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NUCLEATION RATE CALCULATION FOR THE PHASE
TRANSITION OF DIBLOCK COPOLYMERS UNDER STOCHASTIC

CAHN–HILLIARD DYNAMICS∗
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Abstract. We focus on the nucleation rate calculation for diblock copolymers by studying the
two-dimensional stochastic Cahn–Hilliard dynamics with a Landau–Brazovskii energy functional. To
do this, we devise the string method to compute the minimal energy path of nucleation events and
the gentlest ascent dynamics to locate the saddle point on the path in Fourier space. Both methods
are combined with the semi-implicit spectral method and hence are very effective. We derive the
nucleation rate formula in the infinite-dimensional case and prove the convergence under numerical
discretizations. The computation of the determinant ratio is also discussed for obtaining the rate.
The algorithm is successfully applied to investigate the nucleation from the lamellar phase to the
cylinder phase in the mean field theory for diblock copolymer melts. The comparison with projected
stochastic Allen–Cahn dynamics is also discussed.
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1. Introduction. In the past few decades, diblock copolymers [22, 12] have been
extensively investigated due to their interesting physical and chemical features as well
as widespread applications in material science [13, 6]. Roughly speaking, the studies
of copolymers mainly focus on two kinds of issues: determining equilibrium phases
and studying the dynamical behaviors. For the first issue, it has been known for
a long time that the diblock copolymers admit various ordered phase separation in
the microscale. Several kinds of stable ordered phases, such as the lamellar phase,
cylinder phase, and spherical phase, etc., have been discovered in experiments, and
lots of work has been done to determine the phase diagram [33, 23]. For the second
issue, people try to understand the dynamical behaviors of the diblock copolymers,
for example, the interfacial motion [19, 24], spinodal decomposition phenomena [28],
and nucleation events between different kinds of ordered phases [31, 21, 5].

In this paper, we study the nucleation rate calculation for diblock copolymers
between the lamellar and cylinder phases with a Landau–Brazovskii energy functional,
and the random fluctuation is assumed to be of stochastic Cahn–Hilliard type. In this
model, it is supposed that diblock copolymer melts contain lots of chains, each of which
contains monomers of types A and B linked together (see Figure 1.1). On each chain,
the composition ratios of these two kinds of monomers are fA and fB, respectively,
which satisfy fA + fB = 1. The order parameters φA(r) and φB(r) characterize
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Fig. 1.1. Left part: Single diblock copolymer with components A and B and the composition
ratio fA and fB . Right part: The field description of diblock polymer melts in the lamellar phase.
The volume fractions φA(r) and φB(r) are defined for components A and B at each point r in
space.

the volume fractions of A and B in physical space, and therefore φA(r) + φB(r) ≡
1. Letting φ(r) = φA(r) − fA and Ω being the physical domain, φ(r) satisfies the
conservation law

∫
Ω φ(r) dr = 0. The Landau–Brazovskii energy functional [33, 31]

for order parameter φ is defined as

(1.1) F(φ) =

∫
Ω

{
ξ2

2
[(Δ + 1)φ(r)]2 +Φ(φ)

}
dr,

where

(1.2) Φ(φ) =
τ

2
φ2 − γ

3!
φ3 +

1

4!
φ4,

and ξ, γ, τ are constant parameters of the system. Since φ is conservative, one com-
monly used assumption on its dynamics is that it satisfies the following Cahn–Hilliard
equation (also known as Model B in condensed matter physics [3, 17]):

∂φ

∂t
= Δ

δF
δφ

= Δ
[
ξ2(Δ + 1)2φ+Φ1(φ)

]
,(1.3)

with Φ1(φ) = Φ′(φ) = τφ− γφ2/2! + φ3/3!. When taking the noise’s effects into con-
sideration, we need also consider the corresponding stochastic Cahn–Hilliard equation

∂φ

∂t
= Δ

δF
δφ

+
√
2εξ,(1.4)

where the noise ξ has the correlation E(ξ(x, t)ξ(y, s)) = −Δδ(x − y)δ(t − s), and ε
is the noise intensity.

From the perspective of rare events [9], equation (1.4) is a typical infinite-dimen-
sional deterministic system perturbed by small noise. It is expected that the meta-
stability will appear in the transitions between the metastable states. In the present
work, we consider the two-dimensional (2D) case with periodic boundary conditions
(BCs), derive the nucleation rate formula of the system, and aim to develop efficient
numerical methods to study the nucleation rate. Along this way, the string method
to locate the minimal energy path (MEP) and the method to find the saddle point
precisely are devised in Fourier space. As an application, we consider the transition
between the lamellar phase to the cylinder phase of system (1.4), and the algorithm
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can be easily applied to the transitions between other metastable states. This work
is based on our previous study on the one-dimensional (1D) stochastic Cahn–Hilliard
equation [34]. The main contributions of this paper are as follows:

• We devise the string method along the lines in [7, 8] to locate the MEP,
which is also the most probable transition path, for the stochastic Cahn–
Hilliard dynamics (1.4). It is characterized by the fact that Cahn–Hilliard
dynamics is indeed a gradient flow in H−1 space. More concretely, the MEP
u∗ is described by the concatenation of two parts

(1.5) lim
t→−∞ u∗(t) = a, lim

t→+∞u∗(t) = c,
∂u∗

∂t
= −Δ

δF

δu

and

(1.6) lim
t→−∞u∗(t) = c, lim

t→+∞u∗(t) = b,
∂u∗

∂t
= Δ

δF

δu
,

where a, b are metastable states we are interested in, and c is a connecting
saddle point between them. The MEP can be obtained by evolving the string
connecting the metastable states until it achieves equilibrium. In the present
paper, all of the implementations are combined with the spectral formulation
of the equation, which leads to efficient and accurate treatment for higher
order differentials.

• We discuss the gentlest ascent dynamics (GAD) [10] to locate the saddle point
based on a rough estimate from the MEP by the string method within the
framework of the spectral method. The exact location of the saddle point
is very important for computing the nucleation rate and has been discussed
in literatures with both theoretical [20] and numerical [14, 15, 10, 32, 16]
methods. Our approach is superior to the climbing image method utilized
before [15, 8], and it is a perfect setup to adopt the local convergence property
of GAD with an available good initial guess.

• We derive the nucleation formula for system (1.4) and establish a convergence
theorem for computing the nucleation rate. By asymptotic analysis [34], the
nucleation rate can be given, which includes a ratio

(1.7) R∞
k =

+∞∏
j=k

λaj /λ
c
j ,

where k is fixed, and λaj , λ
c
j are eigenvalues of the Hessian operators of the

Landau–Brazovskii energy functional at states a and c. In numerics, we
should take finite-dimensional approximation. It is well known that the ap-
proximations to large eigenvalues with a given resolution become inaccurate
[29]. But we can show that the convergence of the ratio to its infinite-
dimensional counterpart still holds by taking the special feature of the prob-
lem as the discretization goes to infinity. We think this result is fundamental
for the nucleation rate calculation in infinite dimensions.

• We compare the differences between stochastic Cahn–Hilliard dynamics (1.4)
with the projected Allen–Cahn dynamics [21, 11], which can also be used
to describe the evolution of conservative order parameters. While these two
dynamics share the same metastable states and saddle points, the MEPs and
the nucleation rates are essentially different. We investigate the differences
between these two models through asymptotic analysis and numerical results.
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Besides the above points, we also discuss the algorithms for computing the determi-
nant ratio in finite dimensions, which is not straightforward when the system size is
very large. They are also meaningful for further investigations.

The organization of this paper is as follows. In section 2, we consider the concrete
model setup and the Galerkin discretization of the stochastic Cahn–Hilliard equation
(1.4), which leads to stochastic differential equations in the Fourier space. In section 3,
we design the string method to find the MEP and the GAD method to locate the
saddle point on the path in Fourier space. In section 4, we give the nucleation rate
formula and discuss algorithms to compute the nucleation rate of the discretized
system and the original system (1.4). In section 5, we compare the differences of the
MEPs and the nucleation rates for the stochastic Cahn–Hilliard dynamics (1.4) with
the projected Allen–Cahn dynamics. In section 6, we apply our algorithms to study
the nucleation event between the lamellar and cylinder phases for diblock copolymers.
Further discussions and possible extensions are included in section 7. In section 8, we
make conclusions. The detailed derivation of Galerkin discretization for (1.4) is given
in Appendix A. The convergence of the determinant ratio is proved in Appendix B.

