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Error estimate of short-range force calculation in inhomogeneous molecular systems
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In the present paper, we develop an accurate error estimate of the nonbonded short-range interactions for the
inhomogeneous molecular systems. The root-mean-square force error is proved to be decomposed into three
additive parts: the homogeneity error, the inhomogeneity error, and the correlation error. The magnitude of the
inhomogeneity error, which is dominant in the interfacial regions, can be more than one order of magnitude larger
than the homogeneity error. This is the reason why a standard simulation with fixed cutoff radius is either less
accurate if the cutoff is too small, or wastes considerable computational effort if the cutoff is too large. Therefore,
based on the error estimate, the adaptive cutoff and long-range force correction methods are proposed to boost
the efficiency and accuracy of the simulation, respectively. The way of correcting the long-range contribution
of pressure is also developed for the inhomogeneous system. The effectiveness of the proposed methods is
demonstrated by molecular dynamics simulations of the liquid-vapor equilibrium and the nanoscale particle
collision. Different roles of the homogeneity error and inhomogeneity error are also discussed.
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I. INTRODUCTION

Nonbonded short-range interactions are encountered in
nearly every molecular simulation. A naive idea for calculating
short-range interactions is to explicitly calculate all pairwise
interactions. This results in a computational cost scaling O(N2)
per time step, which becomes rapidly inefficient as the number
of particles N grows. A better way is to introduce a cutoff
radius, outside of which all pairwise interactions are simply
neglected. In combination with the cell list and the neighbor list
algorithms [1], the total computational cost of the short-range
interactions can be reduced to an acceptable level of O(N ).
The cutoff radius neglects all pairwise interactions outside
the cutoff radius, so it introduces an error in the interaction
calculation. Since the cutoff system can be viewed as an
approximation of the original system, it is very important to
test the convergence of properties of interest as a function of
the cutoff radius.

Fortunately, in most homogeneous systems, a satisfactory
convergence can be achieved even with a very small cutoff
value, for example, 2.5σ for the standard Lennard-Jones 6-12
interaction. Moreover, it is possible to correct the systematic
error of the potential energy, the pressure, and the free energy
by applying the standard long-range correction (LRC) [2],
which assumes the uniformity outside the cutoff radius and
integrates the contribution of the mentioned properties to
infinity. Instead for inhomogeneous systems, in which the
density of a certain type of atom may change within the
length scale of a few molecules, and thus lack of uniformity,
the standard molecular simulation by the cutoff method will
encounter nontrivial difficulties. The simulation results are
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found to converge only at a very large cutoff radius value [3,4]
and also depend on the energy (force) continuity at the cutoff
and the way of applying the long-range corrections [5–10].
Therefore, it is necessary to systematically study the precision
of the short-range interaction calculation and to develop
methods for screening out the aforementioned cutoff artifact
in the inhomogeneous systems.

One possible way to avoid the cutoff difficulty is to modify
the short-range interaction by a shifting approach: Inside a
certain radius the original interaction is kept, while outside
it the interaction is screened by a shift function, so that it
goes to zero smoothly and rapidly. The amount of shifting
is minor in most cases; however, it actually changes the way
of modeling molecules. For example, it has been shown that
shifting the dispersion remarkably changes the phase diagram
of the Lennard-Jones system [11]. Since the dispersion term
can be derived by quantum mechanical arguments, and has
the physical reality, the unshifted interaction is preferred and
investigated by most studies (see, e.g., Refs. [12,13]).

A promising way to quantitatively analyze the undesirable
cutoff effects is to express these artifacts in terms of the
difference between the cutoff interaction and the exact inter-
action, namely, the error. In homogeneous systems, the error
analysis of the cutoff method has been well established; see
Refs. [14,15], for example. Also the error estimates [14,16–19]
for long-range Ewald family methods [20–24] have provided
a profound understanding of the accuracy of force calculation
and introduced parameter tuning algorithms [19,25] that boost
the efficiency of the computation with a good control of the
error. However, in inhomogeneous systems the error study is
still scarce, even for the simplest cutoff method.

In this work we develop the error estimate of the short-range
interaction and the long-range force and pressure corrections
for the inhomogeneous systems. We prove that the force
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error comprises a homogeneity error and an inhomogeneity
error, regardless of the particle-particle correlation outside
the cutoff radius. In an inhomogeneous system composed of
several bulk regions connected by interfacial regions where the
density changes rapidly, an important observation is that the
inhomogeneity error plays a dominant role in the interfacial
regions and can be more than one order of magnitude larger
than the error in the bulk regions. An adaptive cutoff method
is hereby proposed to equally distribute the error across the
simulation region, so that a considerable computational effort
can be saved in the bulk regions while the precision of
simulation is preserved. We also proposed a long-range force
correction (LFC) method to screen out the contribution of the
inhomogeneity error; therefore, the precision of simulation is
improved without much extra computational load.

To show the effectiveness of the error estimate and the
proposed methods, two systems are tested: the liquid-vapor
equilibrium for equilibrium properties and the colliding
nanoscale clusters for dynamical properties. In these examples
we investigate the Lennard-Jones interaction, which is one of
the most widely used in molecular simulations. However, the
error estimate, the adaptive cutoff, and long-range correction
methods are not restricted to the Lennard-Jones interaction:
It can be applied to other types of short-range interactions
without difficulty, such as the Buckingham interaction, the
direct part of Ewald family algorithms [20,22–24], etc. We
want to stress that the main contribution and the research
interest are the quantitative study of the force computation
error by cutting off the short-range interaction. The examples,
which are comparatively simple and ideal, are used only for
testing the validity of the error estimate and the proposed
methods, and demonstrating the role of different errors in
the simulations. The error study in more realistic systems
requires the estimates of the electrostatic interaction, which
are calculated by the long-range algorithms, such as PME [22],
SPME [23], P3M [24], etc. The scope of the present paper is
not enough for these algorithms, so they will be delivered in
future work.

