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Abstract

In this paper, we propose a systematic way of liquid crystal modeling to build connec-
tion between microscopic theory and macroscopic theory. A new Q-tensor theory based
on Onsager’s molecular theory which leads to liquid crystals with certain shape has been
proposed. Making uniaxial assumption, we can recover the Oseen-Frank theory from
the derived Q-tensor theory, and the Oseen-Frank model coefficients can be examined.
In addition, the smectic-A phase can also be characterized by the derived macroscopic
model.
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1 Introduction

Liquid crystal (LC) phases are mesomorphic states between ordinary liquid and crystal. The
constituent LC molecules translate freely as in a liquid while exhibiting some long-range order
above a critical concentration (lyotropic) or below a critical temperature (thermotropic).
The anisotropic properties make LC suitable for a wide range of commercial applications.
However, the inability to sufficiently control the degradation of orientational order that LC
display in the liquid state remains a great loss in potentially more important applications.
This fact highlights the need of establishing a simple and comprehensive mathematical model
to capture main characteristics of different LC phases and describe phase transition and
defects.

The static LC models can be classified into three levels: the molecular models, the tensor
models and the vector models. The first kind is microscopic theory, while the other two are
macroscopic theories. We shall begin by briefly reviewing these models.

The molecular models are based on the statistical theories of LC. In these models, the
molecule has a continuous distribution of orientations which corresponds to the actual physi-
cal situation. However, the statistical mechanics of LC is so difficult that even for the simplest
physical models, exact solution is very hard to work out. Onsager [34] discussed the statistics
of a hard-rod system, and used a variational approximation to deal with the non-linear inte-
gral equations. By making an additional approximation of the uniaxial mean-field, Maier and
Saupe [31, 32] suggested an analytic thermodynamic potential. A similar mean-field approxi-
mation to the Maier-Saupe theory was presented by Doi [13]. Most of the subsequent studies
are based on the Maier-Saupe potential, such as the McMillan model [28], the Marrucci-Greco
theory [29] etc. The molecular models are established on sound physical theories, but they
are not sensitive to macroscopic properties. Moreover, the molecular models posses high
dimensional problems.

The tensor model, also called Landau-de Gennes theory [11], is a phenomenological theory
which ignores the detailed nature of the interactions and the molecular structure. The free
energy of these models is expressed as a functional of the tensor order parameter Q. This
order parameter is preferred as it is a good measurement of macroscopic properties and it
covers a wider class of LCs besides simple nematics. A variety of different extensions of the
Landau-de Gennes model have been proposed to study the sophisticated LC phases including
the cholesterics and the blue phases [5, 22]. In spite of its success, the Landau-de Gennes
model might involve nonphysical solutions. For this, Ball and Majumdar [3] suggested that
a modification to the entropy terms should be made to yield physically meaningful solutions.
Another problem with the tensor theory is that it involves many phenomenological coefficients
which are difficult to decide using experimental results.

The vector models, initiated by Oseen-Frank [35] and extended by Ericksen [14, 15], are
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based on continuum theory which disregards the details of the structure on the molecular
scale. It describes a weakly distorted system in which, at any point, the changes in density of
the liquid induced by a long-range distortion are very small and the local optical properties
are still those of a uniaxial crystal. In terms of a vector field, such distorted state may
be described entirely. The distortion energy of the vector model can be interpreted into
three parts indicating three typical deformations: pure splay, pure twist and pure bend. The
elastic constants for these three parts, denoted by K1,K2,K3, play an important role in LC
modeling. There are plenty of experimental methods, for instance the Frederiks method and
the transition method, designed to measure these three constants for typical LC molecules
under certain circumstances [12, 32, 36]. And theoretical and numerical investigations of
K1,K2,K3 are also abundant [1, 25, 37]. However, the interpretations in terms of basic
physical measurements for these elastic constants remain unclear.

Despite the extensive literature on the static LC modeling, little work has been done to
analyze the relations between different theories, especially between the macroscopic theories
and the microscopic theories. The above mentioned shortcomings and unsolved problems in
these theories also motivate us to build a unified framework to connect these models. In
this framework, a simple and comprehensive macroscopic model should be a simplification
of the corresponding microscopic model applying the same molecular interaction potential.
Viewed in this light, the problem of determining macro coefficients is essentially a problem
of representing these by the original physical measurements, and it is no longer difficult to
decide the number of independent coefficients in the model. During reducing the complicated
model into its simplifications, information might be ignored or added, which is responsible
for the occurrence of nonphysical solutions.

Following this spirit, we propose a systematic way of LC modeling to build connection
among the three kinds of models: Onsager’s molecular theory, Landau-de Gennes Q-tensor
theory and Oseen-Frank theory. Starting with Onsager’s work, we generalize it to the inhomo-
geneous system to characterize the distortion of orientation by choosing suitable interaction
potential in integral form. By applying local Taylor expansion, we can write the energy in
differential form, which is similar to Marrucci-Greco’s work [29]. Next, by using the Bing-
ham closure and truncating at the low order moment, a Q-tensor model is obtained. In this
Q-tensor model, the physical constraint on Q is automatically satisfied. In addition, the
coefficients are determined by the molecular model, and their meaning can be apparently
interpreted.

Another important advantage of the new Q-tensor model is that the well-known Oseen-
Frank model can be recovered by restricting the density to be a constant and Q to be uniaxial.
We can also calculate the values of the elastic coefficients in Oseen-Frank energy, and examine
the relation among them. Compared with former calculations of K1,K2,K3, our expressions
are more complete and precise.

Moreover, a model to characterize the simple smectic LC can also be constructed by our
method when introducing higher kernel function moment. The form of whole free energy
in Q-tensor model is similar to that for nematic modeling and the layer thickness d need
not a priori in our model. Numerical experiments show that the optimal solutions are quite
physical.

This paper consists of two primary components of LC investigations. First is the modeling
where new nematic and smectic tensor models respecting the physical mechanism are derived
from the molecular statistical theories. Further, these two models are consistent with each
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other. Second is the study on the relationships among the existing three-level LC theories
which leads to a systematic way to compatibly model different phases for different shaped
LC molecules.

This paper is organized as follows. In section 2, we illustrate generally how to derive
macroscopic model, such as Q-tensor model and vector model from the famous Onsager
theory. We will apply this procedure for LC with shape of rigid rod to model nematic phase,
in section 3. A new Q-tensor theory is derived, and the celebrated Oseen-Frank model is
recovered there. In section 4, we use the same way, but truncate at higher order of derivatives,
to model the smectic phase. Numerical results ensure that the smectic-A phase is captured.
We give several concluding remarks in section 5. Some detailed calculations involved in the
paper are provided in the appendix.

2 A systematic way of static modeling of liquid crystals

In this paper, we focus on the static modeling of liquid crystals. As we would not like to
take the boundary effect into account, we let Ω ⊆ R3 be a periodic box. In addition, we just
consider molecules with axial symmetry. Therefore the spacial information of one molecule
can be specified by a position and a direction. Use x ∈ Ω to denote the material point and
f(x,m) to represent the number density for the number of molecules whose orientation is
parallel to m at point x. We start from Onsager’s theory:

F [f ] = kBT

∫

Ω

∫

S2
f(x,m)(ln f(x,m)− 1) +

1

2kBT
Ū(x,m)f(x,m)dmdx, (2.1)

where kB is the Boltzmann constant, T is the absolute temperature, and the mean-field
interaction potential Ū is defined by

Ū(x,m) = kBT

∫

Ω

∫

S2
G(x,m;x′,m′)f(x′,m′)dm′dx′.

Here G(x,m;x′,m′) is the interaction kernel between two molecules in the configurations
(x,m) and (x′,m′). In general, G is translation invariant and hence it can be written in the
form

G(x,m;x′,m′) = G(r;m,m′),

where r = x′ − x. The first part in (2.1) represents the entropy, while the second part
describes the interaction energy between each pair of two molecules in the system.

Firstly, we give the following two assumptions:

H1. The LC state is very close to the equilibrium. Hence, we expect that the single particle
distribution function is a satisfactory but approximate basis to describe the macroscopic
properties of the motion.

H2. The LC is composed of neutral particles surrounded by force fields of short range
compared with the average distance separating the particles, that is, the LC is quite
diluted.
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H1 is the static modeling hypothesis. While, H2 is the critical hypothesis which enables
us to take the second virial expansion into account. In the case when c(x) =

∫
S2
f(x,m)dm

is small, the second virial expansion is valid and the corresponding free energy approximation
can be expressed in the form

F [f ] = F0 + kBT

∫
f(x,m)ln f(x,m) dmdx

+
1

2

∫
f(x,m)G(x,m,x′,m′)f(x′,m′) dm′dx′dmdx.

Here the pairwise kernel function is defined as the classical expression for the second virial
coefficient:

G(r,m,m′) = 1− exp(−U(r,m,m′)/kBT ). (2.2)

Here U is an intermolecular potential. We assume U consists of the average of interaction
of every pairs of basic particles. Hence U is determined by the shape of molecules and
the interaction potential V between two basic particles, which can be taken as hard-core
potential, Lennard-Jones potential or other forms. Once V is decided, one can then use the
Monte-Carlo algorithm to numerically compute the molecular model. As the computational
cost for molecular model is too high, we must look into the properties and the leading order
moments of the kernel function.

It should be pointed out that for the higher density case, the second virial approximation
would not be sufficient. In such case it might be better to refer to the Carnahan-Starling
theory [9] or other high density correction theory. However, this is beyond the scope of this
paper and here we just use (2.2) as our kernel function.

In the first paper [43] of this series , the relationship between the symmetry of molecule
and the properties of the kernel function G has been discussed. However, it is still difficult
to derive the explicit expression of G. For this reason, we turn to look into its moments
by employing its symmetric property. Since a non-local mean-field molecular interaction
potential is employed in our model, the orientational distribution function f(x′,m′) should
be approximated by its finite-order Taylor expansion series with respect to x′ at x:

f(x′,m′) = f(x+ r,m′)

= f(x,m′) +∇f(x,m′) · r+ 1

2
∇2f(x,m′) : rT r+ · · · . (2.3)

Then Ū(x,m) can be formally written as

Ū(x,m) =kBT

∫

S2

∫

Ω
G(r;m,m′)

{
f(x,m′) +∇f(x,m′) · r

+
1

2
∇2f(x,m′) : rT r+ · · ·

}
drdm′.
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For given kernel form of G(r;m′,m), we calculate the moments:

M (0)(m′,m) =

∫
G(r,m′,m)dr,

M (1)(m′,m) =

∫
G(r,m′,m)rdr,

M (2)(m′,m) =

∫
G(r,m′,m)rrTdr,

· · · .

Then we get

Ū(x,m) =kBT

∫

S2

{
f(x,m′)M (0)(m,m′) +M (1)(m′,m) · ∇f(x,m′)

+
1

2
M (2)(m′,m) : ∇2f(x,m′) + · · ·

}
dm′.

The energy F [f ] becomes

F [f ] =kBT

∫

Ω

∫

S2

{
f(x,m)(ln f(x,m)− 1) +

1

2

∫

S2
M (0)(m,m′)f(x,m′)f(x,m)dm′

}
dmdx

+
kBT

2

∫

Ω

∫

S2

∫

S2
f(x,m)M (1)(m,m′) · ∇f(x,m′)dm′dmdx

+
kBT

4

∫

Ω

∫

S2

∫

S2
f(x,m)M (2)(m,m′) : ∇2f(x,m′)dm′dmdx+ · · · . (2.4)

The first line is independent of space variation of the probability distribution function f . We
call it bulk energy, and denote by Fbulk. The remainders, which depend on space variation of
f , is called elastic energy, and denoted by Felastic.

Now, we are going to express the energy by the spherical moments of f , namely,
∫

S2
m⊗m⊗ · · · ⊗m︸ ︷︷ ︸

k times

f(x,m)dm. (2.5)

However, it is better to use the k-th order symmetric traceless tensor

Qk[f ] ,

∫

S2
Ξk(m)f(m)dm, (2.6)

where Ξk(m) is the k-th order symmetric traceless tensor defined on the unit sphere, whose
expression for lower order takes the following form

Ξ1(m) = m;

Ξ2(m) = m⊗m− 1

3
I;

Ξ3(m)αβγ = mαmβmγ −
1

5

(
mαδβγ +mβδαγ +mγδαβ

)
;

Ξ4(m)αβγµ = mαmβmγmµ − 1

7

(
mαmβδγµ +mγmµδαβ +mαmγδβµ +mβmµδαγ

+mαmµδβγ +mβmγδαµ

)
+

1

35

(
δαβδγµ + δαγδβµ + δαµδβγ

)
.
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One can see Appendix for precise definition for general k. All components of Ξk(m) are
functions of linear combination of the k-th order spherical harmonics. Moreover, for axial
symmetric function f(m) = f(m · n), we have that

Qk[f ] = Sk[f ]Ξk(n), where Sk[f ] =

∫

S2
Pk(m · n)f(m)dm, (2.7)

and Pk(x) is the k-th Legendre’s polynomial.
To derive tensor models from corresponding molecular models, we need to use Qk(x) to

express the total energy. Since it is unrealistic to recover f by finite number of moments, we
need to make closure approximation. It is very important to choose a proper closure. To date,
variety of closure methods have been proposed. For instance, we have the quadric closure
(Doi closure), two Hinch-Leal closures and the Bingham closure, etc. [10, 7, 8, 17, 21, 23].
Here the Bingham closure is strongly suggested for nematic phase and smectic phase, for
the reason that Bingham closure guarantees the existence of minimizers of the free energy
functional and provides with more accurate solutions. Additionally, it has the good property
of ensuring energy dissipation in kinetic models. For given f satisfying

∫

S2
f(x,m)dm = c(x),

∫

S2
(mm− 1

3
I)f(x,m)dm = c(x)Q(x), (2.8)

the Bingham closure is to use

fQ(x,m) = c(x)
exp(BQ(x) : mm)∫

S2
exp(BQ(x) : mm)dm

(2.9)

to replace f , where BQ is a symmetric traceless matrix satisfying

∫

S2
(mm− 1

3
I)

exp(BQ : mm)∫
S2

exp(BQ : mm)dm
dm = Q. (2.10)

It can be proved that BQ can be uniquely determined for given symmetric traceless Q, if all
the eigenvalues of Q belong to (−1

3 ,
2
3). The bulk energy is then approximated by

Fbulk =kBT

∫

Ω

∫

S2

{
fQ2(x,m)(ln fQ2(x,m) − 1)

+
1

2

∫

S2
M (0)(m,m′)fQ2(x,m

′)fQ2(x,m)dm′

}
dmdx. (2.11)

Note that the above energy can be viewed as a functional of c(x) and Q2(x).
Next, we consider the part of elastic energy. To derive a convenient macroscopic model,

we should only take finite terms in (2.3) (or (2.4)) into account. If we want to model the
nematic phase, it is natural to neglect the terms whose order of derivatives are greater than
two. If one would like to consider the smectic phase, it seems enough to keep only the terms
whose order of derivatives are not greater than four.