2. Model setup. In this section, we consider the precise mathematical setup
and the spectral discretization for stochastic Cahn–Hilliard equation (1.4), which is
needed in later sections. More detailed derivations and specific notations can be found
in Appendix A.

In two dimensions, we assume the physical domain is Ω = [0, Lx] × [0, Ly], with
periodic BC and V = |Ω|. We introduce the spaces

L2
per(Ω) =

{
φ(r)

∣∣∣ φ(r) is periodic
}
,

L2
per,0(Ω) = L2

per(Ω)
⋂{

φ(r)

∣∣∣∣ 1

V

∫
Ω

φ(r) dr = 0

}
,

(2.1)

and the orthogonal projection operator P : L2
per(Ω) → L2

per,0(Ω) is defined by Pφ =

φ− 1
V

∫
Ω φ(r) dr ∀φ ∈ L2

per(Ω). With the indices sets

I =
{
(k, l)

∣∣∣ k, l ∈ Z, (k, l) �= (0, 0)
}
,

Ir =
{
(k, l)

∣∣∣ k, l ≥ 0, k, l ∈ Z, (k, l) �= (0, 0)
}⋃{

(k, l)
∣∣∣ k < 0, l ≥ 1, k, l ∈ Z

}
,

(2.2)

the basis functions of L2
per,0(Ω) are

ej(x, y) = e
2πi( kx

Lx
+ ly

Ly
) ∀j = (k, l) ∈ I,(2.3)

with complex form, and

ej,1(x, y) =
√
2cos

(
2π

(
kx

Lx
+
ly

Ly

))
∀j = (k, l) ∈ Ir,

ej,2(x, y) =
√
2sin

(
2π

(
kx

Lx
+
ly

Ly

))
∀j = (k, l) ∈ Ir,

(2.4)

with real form.
To make (1.4) more precise, we rewrite it with the notations in stochastic analysis

as

dφ(t) = Δ
δF
δφ

dt+
√
2εdW (t),(2.5)
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and W (t) is the cylindrical Q-Wiener process which can be expressed as

(2.6) W (t) =
∑
j∈I

√
ρjWj(t)ej =

∑
j∈Ir

√
ρj

(
Wj,1(t)ej,1 +Wj,2(t)ej,2

)
,

where ρj = (2πk/Lx)
2 + (2πl/Ly)

2 corresponds to the eigenvalues of the covariance
operator Q = −Δ. The complex Brownian motion is defined as

(2.7) Wj(t) =
1√
2

(
Wj,1(t)− iWj,2(t)

)
,

whereWj,1(t),Wj,2(t) are independent real Brownian motions. Wj(t) satisfiesW−j(t)

= Wj(t) ∀j = (k, l) ∈ I (with this type of noise, we are considering the fluctuations
on the flux and the solution of (1.4) is conservative; see Remark 2.1 in [34]).

For notational convenience, we introduce the operators

L1(φ) = P δF
δφ

= ξ2(Δ + 1)2φ+ PΦ1(φ),(2.8)

L2(φ)ψ = P δ
2F
δφ2

(φ)ψ = ξ2(Δ + 1)2ψ + P(Φ2(φ)ψ),(2.9)

where Φ2(φ) = Φ′′(φ) = τ − γφ + 1
2φ

2. Denoting n1, n2 ∈ N
+, n = (n1, n2), we

introduce index subsets In, Ir,n, complex subspace Sn = span{ej, j ∈ In}, real sub-
space Sr,n = span{ej,1, ej,2, j ∈ Ir,n}, and projection operators Pn,Pr,n on subspaces
Sn,Sr,n (see Appendix A for more specific forms).

On subspace Sn, the Galerkin method for stochastic Cahn–Hilliard equation (1.4)
is to find φ(·, t) =∑j∈In

φj(t)ej ∈ Sn such that

〈dφ(·, t) −ΔL1(φ(·, t))dt, ej〉 = 〈
√
2εdW, ej〉 ∀j ∈ In,(2.10)

which leads to stochastic differential equations

dφj(t) = −ρj
[
ξ2(1− ρj)

2φj(t) +Qj(t)
]
dt+

√
2ερjdWj(t), j ∈ In,(2.11)

with nonlinear terms

Qj(t) = 〈Φ1(φ), ej〉 = τφj(t)− γ

2!

∑
p+q=j
p,q∈In

φp(t)φq(t) +
1

3!

∑
p+q+r=j
p,q,r∈In

φp(t)φq(t)φr(t).

(2.12)

On subspace Sr,n, the Galerkin method for (1.4) is to find

φr(·, t) =
∑

j∈Ir,n

(
aj(t)ej,1 + bj(t)ej,2

)
∈ Sr,n,

which solves

〈dφr(·, t)−ΔL1(φ
r(·, t))dt, ej,l〉 = 〈

√
2εdW (t), ej,l〉 =

√
2ερjdWj,l(t),

l = 1, 2, ∀j ∈ Ir,n.
(2.13)
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Let #Ir,n = nr and n = 2nr. After ordering the indices in Ir,n, coefficients
aj(t), bj(t), basis functions ej,1, ej,2, ρj , and Brownian motions Wj,1,Wj,2 can be
written as x, ω, D, W , which are vectors of length n. Then (2.13) is equivalent to

dxl = −Dl〈L1(φ
r), ωl〉dt+

√
2εDldWl, l = 1, 2, . . . , n.(2.14)

Let Fr(x) = F(φr)/V , φr =
∑n

l=1 xlωl. With the notations

G = diag{D1, D2, . . . , Dn}, ∇Fr =

(
∂Fr

∂x1
,
∂Fr

∂x2
, . . . ,

∂Fr

∂xn

)T

,

(2.14) can be reformulated as a generalized stochastic gradient system in R
n:

dx = −G∇Fr dt+
√
2εG

1
2dW.(2.15)

The Galerkin method on Sn, which leads to (2.11), is equivalent to the Galerkin
method on Sr,n with (2.15). Equation (2.11) is more specific and suitable for designing
and implementing algorithms, while (2.15) has the form of a generalized stochastic
gradient system, indicating the possibility of the string method which will be discussed
below. The Galerkin discretization of the deterministic Cahn–Hilliard equation (1.3)
could be obtained in the same way by dropping the stochastic terms, and we have

dφj(t)

dt
= −ρj〈L1(φ

c(·, t)), ej〉 = −ρj
[
ξ2(1 − ρj)

2φj(t) +Qj(t)
]
, j ∈ In,(2.16)

and

dx

dt
= −G∇Fr.(2.17)

Remark 1. For comparison, we briefly write down the discretization formula-
tion with the finite difference approximation method for the evolution equation (1.3).
GivenNx, Ny ∈ Z, let Δx = Lx/Nx, Δy = Ly/Ny, xi = (i+ 1

2 )Δx, i = 0, 1, . . . , Nx−1,
yj = (j + 1

2 )Δy, j = 0, 1, . . . , Ny − 1. We use two subscripts to represent vectors and
identify subscripts (i,−1) with (i, Ny − 1) and also (−1, j) with (Nx − 1, j). Let
φi,j = φ(xi, yj), i.e., the value of φ at each grid center, and let D denote the second
order centered finite difference approximation of the Laplacian operator −Δ with pe-
riodic BC. For energy functional F in (1.1), the term (Δ + 1)φ is discretized to P ,
with components

Pi,j =
φi+1,j + φi−1,j − 2φi,j

Δx2
+
φi,j+1 + φi,j−1 − 2φi,j

Δy2
+ φi,j .

We also reuse the notation φ as the discrete vector. Therefore F can be discretized
as

(2.18) F [φ] =
1

V

Nx−1∑
i=0

Ny−1∑
j=0

[
ξ2

2
P 2
i,j +

τ

2
φ2i,j −

γ

3!
φ3i,j +

1

4!
φ4i,j

]
ΔxΔy,

with gradient

(∇F )i,j = ∂F

∂φi,j
=

ΔxΔy

V

Nx−1∑
k=0

Ny−1∑
l=0

[
ξ2Pk,l

∂Pk,l

∂φi,j
+

(
τφk,l − γ

2
φ2k,l +

1

3!
φ3k,l

)
δk,iδl,j

]
.

Then the discretized version of evolution equation (1.3) could be written as

dφ

dt
= −D∇F,(2.19)

which is also a generalized gradient system.
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3. Metastable phases, saddle point, and MEP. In this section, based on
the spectral discretization (2.11) and (2.14), we will study numerical methods for
nucleation events of system (1.4).

