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ABSTRACT. In this paper, we prove the stability of half-degree point defect
profiles in R2 for the nematic liquid crystal within Landau-de Gennes model.

1. Imtroduction. Defects in liquid crystal are known as the places where the de-
gree of symmetry of the nematic order increases so that the molecular direction
cannot be well defined. The most striking feature of liquid crystal is a variety of
visual defect patterns. Predicting the profiles of defect as well as stability is thus
of great practical importance and theoretical interest. We mention some works
[2, 16], 23] 27] on the defects based on the topological properties of the order pa-
rameter manifolds.

There exist three commonly used continuum theories describing the nematic
liquid crystal: Oseen-Frank model, Ericksen model and Landau-de Gennes model.
In the Oseen-Frank model, the state of nematic liquid crystals is described by a unit-
vector filed which represents the mean local orientation of molecules, and defects
are interpreted as all singularities of this vector field [9] 10, 6, 19]. However, the
core structure of defects in nematic liquid crystals, such as the disclination lines
observed in experiments, cannot be represented by the usual director field and
requires description by Landau-de Gennes model [4]. In this model, the state of
nematic liquid crystals is described by a 3 x 3 order tensor ) belonging to

Qz{Q:QeM3X3,Q:QT,trQ:O}.
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For Q € Q, one can find s,b € R,n, m € S? with n- m = 0 such that
1 1
RQ=s(n®n-— EI)+b(m®mf §I)’

where I is a 3 x 3 identity matrix. The local physical properties of nematic liquid
crystals depend on the degree of symmetry of order tensor ). Specifically, there are
three different states:

1. s = b =0, which describes the isotropic distribution;
2. s #0,b =0, which corresponds to the uniaxial distribution;
3. s #0,b # 0, which describes the biaxial distribution.

Configuration of nematic liquid crystals corresponds to local minimizers of the
Landau-de Gennes energy functional, whose simplest form is given by

Fiolal = [ {ZIVQ@E + £5(Q) e, )

where L > 0 is a material-dependent elastic constant, and fp is the bulk energy
density, which can be taken as follows

a? 2 b? 3 c? 2\2
fe(Q) = —?tY(Q ) — gtf(Q )+ ZtT(Q )%
where a?,b%,c? are material-dependent and non-zero constants, which may depend
on temperature. A well-known fact is that f5(Q) attains its minimum on a manifold
N given by

/\/:{QEQ:Q:sJ“(n(X)n—éI),ne]R?’,\n\:1}7

where st = Y+VbTHda’c W. It is easy to see that A is a smooth submanifold of
Q, homemorphic to the real projective plane RP?, and contained in the sphere

{Q €Q:Q| = \/gs‘*‘} Critical points of Landau-de Gennes functional satisfy
the Euler-Lagrange equation

LAQ = —a?Q — B(Q* — %|Q|21) + QIO 2)

The Landau-de Gennes energy and Euler-Lagrange equation are widely
used to study the behavior of defects, see [II, Bl [7, 22] and references therein. How-
ever, there still exist many challenging problems in understanding the mechanism
which generates defects and predicting their profiles as well as stability, see [11]
for many conjectures. The radial symmetric solution in a ball or in R3, named
hedgehog solution, is regarded as a potential candidate profile for the isolated point
defect in 3-D region. The property and stability of this solution are well studied
and it is shown that the radial symmetric solution are not stable for large a® and
stable for small a? [13]. We also refer [26, 1] [17, [12] and references therein for
related works.

In this paper, we are concerned with a class of point defects in R?, which cor-
respond to “radial” solutions of the Euler-Lagrange equation . Here “radial”
means that the eigenvectors of () don’t change along the radial direction. Precisely
speaking, we study the solution with the form

Q(r,p) = u(r)Fy + v(r)Fs, (3)
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where (7, ) is the polar coordinate in R?, and

coskp sinkp O
Fy=2nn—-1I,=| sinkp —coske 0 |, (4)
0 0 0
-1 0 0
Fy=3es®e; —1= 0 -1 0 (5)
0 0 2

The boundary condition on these solutions is taken to be

lim_Q(r¢) = s+ (n(¢) ©n(e) ~ 1), mlp) = (cosgpsin .0, (6)

which has degree % about origin as an RP?-valued map. Here k € Z \ {0}. Note
that if we assume the invariance of @) along the defect line, then disclination line in
3-D domain can be ideally treated as a point defect in 2-D domain.

In [T4], Ignat, Nguyen, Slastikov and Zarnescu proved the existence of the radial
solution for any non-zero integer k. Moreover, the solution is also a local minimizer
of the 1-dimensional reduced functional (see @[)) An important question is whether
the radical solution they constructed is a local minimizer of the energy Frg. This
problem was also partially answered in [I4], where the instability result is proved
for |k| > 1. However, the question of whether the k-radially symmetric solutions
(3) subject to @ for k = +1 are stable remains open.

The goal of this paper is to give a positive answer to this question. Precise
result will be stated in next section. We remark that this problem is somewhat
analogous to the stability of radial solutions of the Ginzburg-Landau equation(see
[18, 24 20, [8, 25] for example).