II. THEORETICAL BACKGROUND

A. Error estimate in an inhomogeneous system

In this paper, for simplicity, we will consider one-
component systems, but the error estimate for the one-
component system can be straightforwardly extended to the
multi-component systems. We consider the force error in the
present paper, because the applications are based on molecular
dynamics simulations. Suppose the system is composed by
N identical particles located at r1,r2, . . . ,rN with periodic
boundary condition. These particles are interacting via a
short-range pairwise interaction u(r) with a cutoff radius
rc > 0. The corresponding force is denoted by f (r). Most
short-range interactions satisfy |u(r)| � Cr−m, m > 3, which
guarantees an absolute convergence of the energy. Throughout
the paper, the only assumptions made on the interaction are
(1) the interaction is short range and (2) it is calculated by the
cutoff method. Therefore, our approach works for a large group
of widely used interactions, for example, the Lennard-Jones

interaction, the Buckingham interaction, the direct part of
Ewald family algorithms, and so forth.

The force error stems from the neglected interaction
outside the cutoff radius, so it is convenient to consider the
complementary of the cutoff force that is defined by

f c(r) =
{

0, |r| � rc;

f (r), |r| > rc.
(1)

We measure the force error at an arbitrary position in the
system, say, r , by adding a testing particle to that position. We
assume all particles in the system exert forces on the testing
particle, whereas the testing particle does not exert any force on
the system. The exact force and the computed force (or cutoff
force) exerted by the system on the testing particle are denoted
by F(r) and F̃(r), respectively. The difference between them,
namely, the error force, is denoted by �F(r) = F(r) − F̃(r),
which can be expressed by

�F(r) =
∑

n

∑
j

f c(r − rj + n), (2)

where n is the box vector, so the summation over n indicates
that all periodic images of the system are considered. In
a homogeneous system, the surrounding of any particle is
isotropic, so the mean error force vanishes: 〈�F(r)〉 = 0. In
contrast, the mean error force is not necessarily zero in an
inhomogeneous system:

〈�F(r)〉 =
〈∑

n

∑
j

f c(r − rj + n)

〉

=
∫
R3

f c(r − r ′)ρ(r ′) d r ′, (3)

where ρ(r) denotes the particle number density at the position
r and is periodically extended toR3. Notice that the error force
implicitly depends on the cutoff radius used for the interaction
calculation.

The widely accepted definition of the force error is the root
mean square (RMS) error, which is the square root of the
second moment of the error force E(r) =

√
〈|�F(r)|2〉. This

is calculated as

〈|�F(r)|2〉

=
〈 ∑

j,k

f c(r − rj ) · f c(r − rk)

〉

=
〈 ∑

j

| f c(r − rj )|2
〉

+
〈 ∑

j �=k

f c(r − rj ) · f c(r − rk)

〉

=
∫
R3

| f c(r − r ′)|2ρ(r ′) d r ′

+
∫
R3×R3

f c(r − r ′) · f c(r − r ′′)ρ(r ′,r ′′) d r ′d r ′′, (4)

where ρ(r ′,r ′′) is the pair density. By using the identity

ρ(r ′,r ′′) = ρ(r ′)ρ(r ′′) + C(r ′,r ′′), (5)

where

C(r ′,r ′′) = [ ρ(r ′,r ′′) − ρ(r ′)ρ(r ′′) ] (6)
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denotes the density correlation between r ′ and r ′′, Eq. (4)
becomes

〈|�F(r)|2〉
=

∫
R3

| f c(r − r ′)|2ρ(r ′) d r ′

+
[ ∫

R3
f c(r − r ′)ρ(r ′) d r ′

]2

+
∫

R3×R3
f c(r − r ′) · f c(r − r ′′) C(r ′,r ′′) d r ′d r ′′

= E2
homo(r) + E2

inhomo(r) + Ecorrelation(r). (7)

If the system is homogeneous and the particle-particle cor-
relation is neglected, then only the first term is left on the
right-hand side of (7), and it is called the homogeneity
error. This term originates from the fluctuation of the error
force �F(r). The second term is called the inhomogeneity
error, because it stems from the density inhomogeneity of the
system. It is worth pointing out that the inhomogeneity error
is nothing but the magnitude of the mean error force, namely,
Einhomo(r) = |〈�F(r) 〉|. The last term on right-hand side of
(7) originates from the correlation between the particles,
so it is called the correlation error. The correlation error
involves a double integral, which implies that the calculation
requires more computational resources than the homogeneity
and inhomogeneity errors. The rest of this paper assumes the

correlation error does not dominate in the system and can be
safely neglected. It is worth pointing out that this is not always
true; for example, in the critical region where the correlation
plays an important role in the system, the correlation error
should be taken into account.

B. Fast calculation of the error estimate

The naive calculation of the convolutions in the error
estimate (7) requires a computational cost of O(N2). To
estimate the force error on the fly, the computational cost of
the estimate should be reduced to at least O(N log N ). This
is achieved by using the fast Fourier transform. We assume
the simulation box is uniformly divided in to small bins. The
positions of these bins are

r i1,i2,i3 = i1

M1
a1 + i2

M2
a2 + i3

M3
a3, 0 � iα < Mα, (8)

where aα are box vectors, and Mα is the number of divisions on
each direction. In the reciprocal space, a corresponding lattice
is set up:

km1,m2,m3 = m1a∗
1 + m2a∗

2 + m3a∗
3, 0 � mα < Mα, (9)

where a∗
α are reciprocal box vectors defined by aα · a∗

β = δαβ .
In each bin the error and the particles number density are
assumed to be constant; then a Fourier expansion can be
obtained:

E2
homo(r i1,i2,i3 ) = 1

V

∞∑
m1=−∞

∞∑
m2=−∞

∞∑
m3=−∞

[
E2

homo

]∧
(km1,m2,m3 ) exp

[
2πi

(
m1i1

M1
+ m2i2

M2
+ m3i3

M3

)]

= 1

V

M1∑
m1=0

M2∑
m2=0

M3∑
m3=0

K̂homo(k′
m1,m2,m3

) ρ̂(km1,m2,m3 ) exp

[
2πi

(
m1i1

M1
+ m2i2

M2
+ m3i3

M3

)]
. (10)