3.1. Numerical methods for MEP and saddle point. For simplicity, we
focus on the nucleation event from the lamellar phase to the cylinder phase. In two
dimensions and with appropriate parameters τ, ξ, γ, lamellar and cylinder phases are
two kinds of ordered metastable phases whose order parameters are both local min-
imizers of Landau–Brazovskii energy functional (1.1) and stable states of dynamical
system (1.3). With (2.16), these states can be computed using semi-implicit spectral
method [4] with suitable initial values (for example, single mode approximation [31]):[

1 + ξ2Δtρj(1− ρj)
2
]
φk+1
j = φkj −ΔtρjQ

k
j , j ∈ In, k = 0, 1, 2, . . . ,(3.1)

where Δt is the time step size, and Qk
j follows (2.12). Now consider the nucleation

event of the generalized stochastic gradient system (2.14) between two local minima a
(lamellar phase) and b (cylinder phase). Let Ω(a) and Ω(b) denote the attractive basins
of states a and b under dynamical system (1.3), respectively. The MEP u∗(·, t) ∈ R

n,
which is the most probable transition path from a to b in zero temperature limit, is
described by the concatenation of two parts

(3.2) lim
t→−∞u∗(t) = a, lim

t→+∞ u∗(t) = c,
du∗

dt
= G∇Fr

and

(3.3) lim
t→−∞u∗(t) = c, lim

t→+∞u∗(t) = b,
du∗

dt
= −G∇Fr,

where c ∈ ∂Ω(a)∩∂Ω(b) is the saddle point. Intuitively, starting from the metastable
state a, the MEP will follow the steepest ascent dynamics (3.2), arrive at the saddle
point when crossing ∂Ω(a), and then follow the steepest descent dynamics (3.3) until
it reaches the other metastable state b.

To solve MEP (3.2), (3.3), we propose the string method along the lines in [7].
That is, consider z(s) = x(·, s) ∈ R

n as a continuous path in the space of Fourier
coefficients, s ∈ [0, 1] being the arc-length parameter. z(0), z(1) locate in Ω(a)
and Ω(b), respectively. Discretizing z(s), we obtain nodes z1, z2, . . . , zN ∈ R

n to
describe the MEP. Algorithm 1 illustrates the string method to solve the MEP (3.2),
(3.3) connecting metastable states a, b. Here we would like to emphasize that while
spectral discretization is used to approximate each node on the transition path, linear
interpolation is used to redistribute the discrete nodes on the continuous transition
path in path space. These two methods are applied in two different spaces (one is
the function space of all possible phases and the other is the path space) and thus
are independent in some sense. We could expect order one precision for the whole
transition path but still spectral precision for each node. More precise approximation
for the transition path could be obtained by increasing the number of discrete nodes
which represent the path, by a higher order interpolation method, or by using a
weighted distance function in the reparameterization procedure of the string method
[8]. In our work, the precise location of the saddle point on the transition path is
further obtained by the GAD method discussed below.

In the following, xa,xb,xc denote the Fourier coefficients of states a, b, c, respec-
tively, and Ha, Hc are the Hessian matrices of Fr at xa and xc.
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Algorithm 1: String method of stochastic generalized gradient system (2.15)

1 Initialization. At k = 0, use the single mode approximation of the ordered
phases a and b to initialize z0

1 and z0
N and compute z0

l , l = 2, 3, . . . , N − 1, by
linearly interpolating z0

1 and z0
N .

2 Update. At the kth step, update each discretized nodes zk
l using semi-implicit

spectral method (3.1) and obtain z
k+ 1

2

l , l = 1, 2, . . . , N .

3 Reparameterization. Linearly interpolate the updated nodes z
k+ 1

2

l , and obtain

zk+1
l at the (k + 1)st step, l = 1, 2, . . . , N .

4 Iterate the above two steps until the nodes converge.

For u,v ∈ R
n, let 〈u,v〉G = uTG−1v. System (2.17) becomes a gradient system

under 〈·, ·〉G, and the gradient of Fr is G∇Fr . State c is the critical state along the
MEP and is also index-1 saddle point of dynamical system (2.17). Following [10], it
could be computed by the GAD method:

(3.4)

⎧⎪⎪⎨
⎪⎪⎩

ẋ = −G∇Fr(x) + 2
vT∇Fr(x)

vTG−1v
v,

v̇ = −G∇2Fr(x)v +
vT∇2Fr(x)v

vTG−1v
v,

with a good initial guess from the result given by the string method. In (3.4), we need
to compute the product of the Hessian matrix of Fr with vector v ∈ R

n. Denoting
∇2Fr(x) = (Hkl), 1 ≤ k, l ≤ n, x = (x1, x2, . . . , xn)

T , φr =
∑n

l=1 xlωl, it follows that

(3.5) Hkl =
∂2Fr

∂xk∂xl
= 〈L2(φ

r)ωl, ωk〉

∀v = (v1, v2, . . . , vn)
T ∈ R

n, (Hv)k =
∑n

l=1Hklvl = 〈L2(φ
r)
∑n

l=1 vlωl, ωk〉. Letting
ψv =

∑n
l=1 vlωl, the above derivation shows that the components (Hv)k of the prod-

uct Hv are just the real and imaginary parts of the Fourier coefficients of L2(φ
r)ψv .

Numerically, the Fourier coefficients of L1(φ
r) and L2(φ

r)ψv are computed by first
converting into real space to handle the convolution terms in (2.12) and then convert-
ing back to Fourier space using FFT. Notice that the semi-implicit spectral method,
which is similar to (3.1), can still be used when computing the saddle point with
(3.4). After the convergence of (3.4), we could obtain the Fourier coefficients xc of
the saddle point c, as well as the eigenvector ṽ1 of matrix GHc corresponding to the
negative eigenvalue μ1,n, which is unique.

3.2. Degeneracy of metastable states and saddle points. The order pa-
rameters with respect to metastable state a and saddle point c are φa(x, y) =

∑n
l=1 x

a
l ωl

and φc(x, y) =
∑n

l=1 x
c
lωl. Under periodic BC, assume the orientation of the lamellar

phase is along the x-direction; then φa(x, y) is constant for given y. Since the energy
functional (1.1) is invariant under translations, it follows that

L1(φ
a(x, y + θ1)) = 0, L1(φ

c(x+ θ2, y + θ3)) = 0 ∀θ1, θ2, θ3 ∈ R.

Taking derivatives with respect to θ1, θ2, θ3, we obtain
(3.6)

L2(φ
a)

(
∂

∂y
φa(x, y)

)
= 0, L2(φ

c)

(
∂

∂x
φc(x, y)

)
= 0, L2(φ

c)

(
∂

∂y
φc(x, y)

)
= 0,
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which indicates that the Hessian matrices Ha, Hc have an eigenvalue zero. Let

ζx = (ζx1 , ζ
x
2 , . . . , ζ

x
n)

T , ζy = (ζy1 , ζ
y
2 , . . . , ζ

y
n)

T ,(3.7)

where for jl = (jl, kl) ∈ Ir,n, l = 1, 2, . . . , nr,

ζxl =
2πjl
Lx

, ζxl+nr
= −2πjl

Lx
, ζyl =

2πkl
Ly

, ζyl+nr
= −2πkl

Ly
.(3.8)

Then we have ∂
∂yφ

a(x, y) =
∑n

l=1 ζ
y
l x

a
σ(l)ωl, where 1 ≤ σ(l) ≤ n, |σ(l) − l| = nr. We

could parameterize the Fourier coefficients of metastable states

xa(θ1) = (xa1(θ1), x
a
2(θ1), . . . , x

a
n(θ1))

T , θ1 ∈ [0, Ly],

with

xal (θ1) = xal cos(ζ
y
l θ1) + xal+nr

sin(ζyl θ1),

xal+nr
(θ1) = −xal sin(ζyl θ1) + xal+nr

cos(ζyl θ1),
(3.9)

where l = 1, 2, . . . , nr, and also for the saddle points

xc(θ2, θ3) = (xc1(θ2, θ3), x
c
2(θ2, θ3), . . . , x

c
n(θ2, θ3))

T , θ2 ∈ [0, Lx], θ3 ∈ [0, Ly],

with

xcl (θ2, θ3) = xcl cos(ζ
x
l θ2 + ζyl θ3) + xcl+nr

sin(ζxl θ2 + ζyl θ3),

xcl+nr
(θ2, θ3) = −xcl sin(ζxl θ2 + ζyl θ3) + xcl+nr

cos(ζxl θ2 + ζyl θ3),
(3.10)

where l = 1, 2, . . . , nr. Thus the eigenvector of Ha corresponding to eigenvalue zero
is

(3.11) (ζy1x
a
σ(1), ζ

y
2x

a
σ(2), . . . , ζ

y
nx

a
σ(n))

T .