Generally, we can truncate at 2m-th order of derivatives. Now it is needed to express the
following terms in the energy using the tensors Qk:

∫

S2

∫

S2
f(x,m)M (l)(m,m′)f(x,m′)dm′dm′, for 1 ≤ l ≤ 2m. (2.12)
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For this, we have to separate the variables of m andm′ inM (l)(m,m′). Generally speaking, it
can not be done precisely. The reason is that M (l)(m,m′) contains some terms like |m×m′|.
Therefore, to deal with them, we treat them as functions of x = m ·m′, and use polynomial
expansion, such as Taylor expansion or Legendre polynomial expansion, to approximate them.
In this way, we can express the energy by the tensors Qk. Also, the Bingham closure is used
to represent all Qk by Q2:

Qk[f ] = Qk[fQ2 ], (2.13)

where fQ2 is determined by (2.9). Together with the bulk energy part, we obtain a total
energy in Q-tensor form. Relevant introductions of the Q-tensor can be found in [30].

To derive the vector model, we only have to set Q2 uniaxial:

Q2 = S2(nn− 1

3
I). (2.14)

Then an energy in the form of n could be derived. If we regard the density c(x) and the
order parameter S2 as constants, then we can recover the well-known Oseen-Frank energy.
The three important coefficients can be directly expressed by the molecular parameters.

2.1 Summary of the three-scale Schema for LC modeling

In the above derivation, the key interrelationships among the molecular models, the tensor
models and the vector models can be tied up into a three-scaled schema. We give some
remarks in summary.

Figure 1: Three-scaled schema in static LC modeling.

Firstly, a pairwise kernel function, which describes the intermolecular potential and de-
pends on concentration, temperature, molecular orientation and external field factors, is
the core element of a molecular model. The potential can generally be classified into two
categories: the lyotropic potential (such as the hard-core potential) and the thermotropic
potential (such as the Lennard-Jones potential). When the intermolecular potential is prop-
erly defined, the free energy functional of the molecular model can be obtained immediately.
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The minimizers of the free energy functional are used to describe the equilibrium state of the
system.

Secondly, a molecular model can be changed into a tensor model through Taylor expansion
and closure approximation. The Taylor expansion is used to collect moment information for
the elastic energy part. And the closure approximation will help to close the equations as it
will convert the total free energy to a functional of the Q-tensor order parameter.

Finally, a tensor model can be easily changed into a vector model if Q-tensor order
parameter is restricted to uniaxial cases. So far, we have elaborated the interrelationships of
a three-scaled schema, which can be further illustrated by Figure. 1.

The whole procedure can also be applied to molecules with complex shapes. At that
time, the selection of order parameters would be a basic and interesting problem. The first
paper [43] of this series discussed the relation between order parameters and the molecular
symmetry.

Furthermore, this three-scaled schema can also be employed in dynamic modeling of LC
system. One slight difference is that we need to additionally guarantee the energy dissipation
in characterizing dynamic fluids, which might result in some difficulties in making closure
approximation. It can be proved that the Bingham closure [2] satisfies the energy dissipation
law while the Doi closure [10] does not. Another difference is that we can not derive the
dynamical vector theory (usually named Ericksen-Leslie theory) by simply setting Q uniaxial.
Instead, it is needed to perform local expansion near the local equilibrium as in the derivation
from the Doi-Onsager theory to Ericksen-Leslie theory done in [24, 16, 41]. The third paper
[42] in this series discussed how to employ this framework to dynamical modeling for LC
system.

3 Modeling for nematic liquid crystals for rod-like molecule

In this part, we will perform the above procedure to a particular shape but widely studied
molecule: the rod-like molecule. The molecule is modeled as a round stick with two caps, see
Fig. 2.

 

 

 

 

 

Figure 2: The geometry of the rod-like molecule

This kind of molecule could be seen as a combination of spheres with same diameter D
alone a line with length L. Now we can write (2.2) in the form

G(r,m,m′) = 1− exp(− 1

kBTL2

∫ L/2

−L/2

∫ L/2

−L/2
V (|r+ tm− t′m′|) dtdt′). (3.1)

To specify the kernel function as the second virial coefficient, we have to decide potential
V (|r|) at first. The simplest choice is the hard-core potential (or in the other name, the
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excluded- volume potential), which was used in the Onsager theory. This potential assumes
molecules to possess hard elongated cores, which leads to the definition:

V =

{
+∞, if the two rods intersects;
0, otherwise.

Apparently, the hard-core potential is a pure repulsive potential. Another choice is the
Lennard-Jones potential:

V (LJ)(r) = 4
ε

kBT
{(σ
r
)12 − (

σ

r
)6}

which takes the attractive interaction into consideration.
Notice that the hard-core potential is independent of temperature T while the Lennard-

Jones potential possesses innegligible temperature dependence. Because of this, the hard-core
potential might be a proper choice for modeling lyotropic LC while the Lennard-Jones fits
better for the thermotropic LC. As a matter of fact, the actual temperature for the nematic
phase is often rather high, so both potentials give qualitatively similar results in the nematic
phase modeling.

For convenience, here we use the hard-core potential to demonstrate our further results.
Such a steric repulsion gives rise to steric cut-off effects. The kernel function G takes the
form:

G(x,m;x′,m′) =

{
1, if the two rods intersects;
0, otherwise.

(3.2)

It is needed to calculate M (0)(m′,m), M (1)(m′,m), M (2)(m′,m), et. al. Of course, one can
also consider the Lennard-Jones potential. But it would lead to more complicate calculations.

Consider two rods with spherical ends pointingm andm′ respectively, the entire excluded
volume will be made up by three parts:

• region A (body-body): a 2D-high parallelepiped whose section is a rhombus with side-
length L and angle γ;

• region B (body-end): four semi-columns with side-length L and radius D;

• region C (end-end): four radius D sphere at the corner.

In the sequel, we introduce a dimensionless parameter η(≤ 1) as

η =
D

L
. (3.3)

3.1 The bulk energy in Q-tensor form

Calculating the volume in each of the above region, we can obtain the zero-th moment of the
kernel function (see Appendix for detailed calculation):

∫
G(r,m,m′)dr = 2L3

(
η sin γ + πη2 +

2

3
πη3

)
,

where sin γ = |m×m′|. Thus, the bulk energy reads:

Fbulk[f ] = kBT

∫

Ω

∫

S2

(
f ln f +

∫

S2

L3
(
η sin γ + πη2 +

2

3
πη3

)
f(x,m′)dm′

)
f(x,m)dmdx.

(3.4)
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Figure 3: Hard-core potential: excluded-volume

Not surprisingly, this free energy functional is exactly the well-known Onsager [34] model.
Actually, Onsager integrated the hard-core potential in a more complicated space field since
he treated the LC molecule as strict cylinders.

However, it is difficult to solve the minimizer problem of (3.4). A possible way is to make
a projection to the orthogonal polynomial space. In this light, |m×m′| can be replaced by
its second order Legendre polynomial approximation −15π

64 (mm− 1
3I) : (m

′m′ − 1
3I). Hence,

the free energy functional becomes:

Fbulk[f ] = kBT

∫

Ω

∫

S2
f lnf − 15πL3η

64

∫

S2
(mm− 1

3
I) : (m′m′ − 1

3
I)ff ′ dm′dmdx,

which coincides largely with the Maier-Saupe [31, 32] model. Actually, in the original pre-
sentation of Maier and Saupe, it was assumed that intermolecular potential is due entirely
to van der Waals forces and is temperature-dependent. And it was Doi’s [13] work that used
a mean-field approximation to produce the above functional and analyze bifurcations which
occur as the mean field is varied. In Doi’s theory, Q-tensor defined as:

Q =

∫

m∈S2

(mm− 1

3
I)ρ(x,m) dm

is introduced (we always drop the subscript for brevity). Here,

f(x,m) = c(x)ρ(x,m), c(x) =

∫

S2
f(x,m)dm. (3.5)

To write the bulk energy in terms of Q, we use the Bingham closure as mentioned before. For
symmetric traceless matrix Q whose eigenvalues belong to (−1

3 ,−2
3), let BQ be the unique

symmetric traceless matrix such that

∫

S2
(mm− 1

3
I)

exp(BQ : mm)∫
S2
exp(BQ : m′m′)dm′

dm = Q. (3.6)
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Define

ZQ =

∫

S2
exp(BQ : mm)dm. (3.7)

We replace the entropy term
∫
Ω

∫
S2
f ln fdmdx by

∫

Ω

∫

S2
c(x)

1

ZQ
exp(BQ : mm) ln

(
c(x)

1

ZQ
exp(BQ : mm)

)
dmdx,

or equivalently,

∫

Ω
(c ln c+ cQ : BQ − c lnZQ)dx.

Therefore, the energy can be simplified as follows:

Fbulk = kBT

∫

Ω
c(x)

(
ln c(x) +Q(x) : BQ(x) − lnZQ(x)−

15πL3η

64
c(x)|Q(x)|2

)
dx. (3.8)

The Maier-Saupe theory that we refer to here is temperature-independent. We can also
derive the Maier-Saupe theory from the Lennard-Jones potential. The procedure is quite
the same that if the kernel function is based on the Lennard Jones potential, in the sense of
leading order, we have:

∫
G(m,m′, r) dr ≈ H(L,D, T, cos γ),

here T is the temperature. Expanding H(L,D, T, cos γ) in orthogonal polynomials with
respect to the last variable, we can obtain Maier-Saupe potential:

∫
G(m,m′, r) dr ≈ H1(L,D, T )−H2(L,D, T )P2(cos γ).

3.2 The elastic energy in Q-tensor form

Now we turn to the elastic energy. Since G(r;m′,m) = G(−r;m′,m), we have

M (1)(m,m′) = 0.

To calculate the second moment, we introduce (for β 6= 0 or π/2)

n1 =
1

2 cos β
(m+m′), n2 =

1

2 sin β
(m−m′), n3 = n1 × n2.

Under the coordinate (n1,n2,n3), the second moment must be a diagonal matrix:

M (2) :=

∫
G(r,m,m′)rrT dr = diag(M1,M2,M3).

12



Consequently, in the original coordinate, M can be written as:

M (2) =M1n1n1 +M2n2n2 +M3n3n3

=M3I+
M1 −M3

4 cos2 β
(m+m′)(m+m′) +

M2 −M3

4 sin2 β
(m−m′)(m−m′)

=M3I+ (
M1

4 cos2 β
+

M2

4 sin2 β
− M3

sin2 γ
)(mm +m′m′)

+ (
M1

4 cos2 β
− M2

4 sin2 β
+
M3 cos γ

sin2 γ
)(mm′ +m′m)

=M3I+ (
M1

4 cos2 β
+

M2

4 sin2 β
− M3

sin2 γ
)(mm +m′m′)

+ (
M1

4 cos2 β cos γ
− M2

4 sin2 β cos γ
+

M3

sin2 γ
)(m ·m′)(mm′ +m′m)

We can write:

M (2) = B1I+B2(mm+m′m′) +B3(mm′ +m′m)(m · n), (3.9)

where Bi are functions of γ = m ·m′:




B1(m ·m′) =M3,

B2(m ·m′) = M1
4 cos2 β + M2

4 sin2 β
− M3

sin2 γ
,

B3(m ·m′) = M1
4 cos2 β cos γ

− M2

4 sin2 β cos γ
+ M3

sin2 γ
.

In the case of hard-core potential, it turns out that (see Appendix for details):




B1(m ·m′) = L4D
(
2|m×m

′|η2

3 + πη3

2 + 4πη4

15

)
,

B2(m ·m′) = L4D
(
|m×m

′|
6 + πη(1+η)

3 + πη3

4 + 2η2

3|m×m
′|

)
,

B3(m ·m′) = L4Dη2
(
2 arcsin(m·m′)

3(m·m′) − 2
3|m×m

′|

)
.

It is worth pointing out here that B1(m ·m′), B2(m ·m′), B3(m ·m′) are all even functions
with respect to cos γ = m ·m′.