Here Khomo(r) denotes | f c(r)|2. The wedge notation ∧ means
the Fourier transform. The prime on km1,m2,m3 means that
the periodic image mα − Mα should be used instead of mα

when mα � Mα/2. The second equation in (10) holds due to
the fact that [E2]∧ = [Khomo ∗ ρ]∧ = K̂homo × ρ̂. The Fourier
transform of ρ and Khomo is

ρ̂(km1,m2,m3 ) = V

M1M2M3

M1∑
i1=0

M2∑
i2=0

M3∑
i3=0

ρ(r i1,i2,i3 )

× exp

[
− 2πi

(
m1i1

M1
+ m2i2

M2
+ m3i3

M3

)]
(11)

and

K̂homo(k) = ∫
R3 Khomo(s)e−2πik·s ds. (12)

Most of the short-range interactions are isotropic, i.e.,
Khomo(r) = Khomo(r); then the three-dimensional integral in
Eq. (12) can be simplified to a one-dimensional integral:

K̂homo(k) =
∫ ∞

rc

2s

k
Khomo(s) sin(2πks) ds, (13)

which can be calculated by numerical integration from rc to a
large upper bound, saying ru. Perfect convergence is achieved
by using ru = 30σ for the dispersion energy −4ε(σ/r)6, where
ε and σ are the energy and length units. Since integral (13) is
independent of the density of the system, it is calculated only
once and stored.

Similarly, for Eq. (3), the Fourier mode of the the mean
error force is (in terms of Fourier transform):

〈�F〉∧(k) = f̂ c(k) ρ̂(k), (14)

where the Fourier transform of the complementary force is
given by

f̂ c(k) = 2π
k
k

i

{
r2
c u(rc)

[
2 cos(2πkrc)

2πkrc

− 2 sin(2πkrc)

(2πkrc)2

]

−
∫ ∞

rc

2s u(s) sin(2πks) ds

}
, (15)

where u(r) is the isotropic pairwise potential.
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C. Adaptive cutoff radius method

A basic observation in an inhomogeneous system is that the
RMS force error is not uniformly distributed. The difference
between the maximum and minimum error can be more than
one order of magnitude (Fig. 2). Traditionally, a very large
uniform cutoff radius is used to reduce the maximum error
in the system to reach convergent simulation results [4].
However, since the computational effort scales as the cube of
the cutoff radius, a slightly larger cutoff will notably increase
the computational effort. For example, increasing the cutoff
radius from 4σ to 5σ will cost twice the computational effort.
Therefore, a huge amount of computational effort is wasted
in the low-error region. The idea of the adaptive cutoff radius
simulation is to use larger cutoff radius for particles in the
high-error region to control the force error, while to use a
smaller cutoff radius for particles in the low-error region to
save computational cost. The effectiveness of this method
relies on a deliberate cutoff choice for each particle so that
the force error is uniformly distributed across the simulation
region. In order to determine the cutoff radius, we should
estimate the RMS force error at least once for each particle,
and the computational cost of each force error estimate is
O(N log N ), so the total computational expense of this method
is at least O(N2 log N ), which is prohibitive to the on-the-fly
application.

To make the adaptive cutoff method feasible, we assume
the following:

(1) The space is uniformly divided in to small bins, the size
of which is the same as those mentioned in Sec. II B. The
particles falling in the same bin are assigned the same cutoff
radius. In other words, the cutoff radius is chosen for each bin
rather than for each particle.

(2) The cutoff radius can be chosen only from a discrete
series of monotonically increasing values between a maximum
rmax
c and a minimum rmin

c : { rmin
c = r0

c < r1
c < · · · < rM−1

c <

rM
c = rmax

c }. We call it the candidate set of the cutoff radius.
For convenience but not necessarily, the cutoff radii in the
candidate set is uniformly increasing, i.e.,

rm
c = r0

c + rstep
c m, 0 � m � M. (16)

For example, a possible candidate set is {2.5 σ,3.0 σ, 3.5 σ,

4.0 σ, . . . ,10.0 σ }, with rmax
c = 10.0σ , rmin

c = 2.5σ , and
r

step
c = 0.5σ .

For each cutoff radius in the candidate set, the force error
E(r) is calculated by the estimate (7). Notice the error is
calculated by the fast algorithm described in Sec. II B, so
it is defined on the bins. For a predetermined error control
level EC, a satisfactory cutoff radius for a bin is chosen such
that it is the smallest one satisfying the precision constraint
E(r i1,i2,i3 ) � EC. The computational cost of this algorithm is
O(MN log N ). The idea of this algorithm is based on the
observation that the cutoff radius may not be calculated at
a very high precision. Because if r

step
c is sufficiently small,

increasing the cutoff radius by no more than r
step
c will not

waste too much computational cost. Here we recommend
that r

step
c should be no more than 0.25σ , which increases

the computational effort by 27% at rc = 3.0σ . Due to the
thermodynamic fluctuation of the particle density, the resulting
cutoff distribution rc(r i1,i2,i3 ) (as a function of bin position)

needs to be refined by the following scheme:

r (1)
c (r i1,i2,i3 ) = max

jα∈I
rc(r i1+j1,i2+j2,i3+j3 ), I = {−1,0,1},

(17)

so that the fluctuating large-error regions are safely covered
by bins with large cutoff radius.

Since the density profile of the system changes very
slow comparing with the typical time step used in the MD
simulation, the cutoff distribution is not calculated every time
step. Instead, for example, in the liquid-vapor equilibrium
simulation (see Sec. III A), the cutoff distribution is calculated
every 20 000 time steps, so the extra load of adapting the
cutoff is only marginal in the simulation, i.e., proportional to

M
20 000N log N .

