−8, R1 = 4, R2 = 7.8). Color corresponds to β, ranging from 0 (blue) to 1 (red). The
iso-surfaces of cl have the values equal to (a): cl = 0.002; (b): cl = 0.012; (c): cl = 0.05; (d): cl = 0.15.(a-d)
Three-dimensional view. (e-h) Sliced view showing the inside of the LC shell. The cutting plane in (e) pass
through the symmetric axis. And the cutting plane in (f-h) is determined by the sphere center and a pair of
defect points on the surface. The thick black lines in (e) represent four segments of +1 disclination lines.

As the thickness of the shell increases, many 3D configurations appear as shown in
Fig. 2. Fig. 2 (a) shows an rotationally symmetric solution which contains four segments
of +1 disclination lines on the two poles of the surfaces. For all these four disclination
lines in Fig. 2 (a), an endpoint of each line is isotropic [5] and buried inside the shell, while
the another endpoint stays on the sphere. Around each defect point on disclination lines,
there is a ring of biaxial region which is indicated by the red color in the figures. The
state in Fig. 2 (a) only exists at the high temperature. And as the thickness of the shell
increases, the stable solution converts from Fig. 1 (b) to Fig. 1 (c), and then transforms to
Fig. 2 (a). Fig. 2 (b-d) show inner double-core plus outer double-core, inner double-core
plus outer split-core and inner split-core plus outer split-core configurations respectively.
Split-core and double-core are distinguished by the shape of biaxial region on the surface.
The two endpoints of disclination line are surrounded by two biaxial ring in split-core,
while the two endpoints of disclination line are surrounded by one biaxial ring in double-
core. A common feature of these structures shown in Fig. 2 (b-d) is that each structure
has four disclination lines in which two are parallel to each other on one side, and two
are perpendicular to each other on opposite sides. Fig. 2 (e-h) show β and Q inside the
shells. It is easy to see that all the configurations shown in Fig. 2 are the combinations of
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Figure 3: Two stable solutions under t=−5, R1 = 1 with planar anchoring condition on both inner and outer
spheres. Outer radii R2 equal to (a: R2 = 3.6; b: R2 = 3.61). The iso-surface of cl has the value equals to
cl =0.05 in (a-b).

single-core, double-core and split-core. In our results, the defect patterns derived by the
outer sphere are consistent with the configurations in the spherical droplet [1]. And the
defect patterns caused by the inner sphere are consistent with the configurations outside
of the solid ball [7, 11].

When the shell is thin, the defect has 2D structures, and when shell is thick, the defect
has 3D structures. We aim to study how the 2D structures lose their stability and change
to the 3D structures as the thickness of the shell increases, we increase R2 slowly and
inspect how the defect patterns change when R1 is fixed. We find that the four disclina-
tion lines in Fig. 1 (a) will bend into the shapes in Fig. 3 (a) as R2 increases at the low
temperature. Because of this special defect structure, the four defect points on each layer
no longer keep a regular tetrahedron shape, but change to a tetrahedron which has four
congruent isosceles triangles. We call this kind of configuration the tennis-ball family
configuration. Considering the fixed temperature t=−5, the configuration change from
Fig. 3 (a) to Fig. 3 (b) if R2>R∗ where R∗=3.6 is the transition point. During this process,
the transition of defect patterns from 2D to 3D is discontinuous. At the high tempera-
ture, the tennis-ball family structure shown in Fig. 4 (a) changes to the structure shown
in Fig. 4 (b) in which a pair of disclination lines touch each other on an intermediate point
as R2 increases. Increasing the thickness, the disclination lines shown in Fig. 4 (b) split
into four hemicycle disclination lines, and change to the inner double-core plus outer
split-core configuration as given in Fig. 4 (c). Different from the discontinuous transition
at the low temperature, the transition of defect patterns from 2D to 3D is continuous at
the high temperature.

For illustrating the phase diagram precisely, we call the defect patterns of tennis-ball
family shown in Fig. 3 (a) and Fig. 4 (a) 2D configuration, and call the defect pattern
shown in Fig. 4 (b) an intermediate state between 2D and 3D configurations. We compute
the phase diagram shown in Fig. 5 with R1 equals to 1, and confirm that there is no
transition region when the configuration changes from 2D to 3D under low temperature
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Figure 4: Three stable solutions under t=−0.4, R1=1 with planar anchoring condition on both inner and outer
spheres. Outer radii R2 equal to (a: R2 =3.25; b: R2 =3.29; c: R2 =3.34). The iso-surface of cl has the value
equals to cl =0.02 in (a-c).

Figure 5: Phase diagram for the planar anchoring condition on both inner and outer spheres.

assumption. The left side of dotted-dashed line keeps only 2D configuration, and the
right side of dashed line keeps only 3D configuration in the phase diagram. Both 2D
and 3D configurations exist in the region between the dotted-dashed and dashed lines,
in which the 2D (3D) configuration has less energy than the 3D (2D) configuration in
the region between the dotted-dashed (dashed) line and the solid line. We define the
temperature below t∗ given in Fig. 5 is low temperature, and the temperature above t∗ is
high temperature. From the phase diagram, it also approve that the transition between
2D and 3D configurations is discontinuous when t< t∗, and it’s continuous when t> t∗

as we observed in numerical results.