We want to use c(x) and

Q2(x) =

∫
Ξ2(m)ρ(x,m)dm, Q4(x) =

∫
Ξ4(m)ρ(x,m)dm,

to express the elastic energy (truncated to the second moment of the kernel function):

F
(2)
elastic =

1

4

∫

Ω

∫

S2

∫

S2
M (2) : ∇f(x,m′)∇f(x,m)dm′dmdx, (3.10)

where M (2) is defined by (3.9).
Let x = m′ ·m, then we have the following Legendre polynomial expansion:

|m×m′| =
√

1− x2 =
π

4
− 5π

32
P2(x)−

9π

256
P4(x) + · · · ,

1

|m×m′| =
1√

1− x2
=
π

2
+

5π

8
P2(x) + · · · ,

arcsinx

x
=
π ln 2

2
+

5π

16
(3− 4 ln 2)P2(x) + · · · .

13



Hence, we can get

1

L4D
B1(m ·m′) =

(πη2
6

+
πη3

2
+

4πη4

15

)
− 2η2

3
· 5π
32
P2(m ·m′)− 2η2

3
· 9π

256
P4(m ·m′) + · · · ,

1

L4D
B2(m ·m′) =

1

6

(π
4
− 5π

32
P2(m ·m′) + · · ·

)
+
πη(1 + η)

3
+
πη3

4

+
2η2

3

(π
2
+

5π

8
P2(m ·m′) + · · · )

=
π

24
+
πη(1 + 2η)

3
+
πη3

4
+ (− 5π

3 · 64 +
5πη2

12
)P2(m ·m′) + · · · ,

1

L4D
B3(m ·m′) = η2

(2
3

(π ln 2
2

+
5π

16
(3− 4 ln 2)P2(m ·m′) + . . .

)

− 2

3

(π
2
+

5π

8
P2(m ·m′) + · · ·

))

= η2
(
(
π ln 2

3
− π

3
) + (

5π

24
− 5π ln 2

6
)P2(m ·m′)

)
+ · · · .

Denote

α11 =
η2

6
+
η3

2
+

4η4

15
, α12 = −2η2

3
· 5

32
, α13 = −2η2

3
· 9

256
,

α21 =
1

24
+
η(1 + 2η)

3
+
η3

4
, α22 = − 5

3 · 64 +
5η2

12
,

α31 = η2
( ln 2

3
− 1

3

)
, α32 = η2

( 5

24
− 5 ln 2

6

)
. (3.11)

It is not hard to show that Pn(m · m′) can be written as the tensor-inner product of Ξn,
that is,

Pn(m ·m′) = bnΞn(m) : Ξn(m
′), ∀n ≥ 1,

where bn is the highest order coefficient of Pn(x): b1 = 1, b2 = 3
2 , b3 = 5

2 , b4 = 35
8 , · · · .

Therefore, we can write

1

πL4D
B1(m ·m′) = α11 +

3

2
α12Ξ2(m) : Ξ2(m

′) +
35

8
Ξ4(m) : Ξ4(m

′) + · · · ,
1

πL4D
B2(m ·m′) = α21 +

3

2
α22Ξ2(m) : Ξ2(m

′) + · · · ,
1

πL4D
B3(m ·m′) = α31 +

3

2
α32Ξ2(m) : Ξ2(m

′) + · · · .

Dropping the high order terms in the above expansions, we arrive

F
(2)
elastic =

kBT

4

∫

Ω

∫

S2

∫

S2
M

(2)
ij ∂if(x,m) · ∂jf(x,m′) dm′ dmdx

=
1

2

∫

Ω

{
J1|∇c|2 + J2|∇(cQ)|2 + J3|∇(cQ4)|2 + J4∂i(cQij)∂jc

+ J5

(
∂i(cQik)∂j(cQjk) + ∂i(cQjk)∂j(cQik)

)

+ J6

(
∂i(cQ4iklm)∂j(cQ4jklm) + ∂i(cQ4jklm)∂j(cQ4iklm)

)

+ J7∂i(cQ4ijkl)∂j(cQkl)

}
dx. (3.12)
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The elastic coefficients can be written as (see Appendix for details)

J1 = −π
2
L5ηkBT

(
α11 +

2

3
α21 +

2

9
α31 +

4

45
α32

)
,

J2 = −π
2
L5ηkBT

(3
2
α12 +

3

7
α22 +

9

49
α32

)
, J3 = −35π

16
L5ηkBTα13,

J4 = −π
2
L5ηkBT

(
2α21 +

4

3
α31 +

2

5
α22 +

8

15
α32

)
,

J5 = −π
2
L5ηkBT

(
α31 +

25

49
α32 +

6

7
α22

)
,

J6 = −3π

4
L5ηkBTα32, J7 = −π

2
L5ηkBT

(
3α22 +

18

7
α32

)
.

It should be pointed out that since the hard-core molecular potential does not account for the
temperature influence and we have made several approximations and truncations in deriva-
tion, the expressions of the coefficients Jis may be not accurate. What we want to suggest
is the energy form (3.12). Now, we use the Bingham closure again to regard Q4 as a tensor
depending on Q:

Q4 =
1

ZQ

∫

S2
Ξ4(m) exp(BQ : mm)dm, (3.13)

where BQ, ZQ are defined by (3.6) and (3.7). Then (3.12) is a energy functional of c and Q.
Together with the Maier-Saupe bulk energy part

Fbulk[c,Q] = kBT

∫

Ω
c(x)

(
ln c(x) +Q(x) : BQ(x)− lnZQ(x)−

15πL3η

64
c(x)|Q(x)|2

)
dx,

we get the total free energy functional as:

Ftotal[c(x), Q(x)] = Fbulk[c(x), Q(x)] + Felastic[c(x), Q(x)]. (3.14)

This is the main model hard-rods in our method. We given some remarks in the following
subsection.

3.3 A brief look at our new Q-tensor model

The energy (3.14) meets the physical constraints on the eigenvalues of the Q-tensor order
parameter which guarantees the existence of physically meaningful minimizers. All the model
coefficients are well interpreted in terms of the basic physical measurements and molecular
structures so that one can easily decide quantitatively proper values for them in both nu-
merical and physical experiments. The concentration(or density), is a spatially-dependent
variable making great contributions to modeling the LC smectic phase, which we will dis-
cuss later in this paper. In our framework, the Q-tensor models for the nematics and the
smectics are compatible with each other. They only differ in the truncation process for the
fourth-order moments terms.
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For investigating the nematic phase only, the concentration variable c could be treated as
a constant in the model. In this light, our new Q-tensor model becomes the following form:

Ftotal[Q(x)] =Fbulk[Q(x)] + Felastic[Q(x)]

=kBT

∫

Ω
c
(
ln c+Q : BQ − lnZQ − 15πL3η

64
c|Q|2

)
dx

+
1

2
c2

∫

Ω

{
J2|∇Q|2 + J3|∇Q4|2 + J5

(
∂iQik∂jQjk + ∂iQjk∂jQik

)

+ J6

(
∂iQ4iklm∂jQ4jklm + ∂iQ4jklm∂jQ4iklm

)

+ J7∂iQ4ijkl∂jQkl

}
dx. (3.15)

This model is our modified version of the Landau-de Gennes tensor model. Its bulk energy
part will restrict the Q-tensor in the minimizers to meet the physical constraints. And it also
can be checked that if the values of these measurements are picked in reasonable intervals, the
elastic energy will be bounded from below in any closed regions. Another advantage of this
new version is that no phenomenological coefficients are involved in modeling. More detailed
comparison with the Landau-de Gennes model will be studied at the next subsection.

If the axially-symmetry property is imposed on the minimizers of the total free energy,
which gives Q(x) = S2(x)(n(x)n(x)− 1

3I), the Ericksen vector model where

Ftotal = Ftotal[S2(x),n(x)]

will be derived. Furthermore, if the scalar order parameter S2 is regarded spatially irrelevant,
we finally arrive at the Oseen-Frank model where

Ftotal = Ftotal[n(x)]

The elastic coefficients K1,K2,K3 can be interpreted then and their relations can be carefully
examined.

In addition to our derivation framework, similar analogue tensor models can be derived
by following the same procedure when modeling for other molecular structures such as disk-
shaped molecules and chiral molecules, or when the molecular interaction potential is rede-
fined to account for the temperature dependence.

It is obvious that after dropping some high order terms in (3.15), we derive the Marrucci-
Greco [29] model which first analyzed the long-range elasticity of LCPs. Some other nonho-
mogeneous extensions of Doi’s theory, differing in the intermolecular potential, can also be
obtained from our model by making truncations or approximations to our nonlocal elastic
potential. For instance, if we only keep the |∇Q2|2 term in elastic energy, we get the Feng,
Sgarlari and Leal’s [19] one-constant model; and if we slightly modify some terms with Q4,
it turns out to be Yu-Zhang’s [45] model which integrated the long-range interactions in a
ellipsoidal region. Besideds, the integral form of our molecular model is quite the same as
the model of Wang-E-Liu-Zhang [40]. Also, our method still works when the shape of the
molecules are changed, which will leads to Wang’s [39] work.
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3.3.1 Comparisons with the Landau-de Gennes Q-tensor theory

The well-known Landau-de Gennes model is a phenomenological theory, which has success-
fully described the phase transition for liquid crystals. Assuming that the free energy can be
expanded as a power series of the order parameter Q and of its spatial derivatives, de Gennes
gave the free energy functional as follows [11]:

F (LG)[Q] =

∫

Ω

(
A(T − T ∗)

2
tr(Q2)− B

3
tr(Q3) +

C

4
(trQ2)2

)

︸ ︷︷ ︸
F

(LG)
bulk

dx

+

∫

Ω

(
L1Qik,jQij,k + L2Qij,jQik,k + L3|∇Q|2 + L4QlkQij,kQij,l

)
︸ ︷︷ ︸

F
(LG)
elastic

dx. (3.16)

The above energy contains two parts. The first part F
(LG)
bulk governs the bulk effects, A,B,C are

constants depending on temperature and material. This expression of bulk energy is widely
used as it is capable of describing a second-order phase transition and more importantly, as
it respects the axially-symmetry of the stationary points in homogeneous case. The second

part F
(LG)
elastic is the elastic energy density that penalizes spatial non-homogeneities. There are

many works to study the solution of the classic Landau-de Gennes model, for example, one
may see [3, 33, 27] and the references therein.

An important problem in Q-tensor theory is to understand the physical meaning of the
tensorial order parameter Q. There is a kind of interpretation that the Q-tensor represents
the leading order moment information of the orientational distribution function f(x,m).
Hence, according to the derivation from the mean-field approach, Q-tensor indicates the
second moment tensor of f , i.e.

Q :=

∫

S2
(mm− 1

3
I)f dm.

One can immediately draw a conclusion from the above definition that the molecular the-
ories require Q-tensor to be a symmetric, traceless 3 × 3 matrix with eigenvalues {λi(Q)}
constrained by the following inequalities:

−1

3
≤ λi(Q) ≤ 2

3
, i = 1, 2, 3.

Here, the inequalities were referred as physical constraints of the Q-tensor by Ball and Ma-
jumdar [3], who pointed out that: “the bulk potential in the Landau-de Gennes theory has no
term that enforces the physical constraints on the eigenvalues in the Q-tensor”.

To avoid the non-physical flaws of Landau expansions, the following bulk potential derived
from the mean-field Maier-Saupe free energy was suggested in [3]:

F
(BM)
bulk = kBT inf

f∈AQ

∫

S2
f(m)lnf(m) dm− κ|Q|2, (3.17)

where

AQ =
{
f : S2 → R, f ≥ 0, Q =

∫

S2
(mm− 1

3
I)f(m) dm, and

∫

S2
f(m)dm = 1.

}
.
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They also proved the existence and the uniqueness of the solution for the above functional.
It can be checked that

fBQ
=

exp(BQ : mm)∫
S2
exp(BQ : mm)dm

solves the minimizing problem

inf
f∈AQ

∫

S2
f(m)lnf(m).

Therefore, our bulk energy part (3.8) is actually the same as the energy (3.17). As a result,
the eigenvalues of the Q-tensor in our tensor model are bounded both from below and above
to meet physical constraints due to their analysis in [3].

It is worth pointing out that by representing the Q-tensor as:

Q = s(nn− 1

3
I) + b(n′n′ − 1

3
I),

the bulk energy density is in fact a function only of two scalars s and b, i.e.

F
(LG)
bulk [Q] = ψbulk(s, b).

Indeed, we have that

trQ2 =
2

3
(s2 + b2 − sb), trQ3 =

1

9
(2s3 + 2b3 − 3s2b− 3sb2).

Therefore, F
(LG)
bulk [Q] is essentially the polynomials approximation of the bulk energy density

Fbulk with respect to s and b. Therefore, the Bingham closure can provide us with an
approach to decide the material-dependent and temperature-dependent coefficients A,B,C
in the Landau expansion of the bulk energy.

In addition, it has also been shown in [3] that, for any boundary conditions, if L4 6= 0,
then the Landau-de Gennes energy F (LG)[Q] is unbounded from below. In other words,
minQ F

(LG)[Q] = −∞. To modify the bulk energy part by (3.17) or (regarding c as a
constant)

Fbulk = kBT

(
BQ : Q− lnZ − κ|Q|2

)
,

leads a possible way to resolve this problem. However, it seems impossible to prove the
existence of global minimizers when L4 6= 0 unless suitable hypotheses have been made on
the elastic constants Li. It might be widely accepted that there are indeed some relationships
on these elastic constants. However, to the best of our knowledge, these relationships have
not been understood clearly yet.