D. Long-range force correction

In an inhomogeneous system, the inhomogeneity error
may play a dominate role in the simulation (see examples
in Sec. III). Since the mean error force can be calculated
by Eq. (14) on the fly, a simple way to screen out the
inhomogeneity error is to correct the computed force by the
mean error force, namely,

Fcorr(r) = F̃(r) + 〈�F(r)〉. (18)

In this paper the mean error force 〈�F(r)〉 is also referred as
correction force in the context of long-range force correction.
This correction works because it takes into account the
force contribution outside the cutoff radius. The mean of the
corrected error force vanishes:

〈�Fcorr(r)〉 = 〈 F(r) − F̃(r) − 〈�F(r)〉 〉 = 0. (19)

The mean square error is given by

〈|�Fcorr(r)|2〉 = 〈 [ F(r) − F̃(r) − 〈�F(r)〉 ]2〉
= 〈 [ �F(r) − 〈�F(r)〉 ]2〉
= 〈|�F(r)|2〉 − 〈�F(r) 〉2

= E2
homo(r) + Ecorrelation(r), (20)

containing no inhomogeneity contribution. It is worth notic-
ing that the mean square error of the corrected force is
nothing but the variance of the error force: 〈|�Fcorr(r)|2〉 =
Var[�Fcorr(r)] = Var[�F(r)].

In most cases, the ensemble average of the error force does
not change very fast comparing with the typical time step
used in a MD simulation. Therefore, it is not necessary to
calculate the correction force every time step. Instead, for
example, we calculate it every 40 time steps in the liquid-vapor
equilibrium testing system (see Sec. III A), which takes no
more than 10% of the total computational cost. If the long-
range interaction calculations (which needs FFTs anyway) are
involved, this ratio should be even lower. The idea of the
long-range force correction is very similar to those proposed
by earlier works [6–8,10]. In those works, the density profile
is assumed to be inhomogeneous along one direction, and
uniform on the other two directions. The system is subdivided
into slabs perpendicular to the inhomogeneous direction to
calculate the energy or force correction. The advantage of our
force correction is that it has no uniformity restriction on the
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density profile of the system, so it can be used in a wider range
of inhomogeneous simulations.

E. Long-range pressure correction

The pressure contribution outside the cutoff radius can be
expressed by

Pc = 1

V

〈 ∑
i �=j

1

2
(r i − rj ) ⊗ f c(r i − rj )

〉
. (21)

For simplicity, we denote 1
2V

r ⊗ f c by kP; therefore,

Pc =
〈 ∑

i �=j

kP(r i − rj )

〉
=

∫
R3×R3

kP(r ′− r ′′)ρ(r ′,r ′′)d r ′d r ′′

=
∫
R3×R3

kP(r ′ − r ′′)[ρ(r ′)ρ(r ′′) + C(r ′,r ′′)]d r ′d r ′′.

Assuming the correlation term C(r ′,r ′′) vanishes, then

Pc =
∫
R3×R3

kP(r ′ − r ′′)ρ(r ′)ρ(r ′′)d r ′d r ′′

=
∫
R3

[ ∫
R3

kP(r ′ − r ′′)ρ(r ′′) d r ′′
]
ρ(r ′) d r ′. (22)

The Fourier transform of the convolution
∫

kP(r ′ −
r ′′)ρ(r ′′) d r ′′ is identical to the product k̂P(k) ρ̂(k). Assuming
the isotropicity of the short-range interaction, the αβ compo-
nent of kP can be written as

{kP}αβ = 1

2V
{r ⊗ f c}αβ = 1

2V
rαrβ Gc(r), α,β = 1,2,3,

(23)

where Gc(r) = [uc(r)]′/r is isotropic. We list here without
proofs the Fourier transform of these terms:

[r1r1G
c(r)]∧

=
∫ ∞

rc

dr r4Gc(r) π

√
1

kr

[
2

3
J 1

2
(2πkr)

−
(

1

3
− cos2 
 + sin2 
 cos 2�

)
J 5

2
(2πkr)

]
, (24)

[r2r2G
c(r)]∧

=
∫ ∞

rc

dr r4Gc(r) π

√
1

kr

[
2

3
J 1

2
(2πkr)

−
(

1

3
− cos2 
 − sin2 
 cos 2�

)
J 5

2
(2πkr)

]
, (25)

[r3r3G
c(r)]∧ =

∫ ∞

rc

dr r4Gc(r) π

√
1

kr

[
2

3
J 1

2
(2πkr)

+
(

2

3
− 2 cos2 


)
J 5

2
(2πkr)

]
, (26)

[r1r2G
c(r)]∧ = −

∫ ∞

rc

dr r4Gc(r) π

×
√

1

kr
sin2 
 sin 2�J 5

2
(2πkr), (27)

[ r1r3 Gc(r) ]∧ = −
∫ ∞

rc

dr r4Gc(r) π

×
√

1

kr
sin 2
 cos �J 5

2
(2πkr), (28)

[ r2r3 Gc(r) ]∧ = −
∫ ∞

rc

dr r4Gc(r) π

×
√

1

kr
sin 2
 sin �J 5

2
(2πkr), (29)

where (k,
,�) are the spherical coordinates of reciprocal
variable k, and Jν(x) is the Bessel function of the first kind.

III. TESTING SIMULATIONS AND DISCUSSIONS

A. Liquid-vapor equilibrium

The direct simulation of the liquid-vapor equilibrium is
a very typical inhomogeneous system, which is widely used
to study the phase coexistence properties, for example, the
equilibrium liquid-vapor densities, and the surface tension.
The system studied in the present paper contains 16 000
identical standard Lennard-Jones particles that are separated
into a liquid phase in the center of the periodic box and vapor
phase surrounding it (Fig. 1). The conventional Lennard-Jones
unit system is employed: The unit of length, energy, mass,
and time are denoted by ε, σ , m, and τ (τ = σ

√
m/ε),

respectively. In the rest of this paper, all quantities are
rescaled by the Lennard-Jones units and added the superscript
“∗.” For example, r∗ = r/σ , T ∗ = kBT /ε, P ∗ = P · σ 3/ε,
and E∗ = E · σ/ε. The MD time step is �t∗ = 0.005. The
simulations last for 3 × 106 time steps. The first 1 × 106 steps
are discarded. The quantities of interest are sampled every
100 time steps. The blocking average method [26] is applied
to estimate the statistical uncertainty of the autocorrelated
data with 95% confidence level. The NVT ensemble is
generated by the Nosè-Hoover thermostat [27,28]. The size of
the simulation box is L∗

x × L∗
y × L∗

z = 150 × 21 × 21, which
permits a maximum cutoff radius of r∗

c = 10 and eliminates the
finite size effect reported in the literature [29–31]. The system
is divided into bins of size 1 × 1 × 1 to perform the fast error
estimate method described in Sec. II B. In all simulations, the
maximum cutoff radius considered is 10, but the reference
results for comparison are obtained by simulations carried out
in a 24 000 particle system with simulation box L∗

x × L∗
y ×

L∗
z = 150 × 27 × 27, and a uniform cutoff radius of r∗

c = 13.
We find that (not shown here) the bigger system leads to
the same equilibrium quantities as the smaller system at the
same cutoff radius, so it is reasonable to use it to produce the
better converged data at r∗

c = 13 and compare them with those
obtained in the smaller system.