Similarly, Hc has two eigenvectors corresponding to eigenvalue zero, which are

(ζx1 x
c
σ(1), ζ

x
2 x

c
σ(2), . . . , ζ

x
nx

a
σ(n))

T , (ζy1x
c
σ(1), ζ

y
2x

c
σ(2), . . . , ζ

y
nx

a
σ(n))

T .(3.12)

After normalization and orthogonalization, we could obtain orthonormal eigenvectors
va
1 and vc

2,v
c
3.

4. Nucleation rate.

4.1. Nucleation rate formula. In the previous section, we demonstrated the
degeneracy of the metastable states and saddle points under periodic BC. From (3.9),
(3.10), it is straightforward to check that

||∇xa(θ1)||2 =

(
n∑

l=1

(ζyl x
a
σ(l))

2

) 1
2

,(4.1)

√
det
(
∇xc(θ2, θ3)(∇xc(θ2, θ3))

)T

=

[
n∑

l=1

(ζxl x
c
σ(l))

2
n∑

l=1

(ζyl x
c
σ(l))

2 −
(

n∑
l=1

ζxl ζ
y
l (x

c
σ(l))

2

)2] 1
2

;

(4.2)
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thus they are independent of the parameters θ2 ∈ [0, Lx], θ1, θ3 ∈ [0, Ly] and can be
denoted by Λa

n, Λ
c
n, respectively. With these notations, the nucleation rate formula

of system (2.15) can be derived following [34, 30] as (also see [27])

(4.3) kn =
|μ1,n|
2π

(2πε)−
1
2

√
d̃etHa

|d̃etHc|
LxΛ

c
n

Λa
n

e−
ΔFr

ε ,

where d̃etH denotes the product of all the nonzero eigenvalues of matrix H . Denote
the eigenvalues of matrices Ha and Hc by λaj,n, λ

c
j,n, j = 1, 2, . . . , n; then (4.3) can

be represented using these eigenvalues as

(4.4) kn =
|μ1,n|
2π

(2πε)−
1
2

(
λa2,nλ

a
3,n

|λc1,n|
) 1

2

(
n∏

j=4

λaj,n/λ
c
j,n

) 1
2
LxΛ

c
n

Λa
n

e−
ΔFr

ε ,

where 0 = λa1,n < λa2,n ≤ λa3,n ≤ · · · ≤ λan,n, and λ
c
1,n < 0 = λc2,n = λc3,n < λc4,n ≤

· · · ≤ λcn,n.
Intuitively, letting n → +∞, we obtain the nucleation rate formula for stochastic

Cahn–Hilliard equation (1.4) with periodic BC:

(4.5) k =
|μ|
2π

(2πε)−
1
2

(
λa2λ

a
3

|λc1|
) 1

2

(
+∞∏
j=4

λaj /λ
c
j

) 1
2
LxΛ

c

Λa
e−

ΔFr
ε ,

where Λa,Λc are the infinite-dimensional counterparts of Λa
n,Λ

c
n, respectively. μ < 0,

λaj , λ
c
j are eigenvalues of operators −ΔL2(φ

c), L2(φ
a), and L2(φ

c), respectively; i.e.,

there exist ψ̃ and ψν
j , ν = a, c, such that −ΔL2(φ

c)ψ̃ = μψ̃ and

L2(φ
ν)ψν

j = λνjψ
ν
j , j = 1, 2, . . . , ν = a, c;(4.6)

the eigenvalues satisfy

0 = λa1 < λa2 ≤ λa3 ≤ · · · ≤ λan ≤ · · ·(4.7)

at metastable state a and

λc1 < 0 = λc2 = λc3 < λc4 ≤ · · · ≤ λcn ≤ · · ·(4.8)

at saddle point c.

4.2. Convergence of the determinant ratio under numerical discretiza-
tion. Here we study the convergence of (4.4) as n → +∞ and thus prove (4.5)
rigorously. To do so, we need only prove that the product ratio of nonzero eigenvalues
in (4.4) converges to its infinite-dimensional counterpart in (4.5). First of all, it is
well known that for fixed index j > 0, we have

(4.9) lim
n→+∞λνj,n = λνj , ν = a, c.

Based on this result and estimates of the eigenvalues, we can obtain the following
theorem.

Theorem 4.1. Let λaj , λ
c
j denote the eigenvalues of L2(φ

a), L2(φ
c) with (4.6),

(4.7), (4.8). Ha, Hc are the matrices of the discretization of operators L2(φ
a), L2(φ

c)
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in Sr,n, with eigenvalues λaj,n and λcj,n, respectively. Define the discretized determi-
nant ratio and its infinite dimensional counterpart by

(4.10) Rm
k,n =

m∏
j=k

λaj,n/λ
c
j,n, Rm

k =
m∏

j=k

λaj /λ
c
j ;

then limn→+∞Rn
4,n = R∞

4 .
The proof can be found in Appendix B.

4.3. Nucleation rate calculation. First of all, we notice that, once we obtain
the saddle point xc using GAD method (3.4), the unique negative eigenvalue λc1,n and
the corresponding normalized eigenvector vc

1 at saddle point xc could be computed
following [34, 8], or simply by

v̇ = −∇2Fr(x
c)v +

vT∇2Fr(x
c)v

vTv
v,(4.11)

with a suitable initial value (for example, ṽ1), and followed by

(4.12) λc1,n = (vc
1)

T∇2Fr(x
c)vc

1.

In order to compute (4.3), we still need to study algorithms for calculating

d̃etHa

|d̃etHc| .

To do this, let

(4.13) H̃a = Ha +Ha
0 , H̃c = Hc +Hc

0 ,

where Ha
0 = va

1 (v
a
1 )

T , Hc
0 = vc

2(v
c
2)

T +vc
3(v

c
3)

T −2λc1,nv
c
1(v

c
1)

T . Then H̃a, H̃c become
positive-definite symmetric matrices, and

(4.14) detH̃a = d̃etHa, detH̃c = |d̃etHc|.
Thus we need only compute

detH̃a

detH̃c
,(4.15)

which is the determinant ratio of two positive-definite symmetric matrices. In the
following, we will discuss two possible methods for computing (4.15):

1. Introducing the ensemble average

Q(α) =

〈
1

2
qT (H̃a − H̃c)q

〉
α

,(4.16)

where 〈·〉α is the expectation under probability distribution

πα(q) =
1

Zα
exp

[
− 1

2
qT (αH̃c + (1− α)H̃a)q

]
,(4.17)

and Zα is the normalization constant. Then we have [34, 18]

(4.18)
detH̃a

detH̃c
= exp

{
2

∫ 1

0

Q(α) dα

}
.
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From (2.9), the Hessian matrices can be written as

Ha = −Γ + Ja
n,

Hc = −Γ + Jc
n,

(4.19)

where Γ = −diag{ξ2(1 − ρ1)
2 + 1, ξ2(1 − ρ2)

2 + 1, . . . , ξ2(1 − ρn)
2 + 1} is a

negative-definite diagonal matrix. ∀v ∈ R
n, the components of Ja

nv, J
c
nv are

(Ja
nv)k =

〈[
−1 + τ − γφan +

1

2
(φan)

2

]( n∑
l=1

vlωl

)
, ωk

〉
,

(Jc
nv)k =

〈[
−1 + τ − γφcn +

1

2
(φcn)

2

]( n∑
l=1

vlωl

)
, ωk

〉(4.20)

for k = 1, 2, . . . , n, φνn = Pr,nφ
ν , and ||Jν

n||2 is uniformly bounded, ν = a, c.
Thus with (4.13) we obtain

αH̃c + (1− α)H̃a = −Γ + α(Jc
n +Hc

0) + (1− α)(Ja
n +Ha

0 ),(4.21)

which can be viewed as a perturbation of the matrix −Γ, and

πα(x) ∝ exp[xTΓx/2−Ψ(x)],(4.22)

where

Ψ(x) =
1

2
xT
[
α(Jc

n +Hc
0) + (1− α)(Ja

n +Ha
0 )
]
x.(4.23)

Q(α) can be calculated using the Metropolis–Hastings method following [2].
Supposing the current state is x, the following Langevin proposal could be
used to generate the possible new state y [2]:

y − x =
{
− (1− θ)x− θy − C∇Ψ(x)

}
Δt+

√
2Δtη,(4.24)

where η ∼ N (0, C), C = (−Γ)−1. In the above, Δt is the time step size.
Implicit schemes could be obtained with nonzero parameter θ, and θ = 1

2 is
recommended in [2]. Notice, within Fourier space, that differential terms in
(2.9) lead to Γ, which is of diagonal matrix form, and therefore new state y
in implicit scheme (4.24) can be easily solved.