By deriving the tensor model from the molecular scale, our work may offer an approach to
settle the above problem. Since our tensor model is derived from physical energy at molecular
level, the elastic energy should be bounded from below naturally. On the other hand, when

the density is assumed to be constant, the elastic energy F
(2)
elastic is a functional of Q. Then by

using suitable expansion, we can regard F
(LG)
elastic as a certain approximation of Felastic(Q,∇Q),

and derive the elastic coefficients Li(1 ≤ i ≤ 4) in terms of the molecular parameters. This
might give us a possible way to understand those coefficients.
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3.4 The elastic coefficients under uniaxial constrain

On the vector scale, we will focus on the famous Oseen-Frank elastic constants K1,K2,K3.
Looking into their relations will be a straight and important way to understand the nature
of LC system.

3.4.1 Derivation of the elastic coefficients

In racemic or achiral system, the nematics show complete rotational symmetry around their
preferred orientation. Some previous investigators were then inspired to restrict the LC model
into uniaxial cases, which leads to the vector model.

One of the simplest and the most successful mathematical vector theory is the Oseen-
Frank theory [35] that characterizes the equilibrium by a director field n(x) ∈ S2 with a
spatially invariant degree of orientational order. As a consequence of such assumptions, the
bulk potential in the Oseen-Frank model is a spatial-independent constant. Therefore, the
equilibrium configurations of LC are only relevant to the local or global minimizers of the
corresponding elastic energy functional. The Oseen-Frank energy takes the form:

F
(OF )
elastc(n,∇n) =

1

2
K1(divn)

2 +
1

2
K2(n · (∇× n))2 +

1

2
K3|n× (∇× n)|2

+
K2 +K4

2
(tr(∇n)2 − (divn)2), (3.18)

where Ki(i = 1, 2, 3, 4) are elastic constants, which describe three basic types of distortions:
pure splay, pure twist and pure bend respectively. Apparently, the three elastic constants
K1,K2,K3 should be non-negative, otherwise the energy will be unbounded from below, and
the global minimizer will be nonexistent.

To derive the celebrated Oseen-Frank vector model from tensor model, the following two
constraints are required:

• Q-tensor should be restricted to the uniaxial form, i.e. Q = S2(nn− 1
3I);

• The scalar order parameter S2 should be spatially invariant.

It is worth pointing out that these two constraints are naturally satisfied in the equilibrium
state of the homogeneous LC system.

We consider the case when the density c is constant. Based on our previous analysis, the
bulk energy functional can be written as

Fbulk[Q] = kBTc

∫

Ω

(
BQ : Q− lnZQ − 5π

64
cL2D|Q|2

)
dx,

where ZQ =
∫
S2

exp(mm : BQ)dm. One can easily figure out that the bulk potential of
the Oseen-Frank model actually only depends on the constant scalar order parameter S2,
irrelevant of the orientation of molecules n. Particularly for the last term, we have

|Q|2 = tr(Q2) =
2

3
S2
2 .

Therefore, Fbulk is an additive constant in the free energy functional when S2 is spatially
invariant. Hence the bulk energy part can be omitted in modeling. In other words, we need
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only concern about the elastic potential of the system. The equilibrium state can be viewed
as the minimizers of the elastic energy functional in Oseen-Frank.

Writing the Q-tensor as Q = S2(nn− 1
3I) and utilizing the relation that ∂jnini = 0, the

Oseen-Frank elastic constants can be derived as follows (the detail calculation is included in
Appendix):

K1 = πc2L5ηkBT
(
− S2

2

(
η2

299

1568
− 15

7 · 64 − 12 ln 2η2

49

)
+ S2

4

(15η2
128

− 115η2

49

(1
8
− ln 2

2

))

+ S2S4
15

7

(
− 1

64
+

5η2

14
− 3

7
η2ln 2

))
,

K2 = πc2L5ηkBT
(
− 5S2

2

(
η2

19

1568
− 1

7 · 64 − 3 ln 2η2

98

)
+ S2

4

(15η2
128

− 15

49
η2
(1
8
− ln 2

2

))

+ S2S4
5

7

(
− 1

64
+

5η2

14
− 3

7
η2ln 2

))
,

K3 = πc2L5ηkBT
(
− S2

2

(
η2

299

1568
− 15

7 · 64 − 12 ln 2η2

49

)
+ S2

4

(15η2
128

− 150

49
η2
(1
8
− ln 2

2

))

− S2S4
20

7

(
− 1

64
+

5η2

14
− 3ln 2η2

7

))
,

where S4 is a function of S2 due to the Bingham closure, in other words, given by

S4 =

∫

S2
P4(m · n) er(m·n)2

∫
S2

er(m
′·n)2dm′

dm, (3.19)

where r = r(S2) is the unique real number satisfying

S2 =

∫

S2
P2(m · n) er(m·n)2

∫
S2

er(m′·n)2dm′
dm,

or equivalently

S2 =
1

2

∫ 1
0 (3z

2 − 1)erz
2
dz

∫ 1
0 erz2dz

. (3.20)

Remark 3.1. It can be proven that S2 ∈ (−1
2 , 1) is a monotonically increasing function of

r ∈ (−∞,+∞). Thus, r can be uniquely determined for all S2 ∈ (−1
2 , 1).

Next, based on the above expressions, we will go deep into the comparative relationships
among K1,K2,K3, which are closely linked with the stability of the nematic phase.

3.4.2 The comparative relationship among the Oseen-Frank elastic constants

Although we have already expressed K1,K2,K3 in terms of S2, c, L,D, T , it is still hard to
decide their relationships. Notice that there are only two independent variables which are:

α = πL2Dc, and η = D/L.

The problem lies in the fact that the scalar order parameter S2 is in fact related to other
parameters. Indeed, the relation between S2 and α is given by (3.20) and (3.21). We will
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Figure 4: Oseen-Frank elastic constants K1,K2,K3 under hard-core potential

offer a simple explanation to this relation here. The order of coefficients of F
(2)
elastic is O(L5),

while the order of Fbulk is O(L3). Hence, S2 should be chosen to minimize Fbulk. By the
work of [26] or [18], we know that S2 should be chosen to satisfy

15α

32

∫ 1

0
(3z2 − 1)erz

2
dz = 2r

∫ 1

0
erz

2
dz. (3.21)

where r = r(S2).
Once the concentration parameter α and the diameter-to-length ratio η are decided, we

can compute K1,K2,K3 for lyotropic LC. If we assume that the LC molecule has a diameter
of ∼ 5 Å with temperature T = 400K and dimensionless volume fraction Φ = c· 14πLD2 = 0.4,
the elastic constants Kis will have the dimension of energy/cm (or dynes) and the expected
magnitude is 10−6 dyn. This is indeed the correct order of magnitude according to the famous
Frederiks experiment [20] conducted by Prost et. al [36], Saupe [32] and Durand et. al. [12].

Taking the diameter-to-length ratio η as 0.1, 0.3, 0.6 and 1.0 respectively, we draw the
value curves of the corresponding Oseen-Frank elastic constants with respect to α in Fig. 4.

As the parameters are not accurate and several approximations have been made in mod-
eling, our elastic constants K1,K2,K3 are close to the physical observation values but not
precise. Nevertheless, we can still conclude some points from them:

• K1,K2,K3 are keeping positive in value regardless of α and η, which bounds the dis-
tortion energy from below;

• K1,K2,K3 converge in most of the cases as the concentration factor α gets smaller. It
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illustrates why we might employ the one-constant Landau-de Gennes model (in which
K1 = K2 = K3) for diluted LC;

• When the potential density α goes larger, K3 becomes significantly larger than the other
two elastic constants while K1 and K2 are almost remaining at the same level. Such
phenomenon have already been observed in many physical experiments, for instance,
the Frederiks experiment [20];

• For a typically long rod-like LC molecule, it always has the following relation:

K3 ≥ K1 ≥ K2,

no matter how the concentration changes. Furthermore, this relation holds in the
limiting case in which the molecular diameter goes to 0. This property is also supported
by experimental results.

• When the rod-like LC molecule gets shorter in its shape, elastic constant K1 will even-
tually overcome K3 in the low concentration area. In fact, the diameter-to-length ratio
of the rod-like LC molecules are generally observed within the range of 1 : 4 to 1 : 15.
In this light, this situation might indicate that rod-like molecules which are “too short”
in its length can not be observed in nematic phase.

In addition to the last point, we guess that when the rod-like LC molecule goes ”too long”,
the nematic phase might also lose its stability to the smectic phase. We think it will lead us
to another fascinating story.

3.5 The Ericksen’s vector model

While the head-tail symmetry of the LC molecules is respected by both he molecular model
and tensor model, the equivalence of orientation n and −n was not fully recognized by Oseen.
Consequently, this drawback results in its inability to account for the complicated line and
surface defects that are physically observed. Particularly in certain circumstances, the Oseen-
Frank model will lead to nonphysical solutions, and even fake “defects”. Besides, as we can
see from the relationship between the order parameter s and the concentration factor α in
the homogeneous case, s moves rapidly when there is a slight change of α in the nematic
phase area. In other words, while it is suitable to treat α (or c equivalently) as a constant in
nematic modeling, it might not be proper to set the scalar order parameter s invariant.

Ericksen [15] extended the Oseen-Frank model by relaxing the assumption of a spatially
invariant degree of orientational order s. We can also derive the Ericksen model by imposing
uniaxial constraint in our new tensor model. The only difference is that we have to keep
terms containing s or gradient of s. Unlike the situation in deriving the Oseen-Frank model,
the bulk energy denoted in the Ericksen model is not an additive constant, but a function of

s. One can obtain that F
(Eri)
bulk (s) can be written as follows:

F
(Eri)
bulk (s) = kBT

(
c(BQ : Q− lnZ)− 2

3
c2L2Ds2

)
,

where both the value of the inner tensor product BQ : Q and the value of the normalization
constant Z depend only s. It is not difficult to prove that the consistent condition proposed
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by Ericksen:

lim
s→0

F
(Eri)
bulk (s) = O(s2)

is satisfied here. Besides, we have:

F
(Eri)
bulk (s) → ∞, if s→ 1− or s→ −1

2+
.

The Ericksen elastic energy density truncated to the order of s2 reads:

2F
(Eri)
elastic =K1s

2(divn)2 +K2s
2(n · (∇× n))2 +K3s

2|n× (∇× n)|2

+ (K2 +K4)s
2(tr(∇n)2 − (divn)2)

+ l1|∇s|2 + l2|∇s · n|2 + l3s∇s · ndivn+ l4s∇s · (∇nn), (3.22)

where the elastic constants K1,K2,K3 are the same as what we have computed for the Oseen-
Frank model. The rest of the coefficients can also be derived from our tensor model as well.
We omit their exact expression here for brevity.

4 Modeling for simple smectic liquid crystals

Smectic liquid crystals are characterized by both orientational and translational ordering of
anisotropic molecules. In simple smectic phases, namely, smectic-A (SA) and smectic-C (SC),
the translational ordering is one dimensional, and the director of primary molecular axis is
either parallel or tilted with respect to the direction of the wave vector of the corresponding
density wave. Characterizing the nematic to smectic-A phase transition has long been a
principal problem in the physics of liquid crystals. The main complexity of the Nematic-SA
transition arises from an intrinsic coupling between local number density and order parameter.
Despite considerable literature on modeling of smectic phase, there are still unresolved issues
due to this complexity. Based on the whole idea described above, here a simple model can
be constructed to characterize the nematic and smectic-A phase universally.

4.1 A tensor model for smectic-A phase

The key point in modeling the smectic phase is to build the layer structure. Compared
with the nematic modeling, an additional positional order parameter must be introduced to
describe the modulation of the concentration. The derivation procedure is almost the same as
our nematic modeling except for that the number density parameter c is no longer a spatially
invariant constant. Therefore to assure the whole free energy bounded from below, we need
to truncate the elastic energy to the fourth moment of the kernel function:

M (4) :=

∫
G(r,m,m′)rrrrdr.

In the case of hard-core potential, the fourth moment under the original coordinate can be
written as (see Appendix for details):

M (4) = R1(m,m′)(δijδkl)sym +R2(m,m′)(δijmm+ δijm
′m′)sym

+R3(m,m′)(δijmm′)sym +R4(m,m′)(mmmm+m′m′m′m′)

+R5(m,m′)(mmm′m′)sym +R6(m,m′)(mmmm′ +m′m′m′m)sym, (4.1)
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where




R1(m,m′) = L6D
(
2 sinγ η4

15 + πη5

12 + 4πη6

105

)
,

R2(m,m′) = L6D
(
sinγ η2

18 + πη3

12 + πη4

15 + πη5

24 + 2η4

15
1

sinγ

)
,

R3(m,m′) = L6D
(
(π−2γ)η4

15 − 2η4

15
cos γ
sinγ

)
,

R4(m,m′) = L6D
{(

sin γ
40 + 3πη

40 + πη2

12 + πη3

8 − πη5

24

)
+ η3

3
1

sin γ − 2η4

15
1

sin3 γ

}
,

R5(m,m′) = L6D
{(

sin γ
72 + πη

24 + πη2

12 + πη3

8

)
+

(
η2

9 + 2η4

15

)
1

sin γ − 2η4

15
cos2 γ
sin3 γ

}
,

R6(m,m′) = L6D
{

(π−2γ)η2

12 − η2

6
cos γ
sinγ + 2η4

15
cos3 γ
sin3 γ

}
.