2. The stability of radially symmetric solution with £ = +1. We make the
following rescaling

~ 2 - 2 b2
Q—ij, T = f?’

and let ¢t = aZf . Then Landau-de Gennes energy functional is rescaled into the
form(drop the tildes):

Fuol@l = [ {5IVQ@P = §r(Q%) = 3(Q%) + (@)}

Therefore, without loss of generality, we may take L =b=c=1and a®> =t > 0.
In such case, substituting into , (u,v) satisifes the following ODE sys-
tem(see [5 [11]):

{ u’ Y By = u[—t + 20 + (60 + 2u?)], (7)

= v[—t — v+ (6v* + 2u?)] + Fu?,

together with the boundary conditions
st st
U(O) =0, 'U/(O) =0, u(+oo) - o U(+OO) - 7?3 (8)
where st = V12 Ty [T4], it has been constructed a solution to — with
u>0,v<0and
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> S+ > <1

2—€2—6, fortgg
Define the 1-D reduced energy density

ou v 2k%u?

e1(u,v;r) :(67“)2 + 3(5)2 + e t(u? + 30?)
—20(v? — u?) + (u? + 3v?)%

A solution (u,v) of (7)-(8) is called a local minimizer of the 1-D reduced energy of
() if

n 0 d2

:/oo {(3rn)2 +(0:6)% + 0 (18v° + 2u® — t — 2v)
0

Y (el(u +en,v+e€;r) —er(u,v; r))rdr (9)

2

k2 4
+§2(6v2+6u2—t+2v+72)+l

V3
for all n,& € C>(0,00). The definition can be extended to H'((0,00),7dr) x
H'((0,00),7dr) N L2((0,00), Ldr), because C2°(0,00) is dense in H'((0, 00),rdr).
In particular, if (u,v) is a local minimizer of the 1-D reduced energy of (1)), then
J(n,€) > 0 for all (n,&) € H'((0,00), rdr) x H'((0,00), rdr) N L?((0,00), +dr).
For V € C(R?), we define
N

Zo) £ 45 [ {5IVQ+ )P - 5IVQE ~ SiQ+evE-1®) (10

~ S [(@+ V%) — (@) + (@ + VI~ QI Jaa]

(1+ 6v)n§}rdr >0

= / {|W|2 —t[V]* = 2tr(QV?) + [QP|V ] + 2(tr(QV))2}dx.

R2
The definition in the last line can be extended to all function V € H'(R?, Q). We
say that a solution @ to the Euler-Lagrange equation is a local minimizer of the
Landau-de Gennes energy (1)) if (V) > 0 for all V € H'(R?, Q).

The main result of this paper is stated as follows.

Theorem 2.1. Let (u,v) be a solution to (7)-(8§) for k = £1 with v < 0 and
J(0,&) > 0 for all n,& € C(0,00). Then the solution Q = u(r)Fy + v(r)Fy is
a local minimizer of Landau-de Gennes energy . That s, for any perturbation
V € HY(R?, Q), it holds

Io(V) = / {|VV|2 — V[P —2tr(QV?) + |QP|V[* + 2(tr(QV))2}dx >0. (11)

R2
The equality holds if and only if

V =noF1 + & Fa (12)
for some (no,&o) satisfying T (no, &) = 0.

This result implies that the solution for k = £1 can be regarded as the profile
of point defects in R? or the local profile of line defects in R?. The proof is based
on the following properties of (u,v) on (0, 00):

(H1) u >0, v’ > 0;
(H2) v'(14+60)<0ift#1/3; v =1+6v=0"fort=1/3.
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We will prove these properties in Proposition [I]
Remark 1. Since we have the invariance of the energy Fr under translation:
Fra(Q(z + o)) = Fra(Q(z)) for any constant z € R?,
as well as the invariance of the energy Frg under rotation:
Fra(RQRY) = Frg(Q) for any constant R € SO(3),

one can obtain the following functions in the “null space”:
k
0:Q = (v (r) By + V/3v'(r)Ep) cos ¢ — —UEQ sin ¢,
r

9,Q = (u'(r)Ey + V30 (r)Ep) sin ¢ + kTUEQ oS ,
u(r)Es, (u(r)cosky — 3v(r))Es + u(r) sin ko Ey,
u(r) sin ko Es — (u(r) cos ky + 3v(r)) Ey.
Here Ey, F1, -+ , E4 are defined in . Although these functions do not belong to

H'(R?), they inspire us to construct suitable identities to prove the theorem.

Remark 2. The result (with slight difference) have been independently obtained
in the work [I5]. They also considered the uniqueness of solution of (7))-(8) for ¢
large.

3. The second variation of Landau-de Gennes energy. To prove the sta-
billity, we need to compute the second variation of Frg at critical point Q@ =
u(r)Fy +v(r)Fy. For any V € HY(R?, Q), we have

(V) = /R {\VV|2 — V[ —2tr(QV?) + |QP|V|* + 2(tr(QV))2}dx

:/ {[IVVE V2 = 2(u (B V) + v x(FV2))

R2
+ (60% + 2u?) |V + 2(u tr(Fy V) +v tr(FQV))2}dx.