2. Based on the power-series expansion method [1], the following formula is
proved in [35].
Theorem 4.2. For positive-definite matrix C ∈ R

N×N , the k-term power-
series approximation of log detC is

(4.25) log detC ≈ N logw −NE

(
k∑

j=1

sTBjs

j sT s

)
,

where w = ||C||∞, B = I − C/w, and s ∼ NN (0, I).
With this formula, the determinant ratio (4.15) could be calculated by

detH̃a

detH̃c
=

det(C 1
2 H̃aC 1

2 )

det(C 1
2 H̃cC 1

2 )
= exp

(
log det(C 1

2 H̃aC 1
2 )− log det(C 1

2 H̃cC 1
2 )
)
.

(4.26)
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Following [35], the variance of the jth term in (4.25) is

Var

(
NsTBjsT

jsTs

)
=

2Nj−2

N + 2

N∑
l=1

(
λjl (B)− tr(Bj)

N

)2

∝ j−2,

where λl(B) are eigenvalues of B and 0 ≤ λl(B) < 1. Suppose nj random
vectors s are generated to calculate the jth term and all random vectors s
are independent; then the total variance of the estimated log det is of order∑k

j=1 j
−2n−1

j . For fixed total computational effort, i.e.,
∑k

j=1 nj is fixed,
using the Cauchy–Schwarz inequality, the variance is minimized when nj ∝
j−1. In practice, the same random vector s will be used in calculating multiple
terms, and thus it is not independent. However, we will still use nj ∝ j−1

since terms become smaller and less important as j increases.

5. Comparison with the projected Allen–Cahn dynamics. While we are
mainly interested in the nucleation of stochastic Cahn–Hilliard dynamics (1.4), some
authors [21, 11] studied the evolution of conservative order parameters using projected
Allen–Cahn dynamics

∂φ

∂t
= P
(
−δF
δφ

+
√
2εη

)
,(5.1)

where η is the space-time Gaussian white noise satisfying E(η(x, t)η(y, s)) = δ(x −
y)δ(t − s), and P is the orthogonal projection operator onto the mass conserved
space L2

per,0(Ω). In this section, we briefly discuss the differences between these two
dynamics.

In the framework of the Galerkin method, the projection operator P : L2
per(Ω) →

L2
per,0(Ω) is defined by

Pφ =
∑
j∈I

〈φ, ej〉ej ∀φ ∈ L2
per(Ω).(5.2)

Similarly to (2.11) in section 2, (5.1) is discretized and we obtain the stochastic
differential equations of the Fourier coefficients as

dφj(t) = −
[
ξ2(1− ρj)

2φj(t) +Qj(t)
]
dt+

√
2εdWj(t), j ∈ In,(5.3)

where Qj(t) and Wj(t) follow (2.12) and (2.7), respectively, or

dx = −∇Fr dt+
√
2εdW,(5.4)

which is a standard gradient system perturbed by white noise. Following the same
lines as in sections 2, 3, and 4, we summarize the results for dynamics (5.1) while
focusing on comparing the differences with stochastic Cahn–Hilliard dynamics (1.4):

1. The metastable states of dynamical system

∂φ

∂t
= −P δF

δφ
(5.5)

could be located using the semi-implicit spectral method [4]:[
1 + ξ2Δt(1− ρj)

2
]
φk+1
j = φkj −ΔtQk

j , j ∈ In, k = 0, 1, 2, . . . ,(5.6)
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where Δt is the time step size, and Qk
j follows (2.12). Comparing (5.5) with

(1.3), since P δF
δφ = 0 is equivalent to Δ δF

δφ = 0 in L2
per,0(Ω), we know that they

share the same equilibrium states of the same type, which are the metastable
states and saddle points of the energy functional F in L2

per,0(Ω). Especially,
the lamellar phase a, cylinder phase b, and saddle point c can be obtained
using both (3.1) and (5.6).

2. With (5.4), the MEP u∗(·, t) ∈ R
n connecting two metastable states a (lamel-

lar phase) and b (cylinder phase) of system (5.1) is described by the concate-
nation of two parts

(5.7) lim
t→−∞u∗(t) = a, lim

t→+∞u∗(t) = c,
du∗

dt
= ∇Fr

and

(5.8) lim
t→−∞u∗(t) = c, lim

t→+∞ u∗(t) = b,
du∗

dt
= −∇Fr,

where c ∈ ∂Ω(a)∩∂Ω(b) is the saddle point. Comparing with (3.2) and (3.3),
we conclude that while the endpoints a, b, c of the MEPs are the same in
both dynamics, the MEPs are essentially different. Especially, at the saddle
point c, while the tangent direction ψ̃ of the MEP for dynamics (1.4) satisfies
−ΔL2(φ

c)ψ̃ = μψ̃, μ < 0, the tangent direction of the MEP for dynamics
(5.1) coincides with the negative eigenfunction ψc

1 of operator L2(φ
c).

3. Following [30, 34], the nucleation rate of system (5.4) can be obtained as

(5.9) kn =
1

2π
(2πε)−

1
2

(
|λc1,n|λa2,nλa3,n

) 1
2

(
n∏

j=4

λaj,n/λ
c
j,n

) 1
2
LxΛ

c
n

Λa
n

e−
ΔFr

ε .

When n → +∞, the nucleation rate formula for projected Allen–Cahn equa-
tion (5.1) with periodic BC is obtained as

(5.10) k =
1

2π
(2πε)−

1
2

(
|λc1|λa2λa3

) 1
2

(
+∞∏
j=4

λaj /λ
c
j

) 1
2
LxΛ

c

Λa
e−

ΔFr
ε ,

where all the variables have the same meaning as in section 4.1. Comparing
to the nucleation rate formulas (4.4) and (4.5) for stochastic Cahn–Hilliard
equation (1.4), we can see the tiny difference in the prefactor.

6. Numerical results. We choose parameters ξ2 = 1.0, τ = −0.15, γ = 0.25
in Landau–Brazovskii energy functional (1.1). With these parameters, the lamellar
phase and the cylinder phase are two equilibrium phases, while the cylinder phase
has lower energy and therefore is more stable. In the following, we will focus on the
nucleation event from the lamellar phase to the cylinder phase.

6.1. Validation on small domain. To check the correctness of our numerical
results, we first study the nucleation event on a small domain Ω = [0, 16π√

3
] × [0, 8π]

with n1 = n2 = 60. The MEP and the saddle point could be obtained using the string
method and the GAD method. The string is discretized into 21 nodes and is iterated
with Δt = 0.1 for 10000 steps. After that, the first (lamellar phase) and last node
(cylinder phase) on the string are converged with residual smaller than 10−13. The
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energy densities of these two nodes are −2.267×10−2 and −2.375×10−2, respectively.
The 12th node on the string has the maximum energy, and the residual is 9.96×10−6.
Using this node as the initial value of the saddle point and approximating the tangent
direction of the MEP at the saddle point by the finite difference method, we could
compute the saddle point and tangent direction of the MEP at saddle point with
GAD method (3.4) precisely. The time step size is Δt = 0.1, and the semi-implicit
spectral method similar to (3.1) is used. At the kth step, denote the L∞ norm of the
right-hand side of (3.4) by rk, and let

(6.1) rk1 =
vT∇Fr(x)

vTG−1v
, rk2 =

vT∇2Fr(x)v

vTG−1v
.

When k = 0, we have r0 = 1.50× 10−3, r01 = 1.60× 10−5, r02 = −0.02107. After 9900
iterations, we obtain r9900 = 1.93× 10−14, r99001 = 1.24× 10−14, r99002 = −0.021177.
From r9900 and r99001 we could conclude the convergence of the GAD method, and
the saddle point is obtained with μ1,n = −0.021177. The energy density of the saddle
point is −2.238× 10−2, and hence the barrier of energy density is 2.9 × 10−4. From
(4.11) and (4.12), we obtain λc1,n = −0.0211718. The lamellar phase, the cylinder
phase, and the saddle point are shown in Figure 6.1, and we can see that the shape
of the critical nucleus is affected by the physical boundaries since we choose a small
domain.