For the spherical shell with radial anchoring conditions on both inner and outer
spheres, we obtain the radial-hedgehog solution in which Q is prolate everywhere in the
shell and satisfies the radial symmetry. Majumdar et al. [26] studied the stability of the
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Figure 6: Three stable solutions under t=−3, R1 =1 with radial anchoring condition on the inner surface and
planar anchoring condition on the outer surface. Outer radii R2 equal to (a: R2 =5; b: R2 =2.4; c: R2 =1.4).
The iso-surface of cl has the values equal to: (a) cl =0.05, (b) cl =0.03.

radial-hedgehog solution on 3D spherical shell. They proved that the radial-hedgehog
solution is the unique global Landau-de Gennes energy minimum for a sufficiently nar-
row spherical shell, for all temperatures below the nematic supercooling temperature.

We also consider the shell with radial anchoring condition on the inner sphere and
planar anchoring condition on the outer sphere. When the thickness of the shell is large
enough, the structures we get are the combinations of single-core, double-core, split-core
and Saturn-ring. But as the thickness decreases, these structures change also. Consider-
ing the fixed temperature t=−3, the change process is shown in Fig. 6. Fig. 6 (a) shows
a configuration which has one −1/2 disclination ring around the inner sphere and two
hemicycle disclination lines on the outer sphere. Obviously this structure is a combina-
tion of split-core and Saturn-ring. When we decrease the outer sphere radius in Fig. 6 (a)
to 2.4, we obtain the solution given in Fig. 6 (b) which has some distortion. Because of
the interaction between two kinds of disclination lines, the disclination ring in the shell
bends from a circular ring to a saddle shape ring. This shows that the disclination lines
feel stronger interaction to each other when the thickness of the shell is small. Continu-
ing to decrease the thickness, we can get a uniaxial solution as shown in Fig. 6 (c). Q in
this configuration is uniaxial everywhere and satisfies the radial symmetry. Q changes
from prolate to oblate and s changes from s+ to −s+/2 continuously as radius increases.
This configuration can be regard as a 2D configuration because the director vector n has
uniform distribution on every layer of spherical shell.

3.2 Discussion of topological charge

In this subsection we mainly discuss the characterization of defects in 2D and 3D spaces.
For the case of 2D space, winding number is an appropriate metric to defects. Winding
number can classify all kinds of defects on 2D surface, because only point defects exist.
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Figure 7: Several kinds of point defects. The solid dots in figures represent the defects, and the tangential
direction of solid line represents the eigenvector corresponding to the largest eigenvalue.

Figure 8: Two side views of split-core configuration near the inner surface of shell. Figure (a) displays the
distribution of LC molecules near the defect points on the spherical surface. Figure (b) displays the distribution
of LC molecules on the normal plane of the disclination line’s midpoint. The black short lines in figures represent
the eigenvector corresponding to the largest eigenvalue. The pipes are the iso-surface of cl =0.08.

Several kinds of point defects are shown in Fig. 7. For the case of 3D space, there are two
kinds of measures to characterize the defects, respectively winding number and topolog-
ical charge. We know that the disclination lines in 3D space can be classified according to
their homotopy [4], in which topological charge has two categories: 0 or 1/2. However,
winding number and topological charge are incompatible for some disclination lines,
which can be illustrated by the disclination line shown in Fig. 8. Fig. 8 shows two side
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views of split-core on the inner surface of the shell. The black short lines in figures rep-
resent the eigenvector corresponding to the largest eigenvalue, which can be regarded
as the local director. The disclination line surrounded by the blue pipe in Fig. 8 is in the
1/2 topological charge category. But the winding numbers on this disclination line are
not equal, for instance, the winding numbers of the two endpoints on the surface are
+1/2, and the winding numbers of the midpoint shown in Fig. 8 (b) is −1/2. So wind-
ing number as an intuitive concept does not match the topological charge in 3D space,
which means that the winding number is not good at describing the global properties of
disclination lines. Meanwhile, the simple classification determined by topological charge
can not depict the variety winding numbers of disclination lines clearly. This leads us to
think how to effectively define a quantity in 3D space to crisply distinguish various kinds
of disclination lines.

4 Conclusion

In this paper, we investigate defect patterns in three-dimensional spherical shell with
LdG model. By using the spectral method, we can calculate many interesting configura-
tions under different parameters. Based on the observations made from these results, we
are ready to summarize some general rules. First we try to understand the relationship
between 2D spherical surface and 3D spherical shell, and we find that the structures ex-
ist on the spherical surface might not exist in the thin spherical shell, such as splay and
rectangle structures. It means that some configurations only occur when the thickness
of LC molecules layer equals to zero, which is unrealistic. So it is not entirely feasible to
process a thin spherical shell as a spherical surface. Then we study the transition between
2D configurations and 3D configurations in spherical shell. When the thickness of shell
is large enough, the defect patterns are 3D configurations, which are the combinations
of defect patterns derived by two boundary surfaces. But when the thickness of shell
is thin enough, 2D configurations are energetically favored because of the lack of radial
space. For the shell with planar boundary condition on both inner and outer surfaces,
the transition between 2D configurations and 3D configurations might be continuous or
discontinuous, depending on the temperature.
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