We define
1 0 0
3 3 1
Eo=+/=| 0 -1 0 |=-—"2m,
0 9 0 03 % \/6 2
1 coskp sinke O 1
EFy=—| sinky —cosky 0 | =—4=F,
V2 0 0 0 V2
13
1 —sinky coskey 0 (13)
Ey=— coskp sinkp 0 |,
V2 0 0 0
1 0 0 1 1 0 0 0
Es=—1|( 0 0 0 |, Es=—1| 0 0 1
V2 1 00 V2 010

A straightforward calculation shows

tr(E;E;) = 65 for 0 <i,j <4,



6232 ZHIYUAN GENG, WEI WANG, PINGWEN ZHANG AND ZHIFEI ZHANG

which implies that {E;}o<i<4 is an orthonormal basis in Q. Thus, we can write
V € H*(R?, Q) as a linear combination of this basis in the polar coordinate

Using 7 a direct calculation yields that

4
|V|2 :wav tr(F1V) = \/§w17 tr(FQV) = \/611)0,
i=0

V6
+ (wrwa + wows)(E1Ey + E Er) + wswa(EsEy + E4E3) — ?wow1E1
V6

6 6
- ?woszz + %wow?,Es + ?wow4E4,

thus we obtain

2

k 2v3
S g Sﬁ(wg —wy) — 3 Wow: + sin kpwzwy,

tI‘(F1V2) = B

1 1
tr(FRV?) = wd — w? — w3 + §w§ + gwi

From the fact [VV[? = (9,V)? + %(9,V)?, we have

4
1
YV =) wl + 72(“’(2)@ + (kwy — wi,)? + (kwy +way)® + w3, +wi,).
1=0

Here f, and f, denote 0, f and 0, f respectively.
In summary, we conclude that

+oo 27 4
1
(V) :/0 /0 { E w? + = [w%w + (kwg — w1¢)2 + (kwy + w2¢)2 (15)
=0

4
+ w3, +wi,] + (60> + 2u” — t)(zwf) — Q[U(% cos k(w2 — w?)
i=0

1 1
— —=wpw; + sin k<pw3w4) + v(wg — w% — w% + fwg + fwi)}

V3 2 2
+ 4(uwy + \/ngo)Q}rdrdgo.

In order to prove Z(V') > 0, it suffices to show that for |k| =1,
“+o00 27 1
I (wo, wy, ws) é/ / {wgr +wi, + w3, + ﬁ[w?xp + (kwg — wi,)?
0 0
4
+ (kwy 4+ way)?] + (6v* + 2u? — ) (wi + wi + w3) — —=uwow;

V3

+o(wg — w? —w3)] + 4(uw; + \/ngo)z}rdrdgo >0, (16)
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and

“+o0 27r 1
w37 ’UJ4 / / w37 + w47 + 3 (w3<p + w4cp)
(602 + 2u® — t)(w3 + w4) — u(cos ko(wi — w?)
+ 2sin kowzwy) — v(w3 + w4)}rdrd<p > 0. (17)

The following lemma shows that C°(R?\{0}) is dense in H!(R?). Thus, we may
assume V € C(R?\{0}), hence w; € C°(R?\{0}).
Lemma 3.1. C°(R2\{0}) is dense in H'(R?).

Proof. Since C°(R?) is dense in H!'(R?), it suffices to show that any C2°(R?)
function can be approximated by C°(R?\{0}). For this, we introduce a smooth
cut-off function x(r) defined by

w={] 53

For any u € C®(R?), let uy(z) = u(x)x(ln]\‘fl
C>*(R?\{0}). Moreover,

|
—

) for N > 1. Obviously, uy €

In |z|

ln|:r| ||
N L2

lu = un e <[lu(d M2+ [[Vu(d = x(

/ lnIII

NHHX( ~ Dz

It is easy to see that the first two terms on the right hand side tend to zero as
N — +o00. While, the third term is bounded by

C lu(x)|? 3 C
— d < — oo
N<L2N<z|<eN ‘l’|2 m) a \/NHUHL ’

which tends to zero as N — +oo. O

Remark 3. Using the same argument, we know that C2°((0,00)) is dense in
HY((0,00),rdr).

4. Some important integral identities. In this section, let us derive some im-
portant integral identities, which will play crucial roles in our proof. In the sequel,
we assume that n € C2°((0,400),R).

Using (7)), we deduce that

A(n) ::/ {(vn)f + (60 +2u —t — v)(vn)Q}rdr
0
:/ {(vn)f + (" + U? — %u2)vn2}rdr
0
=(vu'n?r)|° + / (v?n2 — %vuan)rdr
0
o 1
:/O {(vn,«)2 — gvu2n2}rdr, (18)
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k> 9
—t+2v+ ﬁ)(un) }rdr

/

= [k P+ e
0

(o)
:(uu’n2r)|8°+/ un?rdr
0

o0
:/0 (un,)*rdr. (19)
Taking derivative to gives
" 2 / 2
u" —Z —ZL = /[t + 2v + 607 + 6u?] + 2uv' (1 + 6v),
T T T
1 / 2 !/
"+ 117 - :—2 ='[~t — 20+ 180 4 2u?] + ﬂ(1 + 6v).
Therefore, we have
C(n) := / {(v'n)z + (v'n)? (1802 + 2u® — t — 2v)}rdr
0
o0 1 / 2 !/
- / {(v”n + 0 + o' (v" + U? — 7% 2y 6v))}rdr
0
e8] /07)2 2w’ (1 oo
— / {(v/n/)2 _ (’U Z) _ uw'v ( + GU)nz}TdT—l— (’I“’UHU/’I]2)|O
0 T 3
> v'n)? 2uu'v'(1 + 6v
:/O {(v’n’)Q— ( TQ) - (3 )nz}rdr, (20)