(a) lamellar phase (b) saddle point (c) cylinder phase

Fig. 6.1. Lamellar phase, cylinder phase, and saddle point computed using semi-implicit spec-
tral scheme (3.1) and the GAD method. Ω = [0, 16π√

3
]× [0, 8π], ξ2 = 1.0, τ = −0.15, γ = 0.25. The

number of basis functions is n1 = n2 = 60. The energy densities are −2.267×10−2, −2.238×10−2,
and −2.375 × 10−2, respectively, with the barrier of energy density equal to 2.9× 10−4.

For comparison, we also have some results about the string method with the finite
difference method in Remark 1. On the same domain Ω, the explicit Euler scheme is
used to update (2.19) with time t. We take Nx = Ny = 32 and Δt = 0.001. After
975000 iterations, the residual’s norms at two endpoints on the string are of order
10−14, while they are of order 10−7 at the maximum energy node. However, this grid
is rather coarse. If we take Nx = Ny = 64 (this grid is still not fine enough actually;
see section 7 for further discussions), the time step size Δt is further limited and we
choose Δt = 10−5 in the experiment. After 1565000 iterations, the residual’s norms
at two endpoints are of order 10−6, while they are of order 10−3 at the maximum
energy node. Therefore the convergence becomes very slow. The fact that the time
step size with the semi-implicit spectral method could be several orders of magnitude
larger than that with the explicit finite difference method is demonstrated in [4].
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Fig. 6.2. Q(α) as a function of α. Ω = [0, 16π√
3
] × [0, 8π], ξ2 = 1.0, τ = −0.15, γ = 0.25. The

numbers of basis functions are n1 = n2 = 20 and n1 = n2 = 30, respectively. α ∈ [0, 1] is discretized
to 60 nodes. 600000 steps are used when calculating Q(α) for each α.

Table 6.1

The logarithm of the determinant ratio computed by solving all the eigenvalues of the Hessian
matrices using Lapack software (I), the MCMC method (II), and the power-series expansion method
(III). The numbers of basis functions are n1 = n2 = 20 and n1 = n2 = 30, respectively. The results
for methods II and III are the mean values of five runs.

I II III
n1 = n2 = 20 4.32 4.34 4.33
n1 = n2 = 30 4.34 4.36 4.35

To check the results, we choose n1 = n2 = 20 and n1 = n2 = 30, respectively.
In these two cases, with the GAD method and (4.11), (4.12), we also have μ1,n =
−0.021177 and λc1,n = −0.0211718. These results are examined by computing the
smallest eigenvalue of the Hessian matrix using Lapack software, and the same results
are obtained. Thus we conclude that the method is correct and that the results are
not sensitive for different numbers of basis functions n.

For the determinant ratio, we compute its logarithm by directly solving the eigen-
values of the Hessian matrix using Lapack software, the MCMC method, and the
power-series expansion method introduced above. When using the MCMC method,
the interval [0, 1] for α is discretized into 60 points and 60 processors are utilized.
600000 steps have been used while calculating Q(α) for each α, and the results are
shown in Figure 6.2. When using the power-series expansion method, the series are
expanded to 1000 terms and codes are parallelized to reduce the total computational
time. As mentioned above, for the jth term, the number of random vectors for com-
puting the expectation is

(6.2) min

{
500000, max

{
500000× 5

j
, 10

}}
;

that is, the number is decreasing as j increases while maintaining in [10, 500000].
Table 6.1 compares the numerical results of the determinant ratio with these three
methods.
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(a) node 1 (b) node 3 (c) node 5 (saddle point)

(d) node 11 (e) node 16 (f) node 21

Fig. 6.3. Ω = [0, 64π√
3
] × [0, 32π]. ξ2 = 1.0, τ = −0.15, γ = 0.25 nodes on the MEP for the

nucleation from the lamellar phase to the cylinder phase. 21 nodes are used along the MEP. Semi-
implicit spectral method (3.1) is used, with time step Δt = 0.1. 40000 iterations are performed.
The node along the MEP with the maximum energy is shown in (c). We could see that, during
nucleation from the lamellar phase to the cylinder phase, a small nucleus first pops out from the
middle of the domain and then grows up until the whole domain transitions to the cylinder phase.

6.2. Nucleation event study from lamellar phase to cylinder phase. Now
we consider a larger domain Ω = [0, 64π√

3
]× [0, 32π], and the number of basis functions

is n1 = n2 = 100. While using the string method in Fourier space (Algorithm 1), the
string is discretized to 21 nodes and the time step size is Δt = 0.1 with the semi-
implicit spectral method. The string is converged after 40000 iterations, and the MEP
is shown in Figure 6.3, on which the 5th node has the maximum energy and therefore
corresponds to the saddle point (critical nucleus). We could see the transition process
from the lamellar phase to the cylinder phase gradually. The energy density along the
MEP is shown in Figure 6.5(a), where the energy density barrier (i.e., ΔF/V ) equals
5.357× 10−5.

After the convergence of the MEP, using the node which has the maximum en-
ergy density on the MEP (Figure 6.3(c)) as the initial value of the saddle point and
approximating the tangent direction of the MEP at the saddle point by the finite
difference method, we could compute the saddle point and tangent direction of the
MEP at the saddle point with GAD method (3.4) precisely. The time step size is
Δt = 0.1, and the semi-implicit spectral method similar to (3.1) is used. At the kth
step, denote rk, rk1 , r

k
2 as in (6.1). We have r0 = 1.50 × 10−3, r01 = 2.93 × 10−5,

r02 = −8.43 × 10−3 at the beginning of the iteration k = 0. After 39900 iterations,
r39900 = 4.32 × 10−13, r399001 = −4.45 × 10−13, r399002 = −8.01 × 10−3. The state’s
energy density varies slightly (smaller than 2 × 10−7) during iterations, and the en-
ergy density of the converged state is −2.25187 × 10−2 (the corresponding energy
density barrier ΔFr = 5.34 × 10−5). By observing r39900 and r399001 , it is obvious
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Fig. 6.4. Ω = [0, 64π√
3
]× [0, 32π]. ξ2 = 1.0, τ = −0.15, γ = 0.25. Left panel: the precise saddle

point. Middle panel: the tangent direction of the MEP at the saddle point for stochastic Cahn–
Hilliard dynamics (1.4). Right panel: the tangent direction of the MEP at the saddle point for
stochastic projected Allen–Cahn dynamics (5.1). They are computed using GAD method (3.4) and
(4.11). Comparing these two tangent directions, we can see that the wave of the tangent direction
in the middle panel decays slower, which indicates a wider interface in the tangent direction of the
MEP for stochastic Cahn–Hilliard dynamics (1.4).

that the GAD method with the semi-implicit spectral method performs very well,
and the right-hand side of the generalized gradient system (2.17) is zero for the con-
verged state. r399002 indicates that μ1,n, the unique negative eigenvalue of the matrix
G∇2Fr(x

c), is −8.01× 10−3. The precise saddle point xc, the MEP’s tangent direc-
tion ṽ1 at xc, and the eigenvector vc

1 of ∇2Fr(x
c) are shown in Figure 6.4. From

(4.11), (4.12), we obtain λc1,n = −0.0131.
For the determinant ratio, in this case it is not feasible to use Lapack to compute

all the eigenvalues since the size of the matrix is very large, and the MCMC method
does not give a satisfactory result due to difficulties in high-dimensional sampling. On
the contrary, with the power-series method, we take 1000 terms in the power-series
expansion. A nonuniform number of random vectors is used for different terms in
order to reduce computations. Specifically, for the jth term, the number of random
vectors generated for computing the expectation is (comparing to (6.2))

(6.3) min

{
1000000,

1000000× 4

j

}
.

The mean value of the logarithm of the determinant ratio for five runs is 17.17 with
variance equals 0.0185. All the quantities in (4.3) are summarized in Table 6.2 and
are used to compute the nucleation rate for different noise intensity ε, as shown in
Figure 6.5(b). It is noteworthy that the prefactor in (4.3) has a significant contribution
in the final nucleation rate.

Table 6.2

The quantities in the nucleation rate formula (4.3). LDR refers to the logarithm of the deter-
minant ratio. Ω = [0, 64π√

3
]× [0, 32π]. ξ2 = 1.0, τ = −0.15, γ = 0.25. n1 = n2 = 100.

