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SUMMARY

A high-order discontinuous Galerkin time-domain (DGTD) method for Maxwell’s equations for dispersive
media of Drude type is derived and then used to study the coupling of 2D silver nanowires, which have
potential applications in optical circuits without the restriction of diffraction limits of traditional dielectric
waveguides. We have demonstrated the high accuracy of the DGTD for the electromagnetic wave scattering
in dispersive media and its flexibility in modelling the plasmon resonant phenomena of coupled silver
nanowires. Specifically, we study the cross sections of coupled nanowires, the dependence of the reso-
nance on the number of nanowires with more resolved resonance information than the traditional FDTD
Yee scheme, time-domain behaviour of waves impinging on coupled silver nanowires of a funnel configu-
ration, and the energy loss of resonant modes in a linear chain of circular and ellipse nanowires. Copyright
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1. INTRODUCTION

There has been increasing research activities in the area of nano-optics for applications in op-
tical circuits and nanoscale devices. The motivation is to overcome the diffraction limit
of light propagation in traditional dielectric optical fibres and photonic waveguides such as
CROWs [1]. Metal waveguides and metallic nanostructures have attracted much attention in
providing such a solution to overcome the diffraction limit using so-called ‘low-dimensional
optical waves’ [2]. The low-dimensional optical waves are produced by surface polariton
plasmon (SPP) waves along metal/dielectric interfaces or metal films between dielectrics.
The SSP wave is a type of evanescent waves confined to interfaces, which result from
the interaction of electromagnetic waves and electrons in resonance in metals. Such an
interaction also indicates a strongly frequency dependence for the metal permittivity �(�). In
general, the real part of the � will change sign as the frequency � crosses the plasmon
frequency �p. Such a frequency dependence brings challenges to accurate numerical studies
of the SPP waveguides. In Reference [3], it was shown using numerical approximation based
on Mie series that electromagnetic energy could be transported successfully through linear
chain of silver nanoparticles. Such a transport was made possible from the near field interaction
between nanowires through the coupled dipole or plasmon modes [4]. Recently, Gray et al.
has used a finite difference time-domain (FDTD) Yee scheme to study the transient
propagation of light through coupled silver nanowires [5]. Other numerical studies of coupled
nanowires have been done with the solution of frequency domain Maxwell equations
[6–10].

Due to the small scales of the nanostructures and evanescent nature of the SPP waves, ac-
curate modelling of optical circuits demands high-order accuracy of the numerical methods,
especially the phase accuracy for light propagation. In this paper, following Reference [11], we
will derive a high-order discontinuous Galerkin time-domain (DGTD) method for electromagnetic
waves in dispersive media of Drude type, which will then be applied to study silver nanowires.
Previous studies on DGTD for electromagnetic scattering can be found in References [12, 13].
To our knowledge, this is the first time the DGTD method for dispersive Maxwell’s equations is
used to study a dispersive metal system. Our numerical study of coupled silver nanowires with this
high-order method has produced clearer picture of the resonant frequency information than
those by the second-order FDTD Yee scheme employed in Reference [5]. We believe this is a
direct result of the high-order accuracy in our DGTD method, which treats the geometric in-
formation of the nanowire explicitly with a finite element-type mesh, and the frequency
dependency of the dielectric constant with the ADE method [11, 14], and the high-order
polynomial basis functions to represent the exponentially variant field near the interfaces. The
commonly used Yee scheme, while simple to be implemented on a Cartesian finite
difference grid, lacks the necessary accuracy near material interfaces between dielectric
and metals.

Using the high-order DGTD method, we will carry a systematic study of the plasmon reso-
nant coupling of silver nanowires. In Section 2, we will derive the DGTD method for Maxwell’s
system in a Drude-type dispersive medium. Section 3 will contain the study of the cross sections
of coupled silver nanowires and the dependence of the resonance on the number of nanowires
in a linear chain [15] while Section 4 will present the energy loss of resonant modes in a
linear chain of different type of silver nanowires [3, 16]. Finally, Section 5 will give the
conclusion.
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310 X. JI, W. CAI AND P. ZHANG

2. UNIFIED FORMULATION FOR DISPERSIVE MAXWELL’S EQUATIONS
AND DGTD

2.1. Unified formulation for dispersive Maxwell’s equations in physical regions and UPML
regions

The systems considered are lossy and dispersive, we consider a single-pole Drude medium [17],
whose relative electric permittivity can be written as

�r (�) = �r,∞ − �2
p

�2 + i��

where �p is the plasma frequency, � is the damping constant, �r,∞ is the relative electric permittivity
at infinite frequency. The frequency dependence of permittivity implies a time convolution between
the displacement field D and the electric field E, the auxiliary differential equation (ADE) method
[11, 14] is used to address this problem with the help of polarization currents.