D)= [ {wm+ et + 602

k2
—t+2v+ —2)}Tdr
T

B /OOO {(uun +u'n)? +u'n? (UH/ + UTH — 7%/ + 72%; —2uv' (1 + 61})) }rdr

= [ {wr (O 4 20 ! (1 -+ Gy b + () [

= /000 {(u/ﬁ’)2 B (u;g])2 + Qu:;m (14 61})772}7“dr. (21)

In addition, we have
E(n) =/0 {(%)? + (60° + 20> —t+ 20 + 7; (“TZ)Q }rdr

:/Ooo[(u:/ +(=)m)? + %2( " D lrdr
/OOO ((%WT)Q + Z—j(2ruu/ - u2)>7"dr + (%)/unzmo
= /Ooo ((%UT)Q + Z;(Qruu’ — uQ))rdr. (22)
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5. Monotonicity of u and v. In this section, we will prove that v and v are
monotonic if (u,v) is a local minimizer for the 1-D reduced energy functional. The
proof is based on several contradiction arguments, which is similar to the work
[17] on the monotonicity of the scalar order parameter of uniaxial radial hedgehog
solution.

Proposition 1. If (u,v) is a solution to (7)-(§) and satisfies T(¢,€) > 0 for all
(,£ € CX(0,00), then it holds for all r > 0 that

uw'(r) >0, wu(r)>0, sgn('(r)) = —sgn(l+6v(r))=sgn(t—1/3).
Proof. Let
p(r) =wu', q(r)=—v"(1+ 6v).
First of all, we will show that p(r) and ¢(r) are nonnegative. If {p(r) < 0} U{q(r) <
0} # 0, we let
X=Tpm<op 1= —V31ggm<o)

Take ¢ = v'n and € = v'y. Formally, it follows from and that J(¢,€) >0
where

T, €)= /Ooo {(U/n/)Q . (U;Z)Q B 2uu’v (3 6v) z}rdr N (rv”v’nz)’
- /OOO {(“/XI)Q - (u;iéc)? + 2u: L "1+ 6U)X2}7“d7‘

4
+ (ru"u'x?) +/ —uu'v' (1 + 6v rdr
(ru"u'x*)| ; {\/g ( )xn}
o v'n)? 2uu'v' (1 + 6v)
:/ {(7/77/)2 _ ( ) _ ( (
0

r2

3 \/3
00 '\ )2
2
+/Q {(u/X/)Q _ (UT>2() + U;LX }Td’l“—l— (ru"u’x2)|

_ /O'OO {(”UIT]/)2 . (U;Z) + @(l 4 X)2 + (’LLIX/)2

+x)? }rdr + (rv"v'n?) ’So

Notice that

/ (v'n")rdr z/ (' x')rdr =0,
0 0

o0
n 2 n 2 n 2
pq(—z= +x)rdr = / pq(—= + x)“rdr +/ pq(—= + x)“rdr
A \/g {p<0,¢q<0} \/g {p<0,¢>0} \/?:
U 2
+/ pq(—= + x)"rdr <0,
{p>07q<0} V3

2 2px 2
/ X rdr —/ p;( rdr <0,
0 r3 {p<0} T

which contradict with J(¢, &) > 0. Thus, we deduce that
u(r) >0, o' (r)(1+6v)<0 forr>0.
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Thanks to the fact that p(r) = (u?)'/2 > 0, q(r) > 0 for r small, and v’ = 0 on
p(r) = 0,v" = 0 on ¢(r) = 0, the above formal derivation can be justified by a
standard smoothing procedure and cutoff argument.

Next, we prove that «'(r) > 0 for » > 0. Otherwise, u/(rg) = 0 for some 7y > 0.
Since (u?)’ > 0, we have that u(r) > 0 for all > 0. Thus, it holds «/(r) > 0 which
implies v (rg) = 0. On the other hand, we have

1 !
u 2u 2u
"
U

— 5/ 2 2 /
+7—T—2+r—3_u(—t+2v+6v + 6u?) + 2uv’ (1 + 6v).

Taking r = 7, we get
n 2 !/
u"’(ro) :u(fﬁ+2v (1+6v)) <0,

which contradicts with «/(r) > 0. Thus, v’ > 0 for all » > 0. This also implies
u(r) > 0 for r > 0.

We turn to study the sign of v/. Assume that there exists rg > 0 such that
v'(rg) = 0. If 1+ 6v(rg) > 0, then we know that v'(r) < 0 for r near rog. Thus, we
can deduce that v"(rg) = 0, v""(r9) < 0. Consider the equation

" l
v v
mn
v

+—— =V (—t—2v+ 180" +2u°) +

2uu’
5 —(

1+ 6v)
roor

on r = rg. The left hand side is non-positive, while the right hand side is positive.
This contradiction implies that if v'(rg) = 0 for r¢ > 0, then 1 + 6v(ry) can not be
positive. Using a similar argument, we can also prove that 1+ 6v(rg) can not be
negative. Thus, 1+ 6v(rg) = 0.

When ¢ > 1/3, we have v(4+00) = —s4 /6 = —(14++/1 + 24t)/24 < —1/6. Choose
ro = sup{r : v(r) = =1/6}. Then 1+ 6v(r) < 0 on (rg, +00). This implies v'(r) > 0
on (rg, +00), which contradicts with the fact that v(+00) < v(r¢). Thus, v" has no
zero point on (0, +00). From the fact that v(+o00) < —1/6 and v'(1 4 6v) > 0, we
have v'(r) > 0 for r > 0. Similarly, we can prove that v'(r) < 0 for r > 0 when
t<1/3.