For simplicity we just expand the fourth moment to O(η):

M (4) ≈πL6D
[
[µ11(mmmm+m′m′m′m′) + (µ21 + µ22P2(m ·m′)2)(mmm′m′)sym

]
,

where

µ11 =
1

160
+

3η

40
, µ21 =

1

288
+

η

24
, µ22 = − 5

2304.

Thus the fourth order elastic energy reads

F
(4)
elastic =

∫

Ω

∫

S2

∫

S2

∫

Ω
f(x,m)G(m,m′, r)(ri∂i)

4
{
f(x,m′)

}
drdm′dmdx

≈πL
7ηkBT

24

∫

Ω

∫

S2

∫

S2

{
2µ11 f(x,m) mimjmkml ∂ijkl

{
f(x,m′)

}
dm′dm

+ (µ21 −
1

2
µ22)f(x,m)(mimjm

′
km

′
l)sym ∂ijkl

{
f(x,m′)

}
dm′dm

+
3

2
µ22f(x,m)(m ·m′)2(mimjm

′
km

′
l)sym ∂ijkl

{
f(x,m′)

}
dm′dm

}
dx.

F
(4)
elastic can be similarily written in the Q-tensor form (see Appendix for details). Since we

introduce Q4 in F
(4)
elastic, we also truncate the approximation of |m×m′| at the fourth order

Legendre polynomial. Now the total free energy functional is readily given as

Ftotal = Fbulk + F
(2)
elastic + F

(4)
elastic.

After proper substitution x = x/L, we finally reach a dimensionless Q-tensor model with the
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free energy functional as follows:

F [c(x), Q2(x)]

=

∫

Ω
c(ln c+BQ : Q2 − lnZ)dx+

α

2

∫

Ω

{
E11c

2 + E12|cQ2|2 + E13|cQ4|2

+ E21|∇c|2 + E22|∇(cQ2)|2 + E23|∇(cQ4)|2 + E24 ∂i(cQ2ij)∂j(c)

+ E25 ∂i(cQik)∂j(cQjk) + E26 ∂i(cQ4ijkl)∂j(cQ2kl) + E27 ∂i(cQ4iklm)∂j(cQ4jklm)

+ E31|∇2c|2 + E32 ∂ij(cQ2pq)∂ij(cQ2pq) + E33 ∂ij(cQ2ij)∂kl(cQ2kl)

+ E34 ∂ik(cQ2ip)∂jk(cQ2jp) + E35 ∂ij(cQ2ij)∂kk(c) +E36 ∂ij(cQ4ijkl)∂kl(c)

+ E37 ∂ij(cQ4ijpq)∂kk(cQ2pq) + E38 ∂ij(cQ4ijkp)∂kl(cQ2lp)

+ E39 ∂ij(cQ4ijpq)∂kl(cQ4klpq)
}
dx. (4.2)

Here Eij only depend on η. BQ, Z,Q4 are determined by Q2 with Bingham closure. This
model has only two dimensionless parameters: η = D/L and α = πc0L

2D where

∫
c(x)dx = c0.

Notice that c(x) now satisfies the constraint

1

|Ω|

∫

Ω
c(x)dx = 1.

4.2 One-dimensional model and numerical results

Based on the tensor model derived above, we consider a one-dimensional model with following
two assumptions:

• f(x,m) only depends on x-axial component and is a periodic function with period d;

• Orientation distribution are uniaxial and the director n is a constant parallelling with
x axis.

Notice all non-trivial tensor components needed are given as

Q11 =
2

3
S2, Q22 = Q33 =

1

3
S2,

Q1111 =
8

35
S4, Q1122 = Q1133 = − 4

35
S4.

Here S4(x) is determined by Bingham Distribution or say r(x):

S4(x) =

35

∫ 1

0
t4 exp (r(x)t2) dt

8

∫ 1

0
exp (r(x)t2) dt

− 5

2
S2(x)−

7

8
.
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Now (4.2) can be furthermore reduced to a one-dimension model with free energy functional
as follows:

F̄d[c(x), S2(x)]

,

∫ d

0
c(x)

(
ln c(x) +

2

3
r(x)S2(x)− lnZ(x)

)
dx

+
α

2

∫ d

0

{(
N11 +N12S

2
2(x) +N13S

2
4(x)

)
c2(x)

−N21

( d

dx

(
c(x)

))2
−N22

( d

dx

(
c(x)S2(x)

))2
−N23(

d

dx

(
c(x)S4(x)

))2

−N24
d

dx

(
c(x)S2(x)

) d

dx

(
c(x)

)
−N25

d

dx

(
c(x)S2(x)

) d

dx

(
c(x)S4(x)

)

+N31

( d2

dx2
(
c(x)

))2
+N32

( d2

dx2
(
c(x)S2(x)

))2
}
dx. (4.3)

All the coefficients Nij could be calculated from the moment calculation and expansion above:

N11 =
1

2
+ 2η +

4η2

3
, N12 = − 5

16
, N13 = − 9

128
,

N21 =
1

72
+
η

9
+

5η2

18
+
η3

3
+

2η4

15
, N22 = − 55

4032
− (432 ln 2− 367)η2

4704
,

N23 =
(365 − 2048 ln 2)η2

12544
, N24 =

7

288
+

2η

9
+

7η2

18
+
η3

6
,

N45 = − 1

112
− (12 ln 2− 10)η2

49
,

N31 =
11

57600
+

13η

5400
, N32 =

107

451584
+

η

216
.

In (4.3) we just keep two second derivative terms and drop other four terms to make our
model as simple as possible. In the derivation of the above coefficients, we have made several
approximations and truncations. As a result, the numerical value might not be accurate
and perhaps some information such as attraction effect and temperature dependence is lost.
Then it might cause the free energy functional not bounded from below. Actually, the optimal
solution depends on these two coefficients sensitively. Therefore, to find physical solutions,
we modify N31 and N32 in a reasonable range without changing their orders. The main point
is that (4.3) should be an effective energy form to capture the smectic-A phase.

To solve the optimization problem

min
c(x),S2(x),d

{
F̄d

d

}
, s.t.

1

d

∫ d

0
c(x)dx = 1,

we use the spectral method. For this, we have to expand c(x), c(x)S2(x) in terms of fourier
bases:

1, cos
2π

d
x, sin

2π

d
x, · · · ,
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and truncate c(x), c(x)S2(x), c(x)S4(x) at order n1, n2, n3, i.e.

c(x) = 1 +

n1∑

n=1

un cos
2nπ

d
x,

c(x)S2(x) =

n2∑

n=0

vn cos
2nπ

d
x,

c(x)S4(x) =

n3∑

n=0

wn cos
2nπ

d
x,

ln c(x) +
2

3
r(x)S2(x)− lnZ(x) =

n1∑

n=0

tn cos
2nπ

d
x.

Notice that un, vn are variables and wn, tn are determined by solving r(x) and integration
with FFT. The minimum of the free energy can be found by standard method, for example,
the steepest descent method.

Fig. 5 (a) presents a typical phase diagram of three phases. Nematic phase loses sta-
bility as concentration increases. The smectic layer periodicity d increases slightly with the
increasing of concentration and spans from 1.516 L to 1.532 L, which is quite reasonable
according to existing experimental results [11]. It is also worth noting that the boundary of
nematic phase in the phase diagram depends on N31, N32 and in some cases the system only
undergoes direct isotropic-SA phase transition, which agrees with some experimental results.
Fig. 5 (b) reveals typical fluctuations of local number density and nematic order parameter.

14.2 15.9

α

Isotropic Nematic Smectic A

(a) One dimensional phase diagram for isotropic, ne-
matic, smectic-A phase.

0 0.2 0.4 0.6 0.8 1
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x/h
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S 2

(b) Profiles of the local number density c(x)
(dashed) and local nematic order parameter (solid)
in the smectic-A phase at α = 17: d = 1.519 L.

Figure 5: Typical phase diagrams, local number density and order parameter profiles. η =
1/10, N31 = N32 = 0.00089.

4.3 Discussion on smectics modeling

Nematic-SA phase transition has been addressed theoretically via different approximations
for a long time. Here we briefly review two popular smectic models.
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McMillan [28] first put forward a specific model, which is an extension of the Maier-Saupe
mean-field theory, characterizing the smectic-A phase by a density modulation. Applying
Landau expansions for the entropy term, this model describes a continuous nematic-SA tran-
sition and predicts the existence of a triple critical point where the nematic, isotropic, and
smectic-A phase meet. Besides the orientational order parameter defined in the Maier-Saupe
theory, an order parameter that describe the positional order of the LC is introduced in
McMillan’s model. Since the smectic-A phase is uniaxial, the positional order parameter is
given by:

σp = 〈cos(2πz
d

)(
3

2
cos2 θ − 1

2
)〉

where z and d are the position of the molecule and the layer thickness. The postulated
interaction potential reads:

U(θ, z) = −U1(S + ασp(
2πz

d
))(

3

2
cos2 θ − 1

2
)

where the constant α refers to the strength between adjacent molecules.
Another successful model for smectics is the Chen-Lubensky model [6], which is defined

in terms of the director field n and the complex valued smectic order parameter

Ψ(x) = ρ(x)eiφ(x),

where φ refers to the layers and consequently ∇φ is the direction of the layer normal. For a
perfect nematic phase Ψ = 0 while for a smectic phase Ψ will take on complex values.

It is a phenomenological vector model based on the Landau-Ginzburg mean-field theory.
The free energy consists of two parts:

F (CL) =

∫

Ω
FS + FN dx,

where FN = F (OF ) is the Oseen-Frank energy density for a nematic. The smectic free
energy density FS could be designed to describe either nematic-SA (or A*) phase transition
or nematic-smectic-C (or C*) phase transition. If we only hope to model smectic-A (or A*)
phase, the free energy can be simplified to the following form of Landau-de Gennes energy
density:

FS = a(T − TNSA)|Ψ|2 + 1

2
g|Ψ|4 − C⊥|DΨ|2. (4.4)

In (4.4) we have: D = ∇− iqn; q ∼ 1/d where d is the smectic layer thickness; TNSA is the
temperature where nematic-SA phase transition occurs; the coefficients q,g are positive and
C⊥ ≤ 0 is necessarily required.

The McMillan model and Chen-Lubensky model both require a prior knowledge of the
layer thickness d before modeling. Furthermore, the Chen-Lubensky model lacks clear phys-
ical interpretations of its various coefficients especially for C⊥ which determines the type
of smectic phase. The McMillan model does not take the smectic-C phase into considera-
tion. In Chen-Lubensky model, axially-symmetry like a ‘tilt uniaxial’ is assumed to describe
smectic-C phase. However, physical observations show that LC is biaxial in the smectic-C
phase.
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Compared with the above two models, layer thickness d need not a priori in our Q-tensor
model for smectic-A phase since it is obtained by minimizing the free energy. Although the
dependence of coefficient of higher orders on temperature should be studied more deeply,
all coefficients in our model could be determined by physical parameters, which provides
opportunities to further testify our model through experimental results. We also point out
that the Q-tensor model might also be able to describe the smectic-C phase if we relax
the assumption to allow director n tilted with respect to the direction of wave vector and
introduce biaxial approximation. All these works would lead to a subject of a separate study.

5 Summary

We have proposed a multiscale modeling hierarchy for liquid crystals connecting Onsager’s
molecular theory, Q-tensor theory and Oseen-Frank theory explicitly. As an important ex-
ample, we discussed the simple stick-shape molecule with head-tail symmetry. Once the
intermolecular potential is decided (such as hard-core potential or Lennard-Jones potential),
we are able to write the integral form of the molecular model. Employing Taylor expansion,
the differential form of the molecular model, and Q-tensor can be introduced to simplify
the expression. Different truncations and approximations for the high order moments of the
kernel function will lead to different models.

To model nematic phase, it is sufficient to truncate at the second order of derivatives.
Then we obtain a new Q-tensor type model for nematic liquid crystals, which not only remains
sensitive to the macroscopic properties, but also take into account the molecular structure
and mechanics as well. Its distortion energy is bounded from below, and the existence of
a physically meaningful minimizer is guaranteed. The coefficients in this model are entirely
determined by molecular parameters. In addition, the order parameter satisfies the physical
constraint on eigenvalues naturally. From this model, we can also recover the Oseen-Frank
energy coefficients by the molecular parameters.

On the other hand, if we truncate at the fourth order of derivatives, the obtained model
can describe the smectic phase, which is convinced by some numerical results.

Several new models for a variety of molecular structures and interactions can be derived
by following the same procedure. All these models shall meet the physical constraints and
all the constants shall be interpretable and easy to determine. We believe that these models
will help to study other different LC phases.

6 Appendix

6.1 High order traceless symmetric tensor

For any axisymmetric function f(m) = f(m · n), we want to calculate

〈m⊗m⊗ · · · ⊗m︸ ︷︷ ︸
k times

〉f .

This motivates us to introduce the k-order traceless symmetric tensor on the unit sphere.
We use 1̂, 2̂, · · · ∈ {1, 2, 3} to denote subscripts. For m ∈ S2, we define the (k + 2l)-order

29



symmetric tensor as follows

σ(m; k, 2l)
1̂2̂···m̂+2l

=
(
m1̂m2̂ · · ·mk̂

δ
k̂+1k̂+2

· · · δ ̂k+2l−1k̂+2l

)
sym

, (6.1)

where (·)sym means the symmetrization of the tensor. For example,

σ(m, 1, 2) = mαδβγ +mβδαγ +mγδαβ ,

σ(m, 2, 2) = mαmβδγµ +mγmµδαβ +mαmγδβµ +mβmµδαγ +mαmµδβγ +mβmγδαµ,

σ(m, 0, 4) = δαβδγµ + δαγδβµ + δαµδβγ .