Figure 2 presents the real RMS force error (in green
square and log-scaled) in a system using a uniform cutoff
radius of r∗

c = 7.5. The number density distribution along
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FIG. 1. The snapshot of the 16 000 Lennard-Jones particle system in liquid-vapor equilibrium at T ∗ = 0.85 with a uniform cutoff radius of
r∗
c = 7.5.

x direction is shown by the solid red line for reference.
The error is comparatively constant at the bulk liquid and
gas region. In contrast, two peaks, which are more than
one order of magnitude larger than the force errors in bulk
regions, form at the interfacial region. The estimated RMS
force error is presented by solid blue line. The estimate
follows the real error very well at the interfacial region,
but slightly overestimate the error in the bulk regions. Two
components of the force error, namely, the homogeneity error
and inhomogeneity error, are presented in Fig. 2 by dashed and
dotted blue lines, respectively. In the bulk regions, the dashed
blue line overlaps with the solid blue line, which means the
homogeneity error dominates. In the interfacial region, instead,
the inhomogeneity error dominates, because the dotted blue
line overlaps the solid one.

As mentioned before, the key idea of the adaptive cutoff
simulation is to use a smaller cutoff radius in the bulk regions,
so that the RMS force error is uniformly distributed over the
simulation region. In Fig. 3, we present the adapted cutoff
radius by a solid red line and all errors by the same notations
as in Fig. 2. The control error E∗

C = 0.0045 is almost the same
as the maximum error in the uniform cutoff simulation with
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FIG. 2. (Color online) The RMS force error distribution of the
16 000 Lennard-Jones particle system at T ∗ = 0.85 with a uniform
cutoff radius of r∗

c = 7.5. The green (light gray) squares present
the real error. The solid blue (dark gray) line is the error estimate
by (7). The dashed blue (dark gray) line is the homogeneity
error contribution, while the dotted blue (dark gray) line is the
inhomogeneity error contribution. The density distribution of the
system is presented by red (middle gray) solid line for reference. All
properties are properly averaged on the y and z direction; therefore,
the profiles are plotted along the x direction.

r∗
c = 7.5. In the rest of the paper, when we mention that “the

cutoff of the adaptive cutoff method is r∗
c ,” we mean the control

error is the maximum error of a uniform cutoff simulation
using that cutoff r∗

c . In all the cases considered by the present
paper, the maximum of the adapted cutoff radius is almost the
same as r∗

c and is sometimes marginally larger (no more than
r

step
c ). The cutoff distribution is calculated every 20 000 time

steps and is refined twice by Eq. (17). Due to this low cutoff
redistribution frequency, the extra cost of this adaptive method
is only marginal compared with the total computational cost.
In the interfacial regions, the same cutoff radius as the uniform
cutoff simulation, namely, 7.5, is used. In the bulk liquid and
vapor regions, the cutoff radii are 4.75 and 3.5, which reduce
the computational cost by a factor of 4 and 10, respectively.
The error is uniformly distributed, except in the liquid region
where the real error is somewhat lower. In contrast with the
uniform cutoff case, i.e., Fig. 2, the error estimate for the vapor
region is very sharp. The similar phenomenon is observed in
Ref. [15]. The same as with the uniform cutoff simulation, the
homogeneity error dominates in the bulk regions, while the
inhomogeneity error dominates in the interfacial region.

In Fig. 4 the red solid line presents the x component of
the correction force that is calculated every 40 time steps.
The extra computational cost is no more than 10% of the
total computational costs in all the tested cases. The y and
z components are not shown because their magnitudes are
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FIG. 3. (Color online) The RMS force error distribution of the
16 000 Lennard-Jones particle system at T ∗ = 0.85 with adaptive
cutoff radius. The control error E∗

C is the same as the maximum error
in the uniform cutoff simulation with r∗

c = 7.5. The resulting cutoff
radius distribution is presented by the red (middle gray) line. All other
notations are the same as Fig. 2.
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FIG. 4. (Color online) The RMS force error distribution of the
16 000 Lennard-Jones particle system at T ∗ = 0.85 with long-range
force correction, i.e., Eq. (18). The cutoff radius is r∗

c = 7.5. The x

component of the correction force is presented by the solid red (middle
gray) line. The green (light gray) squares present the real error. The
solid blue (dark gray) line presents the estimated homogeneity error.

negligible. On the left interface, the correction force is along
the positive direction of x axis, namely, pointing right. On the
right interface, the correction force is of the same magnitude
but pointing left. Therefore, the liquid density should be higher,
and the vapor density should be lower than the corresponding
uniform cutoff simulation. The real error (in green square)
and the estimated homogeneity error (in blue solid line) are
all presented in Fig. 4. Clearly the real error follows the
homogeneity error across the simulation region, which implies
the contribution of the inhomogeneity error is successfully
removed, or is at least negligible. In the bulk liquid region, the
homogeneity error is slightly overestimated, which is the same
as the uniform and adaptive cutoff simulations.