For t = 1/3, we show v = —1/6. If not, consider w = v + 1/6, then we
have that sup,.cg o) w(r), infrepo +oo) w(r) can not both be zero. If w(ry) =
SUP,.¢[0,400) W(r) > 0, then we have v'(r1) = w'(r1) = 0 whenever 71 > 0 or r; = 0.
Then by the previous argument, we have w(r;) = 0, which is a contradiction. Sim-
ilar discussion can be applied to the case of inf,.¢c( o) w(r) < 0. Thus, w =0 and
then v = —1/6. The proof is finished. O

6. Proof of Theorem [2.1} This section is devoted to the proof of Theorem [2.1

6.1. Non-negativity of I2(ws,w,).

Proposition 2. For any ws,ws € C2°(R?\{0}) and |k| = 1, we have

“+o0 27
1
Plwsw)i= [ [ {ud +wd 4 Sd 4 ud,) 007 + 20 = 0w +ud)
0 0

— u(cos ko(wi — wi) + 2sin kpwswy) — v(ws + wi)}rdrdgo > 0.
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Proof. Let z = ws + iwy, i = v/—1. Then we have
0,2 = (0w + Brws)?s 10,2 = (Bpu5)? + Opws)s |2 = wd +u,
cos kp(wi — w3) + 2sin kpwsw,
=Re(cos kg — isin ko) (ws + iwy)? = Re(e”*?2%).

Thus, we can rewrite 17 (w3, wy) as

2m [e'S)
1 )
IB(Z):/O {/0 |8rz|2+72|8¢z|2+(6v2+2u2ftfv)|z\2fuRe(e*zk“”,zQ)}rdrdgo.

(23)
Assume that
+oo
z(ry @) = Z Zyn ()€™,
m=—oo
we have
Re(e_’k“’ZQ) :Re(e_“w Z e(mH)“”zmzl) = Re( Z e’(mH_k)"’zmzl).

l,m=—o0 l,m=—o0

Substituting it into , we get
5 +oo . F00 m2
1) =2 [ {3 [0l + Tl + (60 420 =t = )]
—u Z Re(zmzl)}rdr.
m-+l=k

When k =1, we can write
[ee]
1P(z) =21 My,
m=1
where
& 1
My = [ {1002+ 0re1m P + P+ (1 =m0l
0
+ (602 + 202 —t — 0)(|zm]? + |21-m]?) — 2uRe(zmzl_m)}rdr.

Noticing that m? > 1,(1 —m)? > 0 for m > 1, and using the following simple
relations

|Zmzlfm| > Re(zmzlfm)y |87“Zm|2 > (8r|2m|)27 |a'r‘217m|2 > (8r|217m|)27

we conclude that
o 1
Moz [ (@l + @1 + 5len
0
+ (602 + 2 — £ = 0) (|2l + |21-m|?) = 2ulzmllz1 -l ) rdr.

Thus, we only need to show that for any go,q1 € C2°((0,00),R),

~ o0 2
I(q0,q1) 2 / {(8rqO)2+(&ql)2+%+(6v2+2u2—t—v)(q3+Qf)—2uqoq1}rdr > 0.
0
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Let n = ¢1/u and { = go/v. Then n,{ € C((0,00)). From and , it is
straightforward to obtain

I(qo,q1) = A(C) + B(n) — /000 {3v(un)2 + 2vu2Cn}rdr

= [ {ln? + we? - ol e+ 0P (24)
0
which is non-negative since v < 0.
The case of k = —1 can be considered similarly. O

6.2. Non-negativity of I (wg,w;,ws). First of all, we expand w;(r, @) as

wi(r, @) = Z (,ugf)(r) cosnep + vV sin ne).
n=0

Since w; € C(R2\{0}), we may assume 1), " € C=((0,0),R) for all n and i.
Furthermore, wy € C2°(R?) requires M%) =i =0forn>1.
Direct calculation shows that

2 dw; 9 a,uo = Mn 8u(§i) 9

8wz o= 1S n2((uD)? + (D)2
[ Z ?).

2m
0 L
wzwjdgp_ﬂz G0 _ ) ),
0

27 . oo ] )
/0 by =200 + o0 + 049

27
/0 wiw;de = 7r[2;¢( )u(j) + Z Nn Nn + VT(;)%(%J))].

n=1

Thus, we can decompose I (wq, wy,ws) as

IA(UJOawla'LUQ)—IOOl_"IOQ Z (25)
n=1
where
00 aﬂ(o) 0 8N(1)
A 0 )2 021802 + 92 — ¢ — 9 270 Y2
o= [ {5+ 72807 20—t = 20) 4 ()
()y2 k2 4u FOMC
+( )(61} +6u—t+20+ )‘1‘%(14‘61)) Ko }Td?“,
© 5,2 k2
= [ {CR o+ 00 4 2 = 204 ) e,
0 T T
and
00{22:( 6Un 8 T(Ll))2>+4kn( (1) (2)_ (2) (1))

=0
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D0 (DY + D)+ () + (A7) (1807 + 20” — ¢ — 20)

k2
+ ()% + ()%) (60° + 6u® — t 4+ 20 + )

k2
+ (D) + ) (60% +2u® —t + 20 + 2)

4u
+ —=(1+6v 510) 7(11) + V,(LO)VS) rdr.
ﬁ( ) (bt 1 )}

From the assumption of local stability of (u,v), we have
0
Iglor = T (" 1) = 0. (26)
In addition, it follows from that

S R A CCAT ) (27)

It remains to prove I{L‘ > 0 for all n > 1, which is a consequence of the following
proposition.