Direct computation shows that σ(k, 2l) is a sum of (k+2l)!
k!l!2l

different tensors. If we contract
any two subscripts of σ(k, 2l), we obtain a sum of some (k+2l− 2)-order symmetric tensors,
i.e,

Contract
[
σ(k, 2l)

]
=3σ(k, 2l − 2) + σ(k − 2, 2l) + 2kσ(k, 2l − 2) + 2(l − 1)σ(k, 2l − 2)

=(2k + 2l + 1)σ(k, 2l − 2) + σ(k − 2, 2l).

Let

Ξn(m) =

[n
2
]∑

l=0

alσ(m;n − 2l, 2l), a0 = 1.

We need Ξ to be trace free, that is, if we contract any two subscripts of Ξ, the result tensor
should be 0. Therefore,

[n
2
]∑

l=0

an,l

{
(2n − 2l + 1)σ(n − 2l, 2l − 2) + σ(n− 2l − 2, 2l)

}
= 0.

Hence

an,0σ(n− 2, 0) + an,1
[
(2n− 1)σ(n − 2, 0) + σ(n− 4, 2)

]

+an,2
[
(2n − 3)σ(n − 4, 2) + σ(n− 6, 4)

]
+ · · · = 0.

Thus we have

an,l−1 = −(2n − 2l + 1)an,l, for l ≥ 1.

Therefore

Ξn(m) =σ(n, 0)− 1

2n− 1
σ(n− 2, 2) +

1

(2n− 1)(2n − 3)
σ(n − 4, 4)

− 1

(2n− 1)(2n − 3)(2n − 5)
σ(n− 6, 6) + · · · .
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The following are some examples:

Ξ1(m) = m;

Ξ2(m) = mαmβ − 1

3
δαβ ;

Ξ3(m) = mαmβmγ −
1

5

(
mαδβγ +mβδαγ +mγδαβ

)
;

Ξ4(m) = mαmβmγmµ − 1

7

(
mαmβδγµ +mγmµδαβ +mαmγδβµ +mβmµδαγ

+mαmµδβγ +mβmγδαµ

)
+

1

35

(
δαβδγµ + δαγδβµ + δαµδβγ

)
;

Ξ5(m) = mαmβmγmµmν −
1

9

(
mαmβmγδµν + · · ·

)
+

1

63

(
mαδβγδµν + · · ·

)
.

Let Pn be the Legendre polynomials:

Pn(x) = 2n
n∑

k=0

xk
(
n

k

)(n+k−1
2

n

)
=

1

n!

[n
2
]∑

k=0

(−1)k(2n− 2k − 1)!!
n!

(n − 2k)!k!2k
xn−2k. (6.2)

The following proposition enables us to calculate 〈m⊗m⊗ · · · ⊗m︸ ︷︷ ︸
k times

〉f for any axisymmetric

function f(m) = f(m · n).

Proposition 6.1. For any axisymmetric function on S2: f(m) = f(m · n), define Sk[f ] =∫
S2
Pk(m · n)f(m)dm. Then we have

∫

S2
Ξk(m, n)f(m)dm = Sk(f)Ξk(n). (6.3)

6.2 The calculation of the zero-th, second and fourth moment for the hard-

core interaction potential

Recall that we separate the whole area into the following three regions:

• region A (body-body): a 2D-high parallelepiped whose section is a rhombus with side-
length L and angle γ;

• region B (body-end): four semi-columns with side-length L and radius D;

• region C (end-end): four radius D sphere at the corner.

For the zero-th moment, in region A let

(x, y, z) → ((u+ v) cos β, (u− v) sin β, z),

u ∈ [−L/2, L/2], v ∈ [−L/2, L/2], z ∈ [−D,D],

then we have ∣∣∣∣
∂(x, y, z)

∂(u, v, z)

∣∣∣∣ = sin γ.
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In region B, let

(x, y, z) → (t cos β + r sin β sin θ, (L− t) sin β + r cos β sin θ, r cos θ),

t ∈ [0, L], r ∈ [0,D], θ ∈ [0, π],

then we have ∣∣∣∣
∂(x, y, z)

∂(t, r, θ)

∣∣∣∣ = r.

In region C, on the one hand, define the region that crosses the real part of y-axis as CI.
Using coordinates which satisfies:

(x, y, z) = (r sin θ cosφ,L sin β + r sin θ sinφ, r cos θ),

r ∈ [0,D], θ ∈ [0, π], φ ∈ [
π

2
− β,

π

2
+ β],

then we have ∣∣∣∣
∂(x, y, z)

∂(r, θ, φ)

∣∣∣∣ = r2 sin θ.

On the other hand, define the region that crosses the real part of x-axis as CII, and let

(x, y, z) → (L cos β + r sin θ cosφ, r sin θ sinφ, r cos θ),

r ∈ [0,D], θ ∈ [0, π], φ ∈ [−π
2
+ β,

π

2
− β].

We also have: ∣∣∣∣
∂(x, y, z)

∂(r, θ, φ)

∣∣∣∣ = r2 sin θ

Summing up all the above regions, the total excluded-volume (i.e. the zero moment of
the hard-core potential) reads:

∫
G(|r|,m,m′) dr = 2L2D sin γ + 2πD2L+

4

3
πD3.

Following the same process, we can work out the second moment. In region A, we have

∫

A
G(|r|,m,m′)



r21
r22
r23


 dr = sin γ

∫ D

−D

∫ L/2

−L/2

∫ L/2

−L/2




(u+ v)2 cos2 β

(u− v)2 sin2 β

z2


 dudvdz

=



L4D cos2 β sin γ/3

L4D sin2 β sin γ/3

2L2D3 sin γ/3


 .
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In region B, we can get

∫

B
G(|r|,m,m′)



r21
r22
r23


 dr

= 4

∫ L

0

∫ D

0

∫ π

0
r




(t cos β + r sin β sin θ)2

((L− t) sin β + r cos β sin θ)2

(r cos θ)2


 dθdrdt

= 4

∫ L

0

∫ D

0

∫ π

0




rt2 cos2 β + r2t sin γ sin θ + r3 sin2 β sin2 θ

r(L− t)2 cos2 β + r2(L− t) sin γ sin θ + r3 sin2 β sin2 θ

r3 cos2 θ


 dθdrdt

=




2πL3D2 cos2 β/3 + 4L2D3 sin γ/3 + πLD4 sin2 β/2

2πL3D2 sin2 β/3 + 4L2D3 sin γ/3 + πLD4 cos2 β/2

πLD4/2


 .

And in region CI and CII, it reads:

∫

CI
G(|r|,m,m′)



r21
r22
r23


 dr

=

∫ D

0

∫ π

0

∫ π/2+β

π/2−β
r2 sin θ




(r sin θ cosϕ)2

(L sin β + r sin θ sinϕ)2

(r cos θ)2


 dϕdθdr

=

∫ D

0

∫ π

0

∫ π/2+β

π/2−β




r4 sin3 θ cos2 ϕ

L2r2 sin2 β sin θ + 2Lr3 sin β sin2 θ sinϕ+ r4 sin3 θ sin2 ϕ

r4 cos2 θ sin θ


 dϕdθdr

=




2D5(γ − sin γ)/15

2L2D3γ sin2 β/3 + πLD4 sin2 β/2 + 2D5(γ + sin γ)/15

2D5γ/15


 ,
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∫

CII
G(|r|,m,m′)



r21
r22
r23


 dr

=

∫ D

0

∫ π

0

∫ π/2−β

−π/2+β
r2 sin θ




(L cos β + r sin θ cosϕ)2

(r sin θ sinϕ)2

(r cos θ)2


 dϕdθdr

=

∫ D

0

∫ π

0

∫ π/2−β

−π/2+β



L2r2 cos2 β sin θ + 2Lr3 cos β sin2 θcosϕ+ r4 sin3 θ cos2 ϕ

r4 sin3 θ sin2 ϕ

r4 cos2 θ sin θ


 dϕdθdr

=




2L2D3(π − γ) cos2 β/3 + πLD4 cos2 γ/2 + 2D5(π − γ + sin γ)/15

2D5(π − γ − sin γ)/15

2D5(π − γ)/15


 .

Summing them up, we can finally get the entire second moment matrix diag(M1,M2,M3)
as follows:



L4D

{(
sin γ

3
+

2πη

3
+

4(π − γ)η2

3
+ πη3

)
cos2 β +

(
4 sin γ η2

3
+
π sin2 β η3

2
+

4πη4

15

)}

L4D

{(
sin γ

3
+

2πη

3
+

4γη2

3
+ πη3

)
sin2 β +

(
4 sin γ η2

3
+
π cos2 β η3

2
+

4πη4

15

)}

L2D3

(
2 sin γ

3
+
πη

2
+

4πη2

15

)




.

Following the similar process, we can also work out the fourth moment, which is used to
modeling the smectic phase. In region A, we have

∫

A
G(|r|,m,m′)



r41
r42
r43


 dr = sin γ

∫ D

−D

∫ L/2

−L/2

∫ L/2

−L/2




(u+ v)4 cos4 β

(u− v)4 sin4 β

z4


 dudvdz

=




2L6D cos4 β sin γ/15

2L6D sin4 β sin γ/15

2L2D5 sin γ/5


 ,

∫

A
G(|r|,m,m′)



r21r

2
2

r22r
2
3

r21r
2
3


 dr = sin γ

∫ D

−D

∫ L/2

−L/2

∫ L/2

−L/2




(u2 − v2)2 cos2 β sin2 β

(u− v)2 sin2 βz2

(u+ v)2 cos2 βz2


 dudvdz

=



L6D cos2 β sin2 β sin γ/45

L4D3 sin2 β sin γ/9

L4D3 cos2 β sin γ/9


 .
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In region B, we get

∫

B
G(m,m′, r)



r41
r42
r43


 dr

= 4

∫ L

0

∫ D

0

∫ π

0
r




(t cos β + r sin β sin θ)4

((L− t) sin β + r cos β sin θ)4

(r cos θ)4


 dθdrdt

=




2πL5D2 cos4 β/5 + 8L4D3 cos3 β sin β/3 + πL3D4 cos2 β sin2 β

+32L2D5 cos β sin3 β/15 + πLD6 sin4 β/4

2πL5D2 sin4 β/5 + 8L4D3 sin3 β cos β/3 + πL3D4 sin2 β cos2 β

+32L2D5 sin β cos3 β/15 + πLD6 cos4 β/4

πLD6/4




,

∫

B
G(m,m′, r)



r21r

2
2

r22r
2
3

r21r
2
3


 dr

= 4

∫ L

0

∫ D

0

∫ π

0
r




(t cos β + r sin β sin θ)2((L− t) sin β + r cos β sin θ)2

((L− t) sin β + r cos β sin θ)2(r cos θ)2

(t cos β + r sin β sin θ)2(r cos θ)2


 dθdrdt

=




πL3D4(cos4 β + sin4 β)/6 + (4L4D3/9 + 16L2D5/15)(cos3 β sin β + sin3 β cos β)

+(πL5D2/15 + πL3D4/3 + πLD6/4) cos2 β sin2 β

πL3D4 sin2 β/6 + 8L2D5 cos β sin β/15 + πLD6 cos2 β/12

πL3D4 cos2 β/6 + 8L2D5 cos β sin β/15 + πLD6 sin2 β/12



.