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

 2  3  4  5  6  7  8  9  10  11  12

γ*

rc*

T*=0.85

URC
ARC
LFC

URC+LPC
ARC+LPC
LFC+LPC

FIG. 6. (Color online) T ∗ = 0.85. The convergence of the surface
tension with respect to the cutoff radius. This figure presents the
results of three methods, namely, the uniform cutoff (URC) in red
(middle gray), the adaptive cutoff (ARC) in green (light gray), and
the long-range force correction (LFC) method in blue (dark gray).
The results with and without long-range pressure correction (LPC)
are shown together for comparison. The reference surface tension,
shown by the solid black line, is measured by the uniform cutoff
method with r∗

c = 13 using LPC. “The cutoff of the adaptive cutoff
method is r∗

c ” means that the control error E∗
C is the same as the

maximum error of a uniform cutoff simulation using r∗
c . Under this

setting, the maximum cutoff radius of the adaptive cutoff method is
the same as, or sometimes marginally larger than, r∗

c (no more than
r step
c ).

To test the effectiveness of the proposed adaptive cutoff and
long-range force correction methods, we measure the liquid-
vapor equilibrium density and the surface tension defined by

γ = 1

2

∫
Lx

[
px(x) − py(x) + pz(x)

2

]
dx, (30)
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FIG. 5. (Color online) T ∗ = 0.85. The convergence of the equilibrium gas and liquid densities with respect to the cutoff radius. All densities
are compared with the reference value (black solid line), namely, the liquid and vapor densities measured with a uniform cutoff radius r∗

c = 13.
The gray region denotes the statistical uncertainty of the reference value. This figure presents the results of three methods, namely, the uniform
cutoff (URC) in red (middle gray), the adaptive cutoff (ARC) in green (light gray), and the force correction (LFC) method in blue (dark gray).
“The cutoff of the adaptive cutoff method is r∗

c ” means that the control error E∗
C is the same as the maximum error of a uniform cutoff simulation

using r∗
c . Under this setting, the maximum cutoff radius of the adaptive cutoff method is the same as, or sometimes marginally larger than r∗

c

(no more than r step
c ).
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TABLE I. T ∗ = 0.85. The maximum RMS force error and
computational cost of three methods, namely, the uniform cutoff
(URC), the adaptive cutoff (ARC), and the long-range force correction
(LFC) method. The computational cost is the number of pairwise
interaction measurements, which should be machine independent.

r∗
c Method max E∗ Cost(×10−6)

3.5 URC 8.6 × 10−2 2.9
3.5 ARC 7.7 × 10−2 1.9
3.5 LFC 1.4 × 10−2 3.1
5.0 URC 2.2 × 10−2 7.8
5.0 ARC 2.0 × 10−2 4.2
5.0 LFC 1.9 × 10−3 7.9
6.0 URC 1.1 × 10−2 13
7.5 URC 4.5 × 10−3 24
7.5 ARC 4.3 × 10−3 12
7.5 LFC 2.3 × 10−4 24
10.0 URC 1.4 × 10−3 53
10.0 ARC 1.4 × 10−3 26
10.0 LFC 5.3 × 10−5 53

where px , py , and pz are x, y, and z component of the pressure.
The convergence of the properties of interest with respect to
the cutoff radius is considered.

In Figs. 5 and 6, the convergence of the equilibrium
liquid-vapor densities and surface tension are investigated
with respect to the increasing cutoff radius. The red, green,
and blue points with error bars denote the results of uniform,
adaptive cutoff methods, and the long-range force correction,
respectively. In Fig. 5 all densities are compared with the
reference value measured by the uniform cutoff simulation of
r∗
c = 13, with the statistical uncertainty denoted by the gray

region. The densities are connected by the the solid lines to
guide the eyes. In Fig. 6 the direct measures of surface tension
(data points connected by the dashed lines) are presented
with pressure corrected surface tension (data points connected
by solid lines). The same as for the reference densities,
the reference surface tension is measured by uniform cutoff
simulations at r∗

c = 13 with long-range pressure correction.
Table I presents the maximum RMS force error and the
computational effort of the mentioned methods at different
cutoff radii. The computational cost is given by the average
numbers of pairwise interactions per time step calculated by
the program, which is platform independent and serves as a
good benchmark.

D
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− u/2
d

d
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x
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B

FIG. 7. (Color online) The initial setup of cluster A and B. The
initial velocities are equal in magnitude but on opposite direction.

50

55

60

65

70

75

 40  45  50  55  60  65  70  75  80

y*

x*

URC 2.5
URC 5.0
URC 7.5
ARC 5.0
LFC 2.5

FIG. 8. (Color online) The center of mass trajectory of cluster
A. Uniform cutoff (URC) r∗

c = 2.5, 5.0, 7.5, adaptive cutoff (ARC)
r∗
c = 5.0, and long-range force correction (LFC) r∗

c = 2.5 are
investigated. The time interval between two neighboring squares on
the trajectory is 4.

The liquid and gas densities of the uniform and the adaptive
cutoff methods are almost identical at the same cutoff radius;
see Fig. 5. This observation is also true for the surface tension;
see Fig. 6. This indicates that controlling the maximum of
force error (see Table I) and introducing larger homogeneous
force error in the bulk liquid or gas regions will not disturb
the accuracy of the equilibrium densities and surface tension.
The adaptive cutoff method roughly saves 1/3–1/2 of the
computational cost (see Table I). The efficiency benefit of
the adaptive cutoff depends on the property of the system: If
the bulk regions dominate the system, and the inhomogeneity
produces large interfacial force error, then the adaptive cutoff
will save non-negligible computational resources. On the other
hand, if the interfacial region is computationally intensive, the
adaptive cutoff will not improve the efficiency greatly.

The long-range force correction method presents a much
better density convergence than the uniform and adaptive
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FIG. 9. (Color online) The COM distance between cluster A and
cluster B versus time. Uniform cutoff (URC) r∗

c = 2.5, 5.0, 7.5,
adaptive cutoff (ARC) r∗

c = 5.0, and long-range force correction
(LFC) r∗

c = 2.5 are investigated.
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cutoff simulations: The equilibrium densities converge when
the cutoff radius is only 3.5 (Fig. 5). The maximum RMS force
error is reduced by roughly one order of magnitude, comparing
to the uniform and adaptive cutoff methods (see Table I).
The computationally cost of the force correction method is
the same as the uniform cutoff methods at the same cutoff
radius.