Proposition 3. For any o, Vo, i1, V1, p2, V2 € C2°((0,00)) and |k| = 1, we have

I (1o, Vo, i1, V1, fi2, V2)
2

AES Opi v, 4kn 2 n
é/o {Z<(8/;Lj)2+(67j)2)+TT(M1V2—MQV1 _Q_ZTIUIZ_’_V
=0 gt
2

k
+ (g 4+ v2)(18v% 4+ 2u? — t — 20) + (3 + v3) (602 + 6u? —t 4+ 2v + T—z)

<

k2 4u
(3 + 13) (607 + 20—t + 20+ =)+ —2

V3

(14 6v)(pop1 + VoUl)}’l"dT > 0.

Proof. From the fact that
2(pavy — pavr) > — (13 + Vi + 3 +v3),
and n > 1, we get
An(pavy — pown) + n? (i + Vi + p3 + v3) > 4(pmave — porn) + (uf + 7 + p3 +13).

So, it suffices to consider the case of n = 1.
On the other hand, we have

o + vor| < /i3 + v\ 3 + 12,
pavs — pon| < i3+ B 3 42,

and (9,p)? + (0,v)% > (0,+/p? + v?)2. Thus, we only need to prove that for a; =

Vi + v

o 4
If‘(ao,al, as) :/ ((ara0)2 + (ara1)2 + (8Ta2)2 - ﬁalag (28)
0
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1
+ T—z(ag + o +a3) + a2 (18v% 4 2u? —t — 2v)
1 1
+ a2 (6v? + 6u? —t+2v+r—2)+a§(6v2+2u2 —t+2v+r—2)

4u
+ — (1 + 6v)agaq Jrdr > 0.
\/g( )0 1) =

When ¢ # 1/3, we have v/ # 0 for r > 0. Let £ = ap/v', n = a1 /u/, { = rag/u.
Then we infer from — that

ug

i an.an,02) =€(©) + D) + QO+ [ (O + wn?+ (45?)
4 duu'v’
—oguu n¢ + 7 (1+ 6v)£77)rdr
- [ (wers e (S Trm-0r @)
2uu'v’

& 2
- W(l + 6v)(n + %) )rdr > 0.

Here we have used the fact that u’ > 0 and v'(1 + 6v) < 0 for r > 0.
When t =1/3, we have v = —1/6. Let n = a1 /v, { = ras/u. Then

~ - > 1 1
If‘(ao7 ap, ) = If‘(O, a1, Q) +/ ((8r040)2 + T—Qag + a%(§ + 2u2))rdr
0
> 10, a1, az)

= [ (e (552 25 - ) rar 20 (30)

r 73

This completes our proof. O

6.3. Proof of Theorem In order to prove Z(V') > 0, it suffices to show that
IA(’U}O7’U}1,’[U2) 2 0 and IB(w3,w4) ZO,

which follow from Proposition , and Proposition

Now we prove that I(V) = 0 for V € H'(R?) only when (12) holds. Assume
I(V) =0with V € H*(R?). We can also perform the decomposition . Following
the discussions in subsection 6.1 and 6.2, it suffices to prove that

(i) For any qo, q1 with qo, q1,0rqo0, 0rq1,q1 /7 € L?((0,00),7dr), it holds
(g0, q1) = /OOO {(87~q0)2—|—(8Tq1)2+g+(6v2+2u2—t—v)(q§+qf)—2uq0q1}rdr > 0;
(ii) For any go with go,d,q0 € L*((0,00),rdr), it holds
I (q0) /OOO {(%)2 + 2602+ 2u® —t + 20 + %)}rdr > 0;

(iii) For any qo,q1, g2 with ¢;,0,qi,q;/r € L?((0,00),7dr) for i = 0,1,2, it holds
(see )

ff(QmthQ) > 0.
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We first prove (i). Take qo n,q1.n € C2°(0,00) so that
qo,n — qo in Hl((oa +OO),7”d7‘)7 (31)
1
Gin— @ In L*((0,400), —dr) N H*((0,4-00), rdr) (32)
r

as n — +oo. From , we have

7 [T ez o Bony2 L e o @in  Gom o
Faosan) = [ () + (822 = Zon a2t 4 B2y

u v

(o)
£ / f(qo’n,an)TdT.
0

It follows from and that
IN(CIO,m QI,n) — j(q07 Q1)

Since u, v, v,v" are all smooth and both |u| and |v| are larger than a positive con-
stant on [1/N, N|, we know that |u’/ul,|v’/v| are bounded on [1/N, N]. Thus, we
infer from and that
N N B B
f(go, q1)rdr < liminf f(qo,n: q1,n)rdr < liminf I(go,n, ¢1,n) = (g0, q1)-
1/N n—oo Jy/N n— o0

Here we used the non-negativity of f(go.n,q1.n).- Letting N — oo, it follows that

/o f(qo, q1)rdr < j(Qo,(h)-

If the left hand side is zero, then we must have (up to multiply a nonzero constant)
Q=1u, qo=—3v.