Finally in region CI and CII, it reads

∫

CI
G(|r|,m,m′)



r41
r42
r43


 dr

=

∫ D

0

∫ π

0

∫ π/2+β

π/2−β
r2 sin θ




(r sin θ cosϕ)4

(L sin β + r sin θ sinϕ)4

(r cos θ)4


 dϕdθdr

=




16D7(3β/4 + cos3 β sinβ/4 − sin3 β cos β/4− cos β sinβ)/105

2L4D3(2β) sin4 β/3 + πL3D4 sin4 β + 8L2D5 sin2 β(β + cos β sin β)/5

+πLD6 sin2 β(3− sin2 β)/6

+16D7(3β/4 + cos3 β sin β/4− sin3 β cosβ/4 + cos β sin β)/105

4D7β/35




,
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∫

CI
G(|r|,m,m′)



r21r

2
2

r22r
2
3

r21r
2
3


 dr

=

∫ D

0

∫ π

0

∫ π/2+β

π/2−β
r2 sin θ




(r sin θ cosϕ)2(L sin β + r sin θ sinϕ)2

(L sin β + r sin θ sinϕ)2(r cos θ)2

(r cos θ)2(r sin θ cosϕ)2


 dϕdθdr

=




4L2D5 sin2 β(β − cos β sin β)/15 + πLD6 sin4 β/12

+16D7(β/4 − cos3 β sin β/4 + sin3 β cos β/4)/105

2L2D5(2β) sin2 β/15 + πLD6 sin2 β/12 + 4D7(β + cos β sin β)/105

4D7(β − cos β sin β)/105



,

∫

CII
G(|r|,m,m′)



r41
r42
r43


dr

=

∫ D

0

∫ π

0

∫ π/2−β

−π/2+β
r2 sin θ




(L cos β + r sin θ cosϕ)4

(r sin θ sinϕ)4

(r cos θ)4


 dϕdθdr

=




2L4D3(π − 2β) cos4 β/3 + πL3D4 cos4 β + 8L2D5 cos2 β(π/2− β + cosβ sin β)/5

+πLD6 cos2 β(3− cos2 β)/6

+16D7(3π/8 − 3β/4 − cos3 β sin β/4 + sin3 β cos β/4 + cos β sin β)/105

16D7(3π/8 − 3β/4− cos3 β sin β/4 + sin3 β cos β/4 − cosβ sin β)/105

2D7(π − 2β)/35




,

∫

CII
G(|r|,m,m′)



r21r

2
2

r22r
2
3

r21r
2
3


 dr

=

∫ D

0

∫ π

0

∫ π/2−β

−π/2+β
r2 sin θ




(L cos β + r sin θ cosϕ)2(r sin θ sinϕ)2

(r sin θ sinϕ)2(r cos θ)2

(r cos θ)2(L cos β + r sin θ cosϕ)2


 dϕdθdr

=




4L2D5 cos2 β(π/2 − β − cos β sin β)/15 + πLD6 cos4 β/12

+16D7(π/8− β/4 + cos3 β sin β/4− sin3 β cosβ/4)/105

4D7(π/2 − β − cos β sin β)/105

2L2D5(π − 2β) cos2 β/15 + πLD6 cos2 β/12 + 4D7(π/2 − β + cos β sin β)/105



.
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Sum them up, and finally we gain the entire fourth moment result as follows:

∫
G(|r|,m,m′)



r41
r42
r43


 dr

=




L6D

{(
2 sin γ

15
+

2πη

5
+

4(π − γ)η2

3
+ 2πη3 − πη5

12

)
cos4 β +

(
8η2

3
+

16η4

15

)
cos3 β sin β

(
πη3 +

8(π − γ)η4

5
+
πη5

2

)
cos2 β +

32η4

15
cos β sin β +

(
πη5

4
+

4πη6

35

)}

L6D

{(
2 sin γ

15
+

2πη

5
+

4γη2

3
+ 2πη3 − πη5

12

)
sin4 β +

(
8η2

3
+

16η4

15

)
sin3 β cos β

(
πη3 +

8γη4

5
+
πη5

2

)
sin2 β +

32η4

15
sin β cosβ +

(
πη5

4
+

4πη6

35

)}

L6D

{
2 sin γ η4

5
+
πη5

4
+

4πη6

35

}




,

∫
G(|r|,m,m′)



r21r

2
2

r22r
2
3

r21r
2
3


 dr

=




L6D

{(
sin γ

45
+
πη

15
− πη5

12

)
cos2 β sin2 β +

(
4η2

9
+

8η4

15

)
cos β sin β

+
4η4

15
(γ sin2 β + (π − γ) cos2 β) +

(
πη3

6
+
πη5

6
+

4πη6

105

)}

L6D

{(
sin γ η2

9
+
πη3

6
+

4γη4

15
+
πη5

12

)
sin2 β +

8η4

15
cosβ sin β +

(
πη5

12
+

4πη6

105

)}

L6D

{(
sin γ η2

9
+
πη3

6
+

4(π − γ)η4

15
+
πη5

12

)
cos2 β +

8η4

15
cos β sin β +

(
πη5

12
+

4πη6

105

)}




.
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Similar to the decomposition of second moment, we let

M (4)

=W1(m,m′) n1n1n1n1 +W2(m,m′) n2n2n2n2 +W3(m,m′) n3n3n3n3

+W4(m,m′) (n1n1n2n2)sym +W5(m,m′) (n2n2n3n3)sym

+W6(m,m′) (n1n1n3n3)sym

=
W3

3
(δijδkl)sym + (W1 +W3 − 6W6) n1n1n1n1

+(W2 +W3 − 6W5) n2n2n2n2 + (W4 +
W3

3
−W5 −W6)(n1n1n2n2)sym

+(W6 −
W3

3
)(δijn1n1)sym + (W5 −

W3

3
)(δijn2n2)sym.

=
W3

3
(δijδkl)sym +

W1 +W3 − 6W6

16 cos4 β

[
(mmmm+m′m′m′m′) + (mmm′m′)sym

+(mmmm′ +m′m′m′m)sym

]
+
W2 +W3 − 6W5

16 sin4 β

[
(mmmm+m′m′m′m′)

+(mmm′m′)sym − (mmmm′ +m′m′m′m)sym

]

+
W3/3 +W4 −W5 −W6

16 cos2 β sin2 β

[
6(mmmm+m′m′m′m′)− 2(mmm′m′)sym

]

+
W6 −W3/3

4 cos2 β

[
(δijmm+ δijm

′m′)sym + (δijmm′)sym

]

+
W5 −W3/3

4 sin2 β

[
(δijmm+ δijm

′m′)sym − (δijmm′)sym

]

Direct simplification gives us (4.1).

6.3 The derivation of the elastic energy in the Q-tensor form

Dropping the high order terms, we can get

4

πL4DkBT
F

(2)
elastic = −

∫ {(
α11 + α12P2(m ·m′) + α13P4(m ·m′)

)
∂if(x,m

′)∂if(x,m)

+
(
α21 −

1

2
α22 + α22

3

2
(m ·m′)2

)
(mm+m′m′) : ∇f(x,m′)∇f(x,m)

+
((
α31 −

1

2
α32

)
m ·m′ +

3

2
α32(m ·m′)2

)
(mm′ +m′m) : ∇f(x,m′)∇f(x,m)

}
dm′dm

=−
∫ {(

α11 +
3

2
α12Ξ2 : Ξ

′
2 +

35

8
α13Ξ4 : Ξ

′
4

)
∂if(x,m

′)∂if(x,m)

+
(
α21(Ξ2 + Ξ′

2 +
2

3
I) + 3α22mmmm : Ξ′

2

)
∇f(x,m′)∇f(x,m)

+
(
α31 −

1

2
α32

)
(Ξ2 · Ξ′

2 + Ξ′
2 · Ξ2 +

2

3
Ξ2 +

2

3
Ξ′
2 +

2

9
I) : ∇f(x,m′)∇f(x,m)

+
3

2
α32(m ·m′)3(mm′ +m′m) : ∇f(x,m′)∇f(x,m)

}
dm′dm (6.4)
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It is direct to check that

(m ·m′)mm′ = Ξ2 · Ξ′
2 +

1

3
(Ξ2 + Ξ′

2) +
1

9
I.

mmmm : Ξ′
2 = Ξ4 : Ξ

′
2 +

1

7

(
2Ξ2 · Ξ′

2 + 2Ξ′
2 · Ξ2 + IΞ2 : Ξ

′
2

)
+

2

15
Ξ′
2,

(m ·m′)2(mm+m′m′) = mmmm : Ξ′
2 +m′m′m′m′ : Ξ2 +

1

3
(Ξ2 + Ξ′

2 +
2

3
I),

and

Ξ4,αγµνΞ
′
4,βγµν

= (m ·m′)3mm′ − 15

49
(m ·m′)mm′ +

6

49
(m ·m′)m′m− 3

7
(m ·m′)2(mm+m′m′)

+
3

49
(mm+m′m′) +

3

49
(m ·m′)2I− 3I

7 · 35
= (m ·m′)3mm′ − 15

49
Ξ2 · Ξ′

2 +
6

49
Ξ′
2 · Ξ2 −

3

7
(m ·m′)2(mm+m′m′) +

I

49
(3Ξ2 : Ξ

′
2 +

7

5
).
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Hence we have

4

πL4DkBT
F

(2)
elastic

=−
∫ {(

α11 +
3

2
α12Ξ2 : Ξ

′
2 +

35

8
α13Ξ4 : Ξ

′
4

)
∂if(x,m

′)∂if(x,m)

+
(
α21(Ξ2 +Ξ′

2 +
2

3
I) + 3α22mmmm : Ξ′

2

)
∇f(x,m′)∇f(x,m)

+
(
α31 −

1

2
α32

)(
Ξ2 · Ξ′

2 + Ξ′
2 · Ξ2 +

2

3
Ξ2 +

2

3
Ξ′
2 +

2

9
I
)
: ∇f(x,m′)∇f(x,m)

+
3

2
α32

(
Ξ4:̇Ξ

′
4 + Ξ′

4:̇Ξ4 +
9

49
Ξ2 · Ξ′

2 +
9

49
Ξ′
2 · Ξ2 +

6

7
(m ·m′)2(mm+m′m′)

− 2I

49
(3Ξ2 : Ξ′

2 +
7

5
)
)
: ∇f(x,m′)∇f(x,m)

}
dm′dm

=−
∫ {(

α11 +
3

2
α12Ξ2 : Ξ

′
2 +

35

8
α13Ξ4 : Ξ

′
4

)
∂if(x,m

′)∂if(x,m)

+
(
α21(Ξ2 +Ξ′

2 +
2

3
I)
)
∇f(x,m′)∇f(x,m)

+
(
α31 −

1

2
α32

)(
Ξ2 · Ξ′

2 + Ξ′
2 · Ξ2 +

2

3
Ξ2 +

2

3
Ξ′
2 +

2

9
I
)
: ∇f(x,m′)∇f(x,m)

+
3

2
α32

(
Ξ4:̇Ξ

′
4 + Ξ′

4:̇Ξ4 +
9

49
Ξ2 · Ξ′

2 +
9

49
Ξ′
2 · Ξ2 −

2I

49
(3Ξ2 : Ξ′

2 +
7

5
) +

2

7
(Ξ2 + Ξ′

2 +
2

3
I)
)
: ∇f∇f ′

+
(
3α22 +

9

7
α32

)(
Ξ4 : Ξ

′
2 +

1

7

(
2Ξ2 · Ξ′

2 + 2Ξ′
2 · Ξ2 + IΞ2 : Ξ

′
2

)
+

2

15
Ξ′
2

)}
: ∇f∇f ′dm′dm

=−
{(

α11 +
2

3
α21 +

2

9
α31 −

2

18
α32 +

1

5
α32

)
|∇c|2

+
(3
2
α12 −

9

49
α32 +

3

7
α22 +

18

49
α32

)
|∇(cQ2)|2 +

35

8
α13|∇(cQ4)|2

+
(
2α21 +

4

3
(α31 −

1

2
α32) +

6

7
α32 +

2

15
(3α22 +

18

7
α32)

)
∂i(cQ2ij)∂jc

+
(
α31 −

1

2
α32 +

27

98
α32 +

2

7
(3α22 +

18

7
α32)

)(
∂i(cQik)∂j(cQjk) + ∂i(cQjk)∂j(cQik)

)

+
3

2
α32

(
∂i(cQ4iklm)∂j(cQ4jklm) + ∂i(cQ4jklm)∂j(cQ4iklm)

)

+
(
3α22 +

18

7
α32

)
∂i(cQ4ijkl)∂j(cQ2kl)

}
. (6.5)

40



Finally, we get

4

πL4DkBT
F

(2)
elastic

=−
{(

α11 +
2

3
α21 +

2

9
α31 +

4

45
α32

)
|∇c|2 +

(3
2
α12 +

3

7
α22 +

9

49
α32

)
|∇(cQ2)|2

+
35

8
α13|∇(cQ4)|2 +

(
2α21 +

4

3
α31 +

2

5
α22 +

8

15
α32

)
∂i(cQ2ij)∂jc

+
(
α31 +

25

49
α32 +

6

7
α22

)(
∂i(cQik)∂j(cQjk) + ∂i(cQjk)∂j(cQik)

)

+
3

2
α32

(
∂i(cQ4iklm)∂j(cQ4jklm) + ∂i(cQ4jklm)∂j(cQ4iklm)

)

+
(
3α22 +

18

7
α32

)
∂i(cQ4ijkl)∂j(cQ2kl)

}
. (6.6)

The calculation of fourth moment gives us

24

πL6DkBT
F

(4)
elastic

≈
∫

Ω

∫

S2

∫

S2

{
2µ11 f(x,m) mimjmkml ∂ijkl

{
f(x,m′)

}
dm′dm

+ (µ21 −
1

2
µ22)f(x,m)(mimjm

′
km

′
l)sym ∂ijkl

{
f(x,m′)

}
dm′dm

+
3

2
µ22f(x,m)(m ·m′)2(mimjm

′
km

′
l)sym ∂ijkl

{
f(x,m′)

}
dm′dm

}
dx.