The surface tension result of the force correction without
pressure correction is only slightly better than the uniform and
adaptive cutoff methods without pressure correction (Fig. 6).
With the long-range pressure correction, the convergence
of the surface tension of all methods are largely improved.
The force correction method converges at r∗

c = 3.5, and the
uniform (adaptive) cutoff methods converge at r∗

c = 5.0 ∼
6.0. The discrepancy between the corrected and uncorrected
tension is the amount of the correction, which decreases with
the increasing cutoff radius. However, even at a rather large
cutoff of r∗

c = 10, the amount of the correction is still not

negligible, which tells the users that the uncorrected tension
calculation is far from convergence.

Comparing the results of the force correction method at
r∗
c = 3.5 and uniform cutoff radius method at r∗

c = 6.0, the
force accuracy of the former method is a little worse than
the latter (see Table I), but the equilibrium density accuracy
is better and surface tension is equally good (Figs. 5 and
6). Since the homogeneity error dominates in the former
simulation and the inhomogeneity error dominates in the
latter, the above observation indicates that different natures
of error play different roles in the equilibrium densities. The
homogeneity error is actually the variation of the corrected
error force with its mean equal to zero [see Eq. (19)]. This
implies that the corrected error force may point to any direction
with the same probability and may self-cancel in a long time
average. The inhomogeneity error, in contrast, stems from the
nonvanishing mean value of the error force, which is always
pointing to one certain direction (the opposite direction of
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FIG. 10. (Color online) The colliding clusters (the first row), the RMS force error distribution of uniform cutoff with r∗
c = 5.0 (the second

row), the cutoff distribution of adaptive cutoff with r∗
c = 5.0 (the third row), and the magnitude of long-range force correction with r∗

c = 2.5
(the fourth row). The four columns corresponds to snapshots taken at t∗ = 12, 24, 36, 56, respectively.
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the density gradient) and has a low opportunity to be self-
canceled.

The precise calculation of the correction force needs the
precise knowledge of the density profile of the system [see
Eq. (3)]. Then the corrected force, in turn, improves the
accuracy of the density profile. It is possible that this feedback
loop does not converge, namely, the system is driven to a
totally wrong state by the corresponding incorrect correction
force. It may happen when the simulation starts very far from
the equilibrium, or when the fluctuation in the system is so
large that an accurate calculation of the density profile is
impossible. In our simulations, we do not observe any failure
of convergence. First, the system is far from the critical point,
and we always let the simulation starts form a good enough
configuration, for example, a snapshot of a simulation with
the uniform small cutoff and lower temperature, or a snapshot
from another force correction simulation. We also observe
that the equilibration of the force-corrected system is always
as fast as the system simulated by uniform and adaptive cutoff
methods. That means, at least in our simulation cases, the
force correction does not lead to more effort of equilibrating
the system.

B. Collision of nanoscale Lennard-Jones clusters

In this section we test the adaptive cutoff method and the
long-range force correction method in a dynamical problem:
collision of nanoscale Lennard-Jones clusters. Two initial
Lennard-Jones clusters, denoted by A and B, are set up in
the simulation box, each of which contains the same number
of particles NA = NB = 10 792, with a diameter of d∗ ≈ 27.
The initial velocity of the clusters are uA = 1

2 (u,0,0) and
uB = − 1

2 (u,0,0); see Fig. 7. The impact parameter D is
defined by the z coordinate difference between the center of
mass (COM) of the clusters. The dimensionless impact factor
defined by

x = D

d
(31)

is used to measure how far off-center the collision happens.
If x = 0 the collision is head-on while x = 1 the collision
is avoided. Reference [32] investigated a broad range combi-
nation of the velocity u and impact factor x, and identified
three major collision modes: the coalescence, the stretching
separation, and the shattering. The major modes were further
classified into a series submodes. In this paper we want
to study how the collision properties are affected by the
force precision; therefore, we focus on one special case:
u∗ = 2.2 and x∗ = 0.6, where the major collision mode is
the coalescence, and a poor precision of force calculation may
lead to a wrong major collision mode.

In Figs. 8 and 9 we present the trajectory of COM of
cluster A and the COM distance between the two clusters,
respectively. Three different cutoff radii of uniform cutoff
simulations are considered. It is obvious that the trajectory
of r∗

c = 2.5 is completely wrong: two clusters separate after
collision. The r∗

c = 5.0 trajectory is reasonably good, but the
COM distance converges only when r∗

c = 7.5. This means
the precision of force calculation is crucial in the study of
collision dynamics. Although the precision of the adaptive
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FIG. 11. (Color online) The angular velocity of cluster A versus
time. Uniform cutoff (URC) r∗

c = 2.5, 5.0, 7.5, adaptive cutoff
(ARC) r∗

c = 5.0, and long-range force correction (LFC) r∗
c = 2.5

are investigated.

cutoff method with r∗
c = 5 is the same as uniform cutoff

r∗
c = 5, the former produces a better trajectory. The long-range

force correction method that gets rid of the inhomogeneity
error also produces a correct trajectory, but the motion along
the trajectory is somewhat faster than other methods (see also
the angular velocity in Fig. 11).

The RMS force error of the uniform cutoff, the cutoff
distribution of the adaptive cutoff and the magnitude of the
correction force of long-range force correction method are
plotted in Fig. 10. The configuration of the two clusters
(colored gray and yellow) are presented on top of the figure
for reference. The same as in the liquid-vapor equilibrium
simulation, the force error dominates in the interfacial regions,
namely, the boundaries of the clusters. Inside and outside the
clusters, the error is much lower. The cutoff distribution of the
adaptive cutoff method is updated every 200 time steps. The
third row of Fig. 10 shows that the large cutoff region follows
the cluster boundaries perfectly. It is much broader than the
large error region, because it is refined by Eq. (17) to keep
track of the possible moving of the clusters. The correction
force is calculated every 10 time steps. From the fourth row of
Fig. 10, it also follows the moving boundaries of the colliding
clusters. In the bulk region of the clusters, the correction force
is negligible. It is not efficient to calculate the correction force
more frequently, because every force correction involves FFTs
that are comparatively expensive, especially when the cutoff
radius is small. In the present case, FFTs take up 50% of the
total computational cost.