However, u/r ¢ L2((0,00),rdr) due to lim, ;o u # 0. This is a contradiction.
Thus, (g0, q1) > [y~ f(q0, q1)rdr > 0.

By noting , , and the fact that u,u/r ¢ L?((0,00),rdr), we can
prove (2) and (3) in a similar way. Thus, the null space is given by (12).

Acknowledgments. W. Wang is partly supported by NSF of China under Grant
11501502. P. Zhang is partly supported by NSF of China under Grant 11421101 and
11421110001. Z. Zhang is partly supported by NSF of China under Grant 11371039
and 11425103.

REFERENCES

[1]| P. Bauman, J. Park and D. Philips, Analysis of nematic liquid crystals with disclination lines,
Arch. Ration. Mech. Anal., 205 (2012), 795-826.

[2]| P. Biscari and G. G. Peroli, /A hierarchy of defects in biaxial nematics, Commun. Math. Phys,
186 (1997), 381-392.

[3]| G. Canevari, Biaxiality in the asymptotic analysis of a 2-d Landau-de Gennes model for liquid
crystals, ESAIM Control Optim. Calc. Var., 21 (2015), 101-137.

[4] P. de Gennes and J. Prost, The Physics of Liquid Crystals, 2% edition, Oxford University
Press, Oxford, 1995.

[5]| G. Di Fratta, J. M. Robbins, V. Slastikov and A. Zarnescu, Half-integer point defects in the
Q-tensor theory of nematic liquid crystals, Journal of Nonlinear Science, 26 (2016), 121-140.

[6]| J. Ericksen, Liquid crystals with variable degree of orientation, Arch. Ration. Mech. Anal.,
113 (1990), 97-120.

[7] D. Golovaty and J. A. Montero, |On minimizers of a Landau-de Gennes energy functional on
planar domains, Arch. Ration. Mech. Anal., 213 (2014), 447-490.


http://www.ams.org/mathscinet-getitem?mr=MR2960033&return=pdf
http://dx.doi.org/10.1007/s00205-012-0530-7
http://www.ams.org/mathscinet-getitem?mr=MR1462769&return=pdf
http://dx.doi.org/10.1007/s002200050113
http://www.ams.org/mathscinet-getitem?mr=MR3348417&return=pdf
http://dx.doi.org/10.1051/cocv/2014025
http://dx.doi.org/10.1051/cocv/2014025
http://www.ams.org/mathscinet-getitem?mr=MR3441275&return=pdf
http://dx.doi.org/10.1007/s00332-015-9271-8
http://dx.doi.org/10.1007/s00332-015-9271-8
http://www.ams.org/mathscinet-getitem?mr=MR1079183&return=pdf
http://dx.doi.org/10.1007/BF00380413
http://www.ams.org/mathscinet-getitem?mr=MR3211856&return=pdf
http://dx.doi.org/10.1007/s00205-014-0731-3
http://dx.doi.org/10.1007/s00205-014-0731-3

6242 ZHIYUAN GENG, WEI WANG, PINGWEN ZHANG AND ZHIFEI ZHANG

8
9
[10
i1

[12

(13

[14

[i5

16
[17
18
19
[20
21
[22
[23
[24
[25

26
27

|| S. Gustafson and I. M. Sigal, The stability of magnetic vortices, Commun. Math. Phys., 212
(2000), 257-275.

|| R. Hardt, D. Kinderlehrer and F.-H. Lin, Existence and partial regularity of static liquid
crystal configurations, Commun. Math. Phys., 105 (1986), 547-570.

|| F. Hélein, Minima de la fonctionelle energie libre des cristaux liquides, C. R. Acad. Sci. Paris,
305 (1987), 565-568.

| Y. Hu, Y. Qu and P. Zhang, On the disclination lines of nematic liquid crystals, Communi-
cations in Computational Physics , 19 (2016), 354-379.

|| R. Ignat, L. Nguyen, V. Slastikov and A. Zarnescu, Uniqueness results for an ODE related to
a generalized Ginzburg-Landau model for liquid crystals, SIAM J. Math. Anal., 46 (2014),
3390-3425.

|| R. Ignat, L. Nguyen, V. Slastikov and A. Zarnescu, Stability of the melting hedgehog in the
Landau-de Gennes theory of nematic liquid crystals, Arch. Ration. Mech. Anal., 215 (2015),
633-673.

|| R. Ignat, L. Nguyen, V. Slastikov and A. Zarnescu, Instability of point defects in a two-
dimensional nematic liquid crystal model, Ann. I. H. Poincare-AN, 33 (2016), 1131-1152.

|| R. Ignat, L. Nguyen, V. Slastikov and A. Zarnescu, Stability of point defects of degree +1/2
in a two-dimensional nematic liquid crystal model, Calculus of Variations and Partial Dif-
ferential Equations, 55 (2016), 33pp.