With periodic boundary condition, we get

∫
c(x)ρ(x,m) mimjmkml ∂ijkl(c(x)ρ(x,m

′)) dm′dmdx

=

∫
c ∂ijkl

{
c(Q4ijkl +

1

7
(Q2ijδkl)symmtric +

1

15
(δijδkl)symmtric)

}
dx

=

∫
∂ij(cQ4ijkl)∂kl(c) +

1

7
c(∂ijkk(cQ2ij))symmtric +

1

15
c(∂iikk(c))symmtric dx

=

∫ {
∂ij(cQ4ijkl)∂kl(c) +

6

7
∂ij(cQ2ij)∂kk(c) +

1

5
(∂ij(c))

2

}
dx,

and
∫
c(x)ρ(x,m)(mimjm

′
km

′
l)symmtric∂ijkl(c(x)ρ(x,m

′)) dm′dmdx

=

∫ [
c(Q2ij +

1

3
δij) ∂ijkl(c(Q2kl +

1

3
δkl))

]
symmtric

dx

=

∫ {
6∂ij(cQ2ij)∂kl(cQ2kl) + 4∂ij(cQ2ij)∂kk(c) +

2

3
(∂ij(c))

2

}
dx.
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In addition, we can derive that
∫
c(x)ρ(x,m)(m ·m′)2(mimjm

′
km

′
l)symmtric∂ijkl(c(x)ρ(x,m

′)) dm′dmdx

=6

∫
c
(
Q4ijkl +

1

7
(Q2ijδkl)symmtric +

1

15
(δijδkl)symmtric

)

· ∂ijkl
{
(c(Q4ijkl +

1

7
(Q2ijδkl)symmtric +

1

15
(δijδkl)symmtric)

}
dx

=

∫ {
6∂ij(cQ4ijpq)∂kl(cQ4klpq) +

(114
49

∂ij(cQ2ij)∂kl(cQ2kl) +
96

49
∂ik(cQ2ip)∂jk(cQ2jp)

+
12

49
∂ij(cQ2ij)∂kk(cQ2pp) +

6

49
∂ij(cQ2pq)∂ij(cQ2pq)

)
+

22

75
∂ij(c)∂ij(c)

+
(12
7
∂ij(cQ4ijpp)∂kl(cQ2kl) +

48

7
∂ij(cQ4ijkp)∂kl(cQ2lp) +

12

7
∂ij(cQ4ijpq)∂kk(cQ2pq)

)

+
(4
5
∂ij(cQ4ijpp)∂kk(c) +

8

5
∂ij(cQ4ijkl)∂kl(c)

)

+
(76
35
∂ij(cQ2ij)∂kk(c) +

4

35
∂ij(cQ2pp)∂ij(c)

)}
dx.

Together with the trace free property of Q-tensor, we sum up to obtain the fourth term as

24

πL6DkBT
F

(4)
elastic

≈
∫ {(

9µ22
)
∂ij(cQ4ijpq)∂kl(cQ4klpq) +

((
6µ21 +

24

49
µ22

)
∂ij(cQ2ij)∂kl(cQ2kl)

+
(144
49

µ22
)
∂ik(cQ2ip)∂jk(cQ2jp) +

( 9

49
µ22

)
∂ij(cQ2pq)∂ij(cQ2pq)

)

+
(2
5
µ11 +

2

3
µ21 +

8

75
µ22

)
∂ij(c)∂ij(c) +

((72
7
µ22

)
∂ij(cQ4ijkp)∂kl(cQ2lp)

+
(18
7
µ22

)
∂ij(cQ4ijpq)∂kk(cQ2pq)

)
+

(
2µ11 +

12

5
µ22

)
∂ij(cQ4ijkl)∂kl(c)

+
(12
7
µ11 + 4µ21 +

44

35
µ22

)
∂ij(cQ2ij)∂kk(c)

}
dx. (6.7)

6.4 Calculation of coefficients in Oseen-Frank energy deduced from the

tensor model

We denote

I1 = (∇ · n)2, I2 = (n · ∇ × n)2, I3 = |n× (∇× n)|2, I4 = tr(∇n)2 − (∇ · n)2.

Then we can easily get that:

(∂ini)
2 = I1, (ni∂ink)

2 = I3, ∂inj∂jni = I1 + I4, (∂inj)
2 = I1 + I2 + I3 + I4. (6.8)

From the identity

Q4jklm =S4

(
ninknjnl −

1

7

(
ninjδkl + ninkδjl + ninlδjk

+ nknlδij + njnlδik + njnkδil
)
+

1

35

(
δijδkl + δilδjk + δikδjl

))
, (6.9)
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and the fact that Qijkk = Qijjk = · · · = 0, we have

|∇(cQ4)|2 =S2
4∂h

(
ninknjnl −

1

7

(
ninjδkl + ninkδjl + ninlδjk + nknlδij

+ njnlδik + njnkδil
)
+

1

35

(
δijδkl + δilδjk + δikδjl

))
∂h(ninknjnl)

=4S2
4∂h

(
ninknjnl −

1

7

(
ninjδkl + ninkδjl + ninlδjk + nknlδij

+ njnlδik + njnkδil
)
+

1

35

(
δijδkl + δilδjk + δikδjl

))
nknjnl∂hni

=4S2
4

(
(∂hni)

2 − 3

7
(∂hni)

2
)
=

16

7
S2
4(I1 + I2 + I3 + I4). (6.10)

Similarly, we can obtain

∂i(cQ4iklm)∂j(cQ4jklm) = S2
4

(46
49
I1 +

6

49
I2 +

60

49
I3 +

12

49
I4
)
,

∂i(cQ4jklm)∂j(cQ4iklm) = S2
4

(46
49
I1 +

6

49
I2 +

60

49
I3 +

40

49
I4
)
,

∂i(cQ4ijkl)∂j(cQ2kl) = S4S2

(8
7
I3 −

2

7
(3I1 + I2 + 2I4)

)
,

|∇(cQ2)|2 = 2S2
2(I1 + I2 + I3 + I4),

∂i(cQik)∂j(cQjk) = S2
2(I1 + I3),

∂i(cQjk)∂j(cQik) = S2
2

(
I1 + I3 + I4

)
.

Substituting the above equalities into (3.12), we can get that

F
(2)
elastic =

c2

2

∫

Ω

{
2J2S

2
2(I1 + I2 + I3 + I4) + J3

16

7
S2
4(I1 + I2 + I3 + I4)

+ J5

(
S2
2(I1 + I3) + S2

2(I1 + I3 + I4)
)
+ J7S2S4

(8
7
I3 −

2

7
(3I1 + I2 + 2I4)

)

+ J6

(
S2
4

(46
49
I1 +

6

49
I2 +

60

49
I3 +

12

49
I4
)
+ S2

4

(46
49
I1 +

6

49
I2 +

60

49
I3 +

40

49
I4
))}

dx.

Therefore, we have

K1 = c2
(
2S2

2(J2 + J5) + S2
4(
16

7
J3 +

92

49
J6)−

6

7
J7S2S4

)
,

K2 = c2
(
2S2

2J2 + S2
4(
16

7
J3 +

12

49
J6)−

2

7
J7S2S4

)
,

K3 = c2
(
2S2

2(J2 + J5) + S2
4(
16

7
J3 +

120

49
J6) +

8

7
J7S2S4

)
,

K4 = c2
(
S2
2J5 +

40

49
J6S

2
4 −

2

7
J7S2S4

)
.

Substituting the expressions of Ji:

J2 = −π
2
L5ηkBT

(3
2
α12 +

3

7
α22 +

9

49
α32

)
, J3 = −35π

16
L5ηkBTα13,

J5 = −π
2
L5ηkBT

(
α31 +

25

49
α32 +

6

7
α22

)
,

J6 = −3π

4
L5ηkBTα32, J7 = −π

2
L5ηkBT

(
3α22 +

18

7
α32

)
.
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into it, the elastic coefficients can be written as

K1 = πc2L5ηkBT
(
− S2

2

(
η2

299

1568
− 15

7 · 64 − 12 ln 2η2

49

)
+ S2

4

(15η2
128

− 115η2

49

(1
8
− ln 2

2

))

+ S2S4
15

7

(
− 1

64
+

5η2

14
− 3

7
η2ln 2

))
,

K2 = πc2L5ηkBT
(
− 5S2

2

(
η2

19

1568
− 1

7 · 64 − 3 ln 2η2

98

)
+ S2

4

(15η2
128

− 15

49
η2
(1
8
− ln 2

2

))

+ S2S4
5

7

(
− 1

64
+

5η2

14
− 3

7
η2ln 2

))
,

K3 = πc2L5ηkBT
(
− S2

2

(
η2

299

1568
− 15

7 · 64 − 12 ln 2η2

49

)
+ S2

4

(15η2
128

− 150

49
η2
(1
8
− ln 2

2

))

− S2S4
20

7

(
− 1

64
+

5η2

14
− 3ln 2η2

7

))
,

K4 = πc2L5ηkBT
(S2

2

2

(9 ln 2η2
98

− 51η2

392
+

5

7 · 32
)
− S2

4

25η2

49

(1
4
− ln 2

)

+ S2S4
5

7

(
− 1

64
+

5η2

14
− 3ln 2η2

7

))
.
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[23] P. Ilg, I.V. Karlin, M. Kröger and H.C. Öttinger, Canonical distribution functions in
polymer dynamics (II): Liquid-crystalline polymers, Physica A, 319, 134-150(2003).

45



[24] N. Kuzuu and M. Doi, Constitutive equation for nematic liquid crystals under weak ve-
locity gradient derived from a molecular kinetic equation, Journal of the Physical Society
of Japan, 52(10), 3486-3494(1983).

[25] S.-D. Lee, and R. B. Meyer, Computations of the phase equilibrium, elastic constants,
and viscosities of a hard-rod nematic liquid crystal, J. Chem. Phys., 84(6), 3443-3448
(1986);

[26] H. Liu, H. Zhang, and P. Zhang, Axial symmeetry and classification of stationary so-
lutions of doi-onsager equation on the sphere with maier-saupe potential, Comm. Math.
Sci, 3(2), 201-218(2005).

[27] A. Majumdar, Equilibrium order parameters of liquid crystals in the Landau-De Gennes
theory, European Journal of Applied Mathematics, 21(02), 181-203(2010).

[28] W. L. McMillan, Simple molecular model for the smectic A phase of liquid crystals, Phys.
Rev. A, 4, 1238(1971).

[29] G. Marrucci and F. Greco, The elastic constants of maier-saupe rodlike molecule nemat-
ics, Mol. Cryst. Liq. Cryst, 206, 17-30(1991).

[30] N.J. Mottram and C. Newton, Introduction to Q-tensor Theory, University of Strath-
clyde, Department of Mathematics, Research Report, (2004).

[31] W. Maier and A. Saupe, Eine einfache molekulare theories des nametischen
kristallinflüssigen Zustandes, Z. Naturf. A, 14a, 882(1959).

[32] W. Maier and A. Saupe, Eine einfache molekulare theories des nametischen
kristallinflüssigen Zustandes. II, Z. Naturf. A, 15a, 287(1960).

[33] A. Majumdar and A. Zarnescu, Landau-De Gennes Theory of Nematic Liquid Crys-
tals: the Oseen-Frank Limit and Beyond, Archive for Rational Mechanics and Analysis,
196(1), 227-280(2009).

[34] L. Onsager, The effect of shapes on the interation of colloidal particles, Ann NY. Acad.
Sci., 51:627,(1949).

[35] C.W. Oseen, The theory of liquid crystals, Transactions of the Faraday Society 29 , no.
140, 883-899(1933).

[36] J. Prost and H. Gasparoux, Determination of twist viscosity coefficient in the nematic
mesophases, Physics Letters A, Vol.36(3), 245-246 (1971).

[37] A. Srivastava and S. Singh, Elastic constants of nematic liquid crystals of uniaxial sym-
metry, J. Phys.: Condens. Matter, 16(41), 7169 (2004).

[38] R. Tao, P. Sheng and Z. F. Lin, Nematic-Isotropic Phase Transition: An Extended Mean
Field Theory, Phys. Rev. Lett., 70, 1271(1993).

[39] Q. Wang, Biaxial steady states and their stability in shear flows of liquid crystal polymers,
Journal of Rheology, 41, 943-970(1997).

46



[40] Q. Wang, W. E, C. Liu, and P. Zhang, Kinetic theory for flows of nonhomogeneous rodlike
liquid crystalline polymers with a nonlocal intermolecular potential, Physical Review E,
65, 051504(2002).

[41] W. Wang, P. Zhang and Z. Zhang, The small Deborah number limit of the Doi-Onsager
equation to the Ericksen-Leslie equation, arXiv:1206.5480.

[42] W. Wang, P. Zhang and Z. Zhang, From microscopic theory to macroscopic theory:
dynamics of the rod-like liquid crystal molecules, preprint, 2013.

[43] J. Xu and P. Zhang, From Molecular Symmetry to Order Parameters, preprint, 2013.

[44] H. Yu, G. Ji and P. Zhang, A Nonhomogeneous Kinetic Model of Liquid Crystal Polymers
and Its Thermodynamic Closure Approximation, Commun. Comput. Phys., 7(2), 383-
402(2010)

[45] H. Yu and P. Zhang, A kinetic-hydrodynamic simulation of microstructure of liquid crys-
tal polymers in plane shear flow, J. Non-Newtonian Fluid Mech., 141, 116-127(2007).

47

http://arxiv.org/abs/1206.5480

	1 Introduction
	2 A systematic way of static modeling of liquid crystals 
	2.1 Summary of the three-scale Schema for LC modeling

	3 Modeling for nematic liquid crystals for rod-like molecule
	3.1 The bulk energy in Q-tensor form
	3.2 The elastic energy in Q-tensor form
	3.3 A brief look at our new Q-tensor model
	3.3.1 Comparisons with the Landau-de Gennes Q-tensor theory

	3.4 The elastic coefficients under uniaxial constrain
	3.4.1 Derivation of the elastic coefficients
	3.4.2 The comparative relationship among the Oseen-Frank elastic constants

	3.5 The Ericksen's vector model

	4 Modeling for simple smectic liquid crystals
	4.1 A tensor model for smectic-A phase
	4.2 One-dimensional model and numerical results
	4.3 Discussion on smectics modeling

	5 Summary
	6 Appendix
	6.1 High order traceless symmetric tensor
	6.2 The calculation of the zero-th, second and fourth moment for the hard-core interaction potential
	6.3 The derivation of the elastic energy in the Q-tensor form
	6.4 Calculation of coefficients in Oseen-Frank energy deduced from the tensor model