λc
1,n μ1,n Λa

n Λc
n LDR ΔFr

−0.0131 −8.01× 10−3 0.78 0.072 17.17 5.34× 10−5

For comparison, we also compute the results for the stochastic projected Allen–
Cahn dynamics (5.1). Although the MEP of dynamics (5.1) is different from that of
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(a) energy of the nodes on the MEP (b) nucleation rate

Fig. 6.5. Ω = [0, 64π√
3
]× [0, 32π]. ξ2 = 1.0, τ = −0.15, γ = 0.25. Energy profile along the MEPs

and the nucleation rate with both stochastic Cahn–Hilliard dynamics (1.4) and projected Allen–Cahn
dynamics (5.1). (a) The 5th node is the maximum energy node on the MEP, and the barrier of the
energy density is 5.358× 10−5. The x-axis is the arclength parameter, and the y-axis is the density
of the free energy functional F/V . Although the energy curves of these two dynamics are quite
similar, the MEPs are different. (b) The nucleation rate from the lamellar phase to the cylinder
phase with different noise intensity.

the stochastic Cahn–Hilliard dynamics (1.4), the difference is small and indistinguish-
able (Figure 6.3). The energy profiles along the MEPs for both dynamics are shown
in Figure 6.5(a). We emphasize that it is not convincing to tell whether the MEPs
for these two dynamics are different from this figure, because only several (21) nodes
are used to discretize the MEP in the high-dimensional path space, and the energy
profile is just a 1D projection of the MEP. In Figure 6.4, we can see that the tangent
directions of the MEP at the saddle point are different for these two dynamics. The
wave of the tangent direction for the stochastic Cahn–Hilliard dynamics (1.4) (the
middle panel in Figure 6.4) decays slower than that for the projected Allen–Cahn
dynamics (5.1) (the right panel in Figure 6.4), which indicates a wider interface in
the tangent direction of the MEP for the stochastic Cahn–Hilliard dynamics. Due
to the different values of λc1,n and μ1,n (see Table 6.2), the nucleation rates for both
dynamics, given by (4.4) and (5.9), are also different and are shown in Figure 6.5(b).

7. Discussions. Following the previous 1D work [34], we study the nucleation
rate calculation for diblock copolymers. The dynamics of diblock copolymers is de-
scribed by the 2D stochastic Cahn–Hilliard dynamics with a Landau–Brazovskii en-
ergy functional. To achieve this, we need to study the MEP of the nucleation event
and the saddle point on it. The string method and the GAD method are designed in
Fourier space and are combined with the semi-implicit method. Both the MEP and
saddle point can be obtained efficiently.

Although the existence and regularity of the solution for dynamics (1.4) are be-
yond the scope of the present work, we want to make a brief comment here. In [25],
the authors have proved the regularity of the solution under condition

(7.1) Tr(A−1+δQ) <∞ for some δ > 0,

where A is the Laplacian operator with certain BC, and Q is the covariance matrix
of the Wiener process in the noise term. From this conclusion, the authors in [25]
conclude that while the linear part regularizes the solution, the noise term makes it
worse. And the regularity of the solution depends on the competition of these two
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terms. In our case, the higher order linear terms in (1.4) have stronger regularization
effects, and thus we believe its solution has better regularity.

In our previous work [34], we used the finite difference method (FDM) to study
1D Cahn–Hilliard dynamics with a simper energy functional. In this work, however,
although we could still discretize the problem with FDM as illustrated in Remark
1, there are several drawbacks. First, due to the high order differential terms in the
dynamics equation, very fine grids are needed in order to obtain accurate approxima-
tion, which then leads to a very small time step size when solving the equation and a
very large Hessian matrix when computing the determinant. Second, the determinant
ratio of two differential operators is needed and is approximated by the ratio of two
Hessian matrices numerically. With FDM, the large eigenvalues of the Hessian matri-
ces will be very different from their counterparts of the original differential operators,
simply because the corresponding eigenvectors have high frequency and are not well
approximated by FDM. On the other hand, these eigenvalues could still be close to
their true values relatively (see Appendix B) with spectral discretization since the
subspace is spanned by the eigenfunctions of the Laplacian operator.

For the nucleation rate, since we focus on the numerical algorithms, the conver-
gence of (4.3), (4.4) is assumed and we give the nucleation rate formula (4.5) without
proof. Numerically, we always need to discretize the original problem (1.4) with a
finite number of basis functions and compute the nucleation rate using (4.3), (4.4).
What is more, for a given number of basis functions, only small eigenvalues of the
original problems can be approximated precisely and larger ones cannot. Even with
this, the convergence of the determinant ratio could be obtained assuming that the
finite trace of the linear part’s inverse operator in the stochastic PDE, which is also
related to the regularity of the stochastic PDEs’ solutions, and that every single eigen-
value converges to its infinite-dimensional counterpart as more modes are involved.
These assumptions are quite loose and generally hold in a wide range of stochastic
PDE models [26]. Thus the proof should also apply to those models to obtain the
convergence result for the determinant ratio.

Besides the MCMC method used in our previous work [34], we try the power-series
expansion method [35] to compute the determinant ratio. With this method, the line
integration in (4.18) can be avoided and the number of random vectors to calculate
expectation is chosen nonuniformly for different expanded terms. However, on a large
physical domain with a huge number of basis functions, due to the high dimension of
the matrix size, both methods, even utilizing parallel computing, are time consuming
in order to obtain an accurate result of the logarithm of the determinant.

We also compare the dynamics of the stochastic Cahn–Hilliard equation (1.4)
with the projected Allen–Cahn equation (5.1), which can also describe the dynamics
of conservative order parameters. We conclude that both the MEP and the nucleation
rate are different for these two dynamics.

For BCs, besides periodic BC considered here, Neumann BC is also frequently
proposed in the study of Cahn–Hilliard equations. Generally, based on our under-
standing, periodic BC is mathematically simple and is often used in material structure
as well as molecule dynamics simulations, especially when periodicity exists (as in the
case of diblock copolymer) or when the size of the whole system is far beyond the com-
putational ability, and thus only part of it is simulated. On the other hand, Neumann
BC is used when we want to simulate the whole system and assume that there is no
flux coming from the boundaries. In our work, the size of the domain is chosen to be
larger than the diameter of the critical nucleus, thus assuming BC has a tiny impact
on its shape. Similar to periodic BC, Neumann BC could also be studied with mi-



NUCLEATION RATE CALCULATION FOR COPOLYMERS 405

nor modifications. First, we could consider the subspace spanned by bases satisfying
Neumann BC. These bases consist of functions of the form C cos(k1

2πx
L1

) cos(k2
2πy
L2

),
where k1, k2 ∈ Z, C is the normalization constant. Second, numerically, the FFT
method may need to be modified in order to find the Fourier coefficients from the real
space and vice versa. Third, different from the periodic case, there is no translation
invariance anymore with Neumann BC, and thus the Hessian matrices at metastable
states and saddle point are nondegenerate. The prefactor in the nucleation rate for-
mula is also slightly different (see [34] for details in 1D Cahn–Hilliard dynamics).

The ideas and methods discussed in this paper are general for the nucleation
rate calculation (and the nucleation event) in zero temperature limit. The issues of
nucleation at finite temperature and on large domains are untouched, and we refer
the reader to [34, 16, 30] for discussions. In future work, we may consider applying
these methods to study the nucleation event between other ordered phases (from the
cylinder phase to the sphere phase, etc.) in diblock copolymers, or even the nucleation
events for other stochastic PDE models.

8. Conclusions. In this paper, we study the nucleation rate calculation for
diblock copolymers by considering the 2D stochastic Cahn–Hilliard dynamics with a
Landau–Brazovskii energy functional. The nucleation rate for phase transition from
the lamellar phase to the cylinder phase of diblock copolymers is investigated. Under
the framework of the spectral method, we design the string method and the GAD
method in Fourier space. These two methods, when combined with the semi-implicit
spectral method, are very efficient for computing the MEP and the saddle point. The
nucleation rate formula is also given, and related numerical algorithms are discussed
with careful implementations.

Appendix A. Galerkin discretization for stochastic Cahn–Hilliard equa-
tion. Here we consider the Galerkin discretization for the 2D stochastic Cahn–Hilliard
equation (1.4) on domain Ω = [0, Lx] × [0, Ly] with periodic BC. Let V = |Ω|. For
indices’ operations in (2.2), ∀j = (j1, j2), k = (k1, k2) ∈ I, we define

j ± k = (j1 ± k1, j2 ± k2), −j = (−j1,−j2), |j| = (|j1|, |j2|),
j ≤ k ⇐⇒ j1 ≤ k1, j2 ≤ k2.