] M. Kleman and O. D. Lavrentovich, Topological point defects in nematic liquid crystals|
Philosophical Magazine, 86 (2006), 4117-4137.

|| X. Lamy, Some properties of the nematic radial hedgehog in the Landau-de Gennes theory)
J. Math. Anal. Appl., 397 (2013), 586-594.

|| E. H. Lieb and M. Loss, Symmetry of the Ginzburg-Landau mimimizer in a disc, Math. Res.
Lett., 1 (1994), 701-715.

|| F.-H. Lin and C. Liu, Static and dynamic theories of liquid crystals, J. Partial Differ. Equ.,
14 (2001), 289-330.

|| T.-C. Lin, The stability of the radial solution to the Ginzburg-Landau equation, Commun.
PDE, 22 (1997), 619-632.

|l A. Majumdar, The radial-hedgehog solution in Landau-de Gennes’ theory for nematic liquid
crystals, Euro. J. Appl. Math., 23 (2012), 61-97.

| A. Majumdar and A. Zarnescu, Landau-de Gennes theory of nematic liquid crystals: The
Oseen-Frank limit and beyond, Arch. Ration. Mech. Anal., 196 (2010), 227-280.

|l N. D. Mermin, The topological theory of defects in ordered media, Rev. Modern Phys., 51
(1979), 591-648.

|| P. Mironescu, |On the stability of radial solutions of the Ginzburg-Landau equation, J. Funct.
Anal., 130 (1995), 334-344.

|| Manuel de Pino, P. Felmer and M. Kowalczyk, Minimality and nondegeneracy of degree-one
Ginzburg-Landau vortex as a Hardy’s inequality, IJMRN, 30 (2004), 1511-1527.

] R. Rosso and E. G. Virga, Metastable nematic hedgehogs, J. Phys. A, 29 (1996), 4247-4264.

] G. Toulouse and M. Kleman, Principles of a classification of defects in ordered medial, Journal
de Physique Lettres, 37 (1976), 149-151.

Received December 2016; revised July 2017.

E-mail address: |zgb74@nyu.edu

E-mail address: wangw070zju.edu.cn
E-mail address: pzhang@pku.edu.cn
E-mail address: zfzhang@math.pku.edu.cn


http://www.ams.org/mathscinet-getitem?mr=MR1772246&return=pdf
http://dx.doi.org/10.1007/PL00005526
http://www.ams.org/mathscinet-getitem?mr=MR852090&return=pdf
http://dx.doi.org/10.1007/BF01238933
http://dx.doi.org/10.1007/BF01238933
http://www.ams.org/mathscinet-getitem?mr=MR916336&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR3485610&return=pdf
http://dx.doi.org/10.4208/cicp.210115.180515a
http://www.ams.org/mathscinet-getitem?mr=MR3265181&return=pdf
http://dx.doi.org/10.1137/130948598
http://dx.doi.org/10.1137/130948598
http://www.ams.org/mathscinet-getitem?mr=MR3294413&return=pdf
http://dx.doi.org/10.1007/s00205-014-0791-4
http://dx.doi.org/10.1007/s00205-014-0791-4
http://www.ams.org/mathscinet-getitem?mr=MR3519535&return=pdf
http://dx.doi.org/10.1016/j.anihpc.2015.03.007
http://dx.doi.org/10.1016/j.anihpc.2015.03.007
http://www.ams.org/mathscinet-getitem?mr=MR3551299&return=pdf
http://dx.doi.org/10.1007/s00526-016-1051-2
http://dx.doi.org/10.1007/s00526-016-1051-2
http://dx.doi.org/10.1080/14786430600593016
http://www.ams.org/mathscinet-getitem?mr=MR2979597&return=pdf
http://dx.doi.org/10.1016/j.jmaa.2012.08.011
http://www.ams.org/mathscinet-getitem?mr=MR1306015&return=pdf
http://dx.doi.org/10.4310/MRL.1994.v1.n6.a7
http://www.ams.org/mathscinet-getitem?mr=MR1883167&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1443051&return=pdf
http://dx.doi.org/10.1080/03605309708821276
http://www.ams.org/mathscinet-getitem?mr=MR2873027&return=pdf
http://dx.doi.org/10.1017/S0956792511000295
http://dx.doi.org/10.1017/S0956792511000295
http://www.ams.org/mathscinet-getitem?mr=MR2601074&return=pdf
http://dx.doi.org/10.1007/s00205-009-0249-2
http://dx.doi.org/10.1007/s00205-009-0249-2
http://www.ams.org/mathscinet-getitem?mr=MR541885&return=pdf
http://dx.doi.org/10.1103/RevModPhys.51.591
http://www.ams.org/mathscinet-getitem?mr=MR1335384&return=pdf
http://dx.doi.org/10.1006/jfan.1995.1073
http://www.ams.org/mathscinet-getitem?mr=MR2049829&return=pdf
http://dx.doi.org/10.1155/S1073792804133588
http://dx.doi.org/10.1155/S1073792804133588
http://dx.doi.org/10.1088/0305-4470/29/14/041
http://dx.doi.org/10.1051/jphyslet:01976003706014900
mailto:zg574@nyu.edu
mailto:wangw07@zju.edu.cn
mailto:pzhang@pku.edu.cn
mailto:zfzhang@math.pku.edu.cn

	1. Introduction
	2. The stability of radially symmetric solution with k=1
	3. The second variation of Landau-de Gennes energy
	4. Some important integral identities
	5. Monotonicity of u and v
	6. Proof of Theorem 2.1
	6.1. Non-negativity of IB(w3,w4)
	6.2. Non-negativity of IA(w0,w1,w2)
	6.3. Proof of Theorem 2.1

	Acknowledgments
	REFERENCES