The angular velocity is presented in Fig. 11. The force
correction result is not as precise as other simulations ex-
cluding a uniform rc = 2.5 simulation. This probably because
the value of the correction force is updated every 10 time
steps, so considering the moving of the clusters, it is not the
exact up-to-date value. Figure 12 presents the angular moment,
which is preserved by all uniform cutoff simulations. The
angular moment of the adaptive cutoff simulation, which does
not precisely preserve Newton’s third law, shows deviation,
but it is still around the correct value. However, the angular
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FIG. 12. (Color online) The angular moment of cluster A versus
time. Uniform cutoff (URC) r∗

c = 2.5, 5.0, 7.5, adaptive cutoff
(ARC) rc = 5.0, and long-range force correction (LFC) r∗

c = 2.5 are
investigated.

moment of the force correction simulation deviates from the
correct value by 1% at t∗ = 130.

The computational cost is given in Fig. 13, counted by
the number of calculated pairwise interactions. The relative
cost of the uniform cutoff method with r∗

c = 2.5, 5.0, 7.5 is
1:5.6:15.8. The adaptive cutoff with r∗

c = 5.0 saves about 18%
computational cost compared with the uniform cutoff method
with r∗

c = 5.0. The adaptive cutoff method does not save a lot
computational cost, because the radius of the spherical cluster
is about 13.5, the interfacial region (with a width of 5.0) is
roughly 3/4 of the total volume. If larger clusters are studied,
the performance of the adaptive cutoff method will be better.
The long-range force correction with r∗

c = 2.5 calculates the
same number of interactions as the uniform cutoff r∗

c = 2.5.
However, as discussed before, 1/2 of the total computational
effort is spent on calculating the correction force. This extra
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FIG. 13. (Color online) The computational cost versus time.
Uniform cutoff (URC) r∗

c = 2.5, 5.0, 7.5, adaptive cutoff (ARC) r∗
c =

5.0, and long-range force correction (LFC) r∗
c = 2.5 are investigated.

The computational cost is counted by the number of calculated
pairwise interactions.

expense is worthwhile because it improves the simulation
results significantly.

IV. CONCLUSIONS AND DISCUSSION

In this paper we developed the force error estimate for
nonbonded short-range interactions in the inhomogeneous
molecular systems. The RMS force error can be expressed by
a summation of a homogeneity error, an inhomogeneity error,
and a correlation error. In the present paper, we considered only
the cases in which the correlation error does not dominate.
In an inhomogeneous system, the basic observation of the
error distribution was that the homogeneity error dominates
the bulk material regions, whereas the inhomogeneity error
dominates the interfacial regions where the density changes
within the length scale of a few molecules. The inhomogeneity
error can be more than one order of magnitude larger than the
homogeneity error. Two methods were proposed to improve
the efficiency and accuracy of the simulation. The adaptive
cutoff method uses a smaller cutoff radius for the low-error
bulk regions and larger cutoff radius for the high-error
interfacial regions, so that the RMS force error is uniformly
distributed over the simulation region. The long-range force
correction method corrects the force computation by the mean
error force, so that the inhomogeneity error is removed from
the system. It should be noted that the proposed error estimate
and correction methods can be used only for periodic systems.

We studied the liquid-vapor equilibrium and the collision of
nanoscale Lennard-Jones cluster to demonstrate the validity of
the proposed methods. All simulation results were compared
with the uniform cutoff simulations, in which very large
cutoff radii were used to achieve real convergence. With the
same maximum RMS force error, the precision of physical
properties of the adaptive cutoff method was the same as the
uniform cutoff method. From the efficiency point of view,
the adaptive cutoff simulation saved 34%–50% computational
cost in liquid-vapor simulation and 18% in the cluster collision
simulation. The advantage of the adaptive cutoff method
depends on the system: If the computational costs of the bulk
regions rather than the interfacial region dominate the system,
the adaptive cutoff method will save a notably large amount of
the computational resources.

In the liquid-vapor equilibrium simulation, the force cor-
rection method improved the force accuracy by one order of
magnitude without large extra computational expense. The
physical properties converged at cutoff r∗

c = 3.5, whereas the
uniform cutoff method converged at much larger cutoff radii
(r∗

c = 6.0 for surface tension and r∗
c = 10.0 for equilibrium

densities). We also concluded that the homogeneity error and
the inhomogeneity error play different roles in the precision of
equilibrium liquid-vapor densities: The inhomogeneity error
is more harmful even though its magnitude is smaller than
the homogeneity error. In the collision cluster case, the force
correction methods produced high-precision trajectory at a
very small cutoff radius r∗

c = 2.5, with which the uniform
cutoff method was qualitatively wrong. However, due to the
inconsistency of the cluster movement and the correction
force computation, small deviations of angular velocity and
momentum were observed.
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In the systems tested by the present paper, the computational
load of the error estimate is small compared to that of the
short-range interaction. However, it should be noticed that the
cost of the error estimate scales as O(N log N ). If the system
only has short-range interaction that scales as O(N ), the load
of the error estimate may become comparatively expensive
when the system is large and eventually overwhelms the total
computational cost as the system size grows to infinity. If
the system also needs a long-range electrostatic calculation
that is usually treated by the O(N log N ) scaling Ewald-type
algorithms [22–24], the extra load of the error estimate is
likely to be acceptable. We want to stress again that the main
research interest of the present paper is the error estimate, the
proposed adaptive cutoff, and long-range correction methods.
The examples are used to demonstrate the validity of these
theoretical results. The applications of the error estimate is
more general than the studied examples, because we assumed
only the interaction is short range and treated by the cutoff

method. Other kind the short-range interaction (not only the
Lennard-Jones but also the Buckingham interaction, the direct
part of the Ewald family algorithms, etc.), and other kinds
of inhomogeneity (not only planar and merging spherical
interfaces) can be easily studied by the error estimates and the
proposed methods. However, it is impossible to test all possible
cases within one paper. The error study of more realistic sys-
tems requires the error estimates of the long-range algorithms
and careful comparisons with the short-range error. Since the
present paper is focusing on the short-range interactions, and
space is limited, they will be given in future work.
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