With the basis functions (2.3), (2.4) defined in section 2, we define the spaces
S = span{ej , j ∈ I}, Sr = span{ej,1, ej,2, j ∈ Ir}, which are two (complex and real,
respectively) Hilbert spaces with inner products

〈f, g〉 = 1

|Ω|
∫
Ω

f g dr ∀f, g ∈ S,(A.1)

〈f, g〉r =
1

|Ω|
∫
Ω

f g dr ∀f, g ∈ Sr.(A.2)

In fact, we have

Sr =

{
φ ∈ L2(Ω)

∣∣∣∣ 1

V

∫
Ω

φ(r) dr = 0

}
=
{
φ is real

∣∣∣ φ ∈ S
}
.

{ej}j∈I , {ej,1, ej,2}j∈Ir form the orthonormal bases of S and Sr , respectively. In the
following, we will omit the subscripts and use 〈·, ·〉 to denote the inner product on
both S and Sr.
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The Q-Wiener process W (t) in (1.4) is given by (2.6). The covariance operator
Q = −Δ of W (t) is defined on Sr by

(A.3) Qej,ν = ρjej,ν , ν = 1, 2, ∀j ∈ Ir,
where ρj = (2πk/Lx)

2 + (2πl/Ly)
2, j = (k, l) ∈ Ir.

For Galerkin discretization, let n1, n2 ∈ N
+, n = (n1, n2), consider index subsets

In =
{
(k, l) ∈ I

∣∣∣ |(k, l)| ≤ n
}
, Ir,n =

{
(k, l) ∈ Ir

∣∣∣ |(k, l)| ≤ n
}
,(A.4)

and consider subspaces Sn = span{ej, j ∈ In}, Sr,n = span{ej,1, ej,2, j ∈ Ir,n}.
The projection operators Pn,Pr,n on subspaces Sn,Sr,n are given by

Pnφ =
∑
j∈In

φjej , φj = 〈φ, ej〉 ∀φ ∈ S,(A.5)

Pr,nφ =
∑

j∈Ir,n

(φj,1ej,1 + φj,2ej,2), φj,ν = 〈φ, ej,ν〉, ν = 1, 2, ∀φ ∈ Sr.(A.6)

When φ ∈ Sr, the coefficients satisfy

(A.7) φj,1 =
1√
2
(φj + φj), φj,2 =

i√
2
(φj − φj), j ∈ Ir,n,

and φj = φ−j ∀j ∈ In since φ is real.
The Galerkin method for stochastic Cahn–Hilliard equation (1.4) on subspace Sn

is given in (2.10), (2.11), (2.12), while on subspace Sr,n, the Galerkin method for (1.4)
is to find φr(·, t) =∑j∈Ir,n

(
aj(t)ej,1 + bj(t)ej,2

) ∈ Sr,n, which solves

〈dφr(·, t)−ΔL1(φ
r(·, t))dt, ej,l〉 = 〈

√
2εdW (t), ej,l〉 =

√
2ερjdWj,l,

l = 1, 2, ∀j ∈ Ir,n.
(A.8)

We order the indices in Ir,n and denote Ir,n = {j1, j2, . . . , jnr}, with #Ir,n = nr =
2n1n2+n1+n2 and n = 2nr. Rewrite the coefficients aj(t), bj(t), the basis functions
ej,1, ej,2, and the Brownian motions Wj,1,Wj,2 in vector form as

x = (x1(t), x2(t), . . . , xn(t))
T

= (aj1(t), aj2(t), . . . , ajnr
(t), bj1(t), bj2(t), . . . , bjnr

(t))T ,(A.9)

ω = (ω1, ω2, . . . , ωn)
T = (ej1,1, ej2,1, . . . , ejnr ,1, ej1,2, ej2,2, . . . , ejnr ,2)

T ,(A.10)

D = (D1, D2, . . . , Dn)
T

= (ρ1, ρ2, . . . , ρn)
T = (ρj1 , ρj2 , . . . , ρjnr

, ρj1 , ρj2 , . . . , ρjnr
)T ,(A.11)

W = (W1(t),W2(t), . . . ,Wn(t))
T

= (Wj1,1(t),Wj2,1(t), . . . ,Wjnr ,1(t),Wj1,2(t),Wj2,2(t), . . . ,Wjnr ,2(t))
T .(A.12)

Then (A.8) is equivalent to

dxl = −Dl〈L1(φ
r), ωl〉dt+

√
2εDldWl, l = 1, 2, . . . , n.(A.13)

Let Fr(x) = F(φr)/V , φr =
∑n

l=1 xlωl; then it is straightforward to check that

∂Fr

∂xl
= 〈L1(φ

r), ωl〉, l = 1, 2, . . . , n.(A.14)
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With the notations G = diag{D1, D2, . . . , Dn}, ∇Fr = (∂Fr

∂x1
, ∂Fr

∂x2
, . . . , ∂Fr

∂xn
)T , from

(A.13), we obtain a generalized stochastic gradient system in R
n:

dx = −G∇Fr dt+
√
2εG

1
2dW.(A.15)

The Galerkin discretization of the deterministic Cahn–Hilliard equation (1.3) could
be obtained in the same way by dropping the stochastic terms, and we have

dφj(t)

dt
= −ρj〈L1(φ

c(·, t)), ej〉 = −ρj
{
ξ2(1− ρj)

2φj(t) +Qj(t)
}
, j ∈ In,(A.16)

and

dx

dt
= −G∇Fr.(A.17)

Appendix B. Proof for the convergence of determinant ratio. Here we
give the proof for the convergence of the determinant ratio.

Theorem B.1. Let λaj , λ
c
j denote the eigenvalues of L2(φ

a), L2(φ
c) with (4.6),

(4.7), (4.8). Ha, Hc are the matrices of the discretization of operators L2(φ
a), L2(φ

c)
in Sr,n, with eigenvalues λaj,n and λcj,n, respectively. Define the discretized determi-
nant ratio and its infinite dimensional counterpart by

(B.1) Rm
k,n =

m∏
j=k

λaj,n/λ
c
j,n, Rm

k =
m∏

j=k

λaj /λ
c
j ;

then limn→+∞Rn
4,n = R∞

4 .
Proof. First of all, we notice the decomposition (4.19) and the uniform boundness

of ||Jν
n||2, ν = a, c (see section 4.3). By the min-max theorem for the eigenvalues of a

self-adjoint operator, there exists constant M > 0 such that

(B.2) ξ2(1− ρj)
2 −M ≤ λνj,n ≤ ξ2(1− ρj)

2 +M, j = 1, 2, . . . , n, ν = a, c.

Similarly, by comparing L2(φ
ν) with its linear part ξ2(Δ + 1)2 + 1, we obtain

(B.3) ξ2(1 − ρj)
2 −M ≤ λνj ≤ ξ2(1− ρj)

2 +M, j = 1, 2, . . . , ν = a, c,

where the constant M is reused.
Denote

(B.4) R̃m
k =

m∏
j=k

ξ2(1− ρj)
2 +M

ξ2(1− ρj)2 −M
,

and assume ξ2(1− ρj)
2 −M > 0 ∀j > 0 since otherwise we could start from the first

positive term. Direct calculation shows that R̃∞
4 < +∞. With (B.3), we also know

that the ratio R∞
4 in (4.5) is well defined.

∀ε0 > 0, there exists N0 > 0 such that when k,m > N0, we have |Rk
4 −Rm

4 | < ε0,
and therefore |Rk

4 −R∞
4 | ≤ ε0.

1 < R̃∞
4 < +∞ =⇒ there exists N1 > 0 such that when k,m > N1, we have

R̃k
4 ≥ 1, |R̃k

4 − R̃m
4 | < ε0,
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and therefore |R̃k
4 − R̃∞

4 | ≤ ε0. Thus for N1 < k < m, |1 − R̃m
k+1| = |R̃k

4−R̃m
4 |

|R̃k
4 |

< ε0.

Fixing m0 > max{N0, N1} for n > m0, we have

Rn
4,n = Rm0

4,nR
n
m0+1,n and lim

n→+∞Rm0
4,n = Rm0

4

from (4.9). Hence there exists n0 > (0, 0) such that ∀n > n0, n > m0, we have
|Rm0

4,n −R∞
4 | < 2ε0. Using (B.2), we have

(B.5) 1− ε0 <
1

1 + ε0
< (R̃n

m0+1)
−1 ≤ Rn

m0+1,n ≤ R̃n
m0+1 < 1 + ε0,

and thus

(B.6) R∞
4 + o(ε0) = (R∞

4 − 2ε0)(1− ε0) < Rn
4,n < (R∞

4 + 2ε0)(1 + ε0) = R∞
4 + o(ε0).

Therefore we obtain the convergence.
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