We consider a non-dimensionalized form of Maxwell’s equations for TE cases (in two-
dimensional problems surface plasmons can only be excited in TE cases [18]) in physical regions
and UPML regions [11] by introducing non-dimensionalized variables:

x

L
→ x,

y

L
→ y,

ct

L
→ t

Z0H→H, E → E
(1)

where L is the reference length associated with a given problem, and c is the speed of light in the
free space, Z0 = (�0/�0)

1/2 is the free-space impedance.
The augmented Maxwell’s equations with auxiliary polarization currents for the new

augmented variables U = (�r Hz, �r,∞Ex , �r,∞Ey, Qz, Px,2, Px,3, Px,4, Py,2, Py,3, Py,4)T are

�U
�t

+ ∇ · (ĀU) = S (2)

where Ā and S are given below. We can divide the above conservation system into two parts

�U(1)

�t
+ ∇ · (AU(1)) = S(1) (3)

�U(2)

�t
= S(2) (4)

where U(1)=(�r Hz, �r,∞Ex , �r,∞Ey)
T, U(2)=(Qz, Px,2, Px,3, Px,4, Py,2, Py,3, Py,4)T, U=(U(1),

U(2))T, S= (S(1),S(2))T and A = (Ax , Ay), where

Ax =

⎛
⎜⎜⎝

0 0 1/�r,∞

0 0 0

1/�r 0 0

⎞
⎟⎟⎠ , Ay =

⎛
⎜⎜⎝

0 −1/�r,∞ 0

−1/�r 0 0

0 0 0

⎞
⎟⎟⎠ (5)
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Meanwhile, Ā is given as

Ā = ( Āx , Āy)

where

Āx =
(

Ax 03×7

07×3 07×7

)
, Āy =

(
Ay 03×7

07×3 07×7

)

Here 0n×m denotes zero matrix with n rows andm columns. The source terms S(1) and S(2) represent
body forces, e.g. polarization currents,

S(1) = −

⎛
⎜⎜⎜⎝

�r d0,z Hz + �r d1,z Qz,

�r,∞c1,x Ex + �2
pPx,4 + �2

pc1,x Px,3 + c2,x Px,2,

�r,∞c1,y Ey + �2
pPy,4 + �2

pc1,y Py,3 + c2,y Py,2

⎞
⎟⎟⎟⎠ (6)

S(2) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Hz,

�2
pPx,3 + �r,∞Ex − �x Px,2

Px,4

Ex − �Px,4

�2
pPy,3 + �r,∞Ey − �y Py,2

Py,4

Ey − �Py,4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(7)

where

c1,x = �y − �x , c2,x = − �x (�y − �x )

c1,y = �x − �y, c2,y = − �y(�x − �y)

d0,z = �x + �y, d1,z = �x�y

(8)

The equations above are reduced to the usual Maxwell’s equations in the physical media when the
UPML parameters �x = 0, �y = 0. The P’s and Q’s above are the auxiliary polarization variables
used to handle the temporal convolution of the electromagnetic fields of the UPML regions and the
dispersive constitutive relations. We usually allow the UPML losses �x (x) to have a polynomial
profile [14]

�x (x)= (l/�)m�x,max (9)

where l is the distance from the interface between the UPML and the physical solution domain,
and � is the thickness of the UPML. The definition of �y(y) is similar. The reflection factor
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312 X. JI, W. CAI AND P. ZHANG

for the UPML is

R(�) = exp{−2��x,max� cos �/[�r,∞(m + 1)]} (10)

where � is the incident angle, and � is the UPML’s characteristic wave impedance.

2.2. Discontinuous Galerkin time-domain (DGTD) method

To solve Equation (2) in general geometries, we divide the solution domain � into
non-overlapping quadrilateral and/or triangular elements, let Th be a discretization of the solution
domain. On each element K ∈Th , �r,∞ and �r are assumed to be constant. Each
physical element K is then mapped by an isoparametric transformation [19] onto a reference
element I , which is either a reference square [−1, 1]2 or a reference triangle {(x, y)|, 0�x, y�1,
0�x + y�1}.

We will use a finite-dimensional space of smooth functions (polynomials for DGTD methods,
denoted by P(K )) to approximate the variable U. Defining

Vh := {v ∈ L1(�) | v|K ∈P(K ) ∀K∈Th} (11)

and

V 10
h := Vh × Vh × · · · × Vh︸ ︷︷ ︸

10

(12)

We can obtain the DGTD space discretization of the hyperbolic system Equations (3) and (4) as
follows. Find U∈ V 10

h such that for all vh ∈ Vh

∫
K

(
�U(1)

�t
vh − S(1)vh − AU(1) · ∇vh

)
dx +

∫
�K

hK (U(1),−,U(1),+)vh ds = 0 (13)

∫
K

(
�U(2)

�t
vh − S(2)vh

)
dx= 0 (14)

where n̂K = (nx , ny) is the outward unit normal to �K , U(1),− and U(1),+ are defined as

U(1),±(x)= lim
�→0+ U(1)(x ± �n̂k)

as U is in general discontinuous across �K . The numerical flux hK (U(1),−,U(1),+) is an
approximation to n̂K · AU(1)|�K on the faces of the element K , and should satisfy the follow-
ing consistent condition:

hK (U(1),U(1)) = n̂K · AU(1)|�K (15)
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We can obtain hK (U(1),−,U(1),+) by solving a local Riemann problem [11, 20], the numerical flux
hK (U(1),−,U(1),+) for the 2D TE Maxwell’s equations is

hK (U(1),−,U(1),+) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

[Y (nx Ey − ny Ex ) + Hz]− + [Y (nx Ey − ny Ex ) − Hz]+
Y− + Y+

−ny
[ZHz + (nx Ey − ny Ex )]− + [ZHz − (nx Ey − ny Ex )]+

Z− + Z+

nx
[ZHz + (nx Ey − ny Ex )]− + [ZHz − (nx Ey − ny Ex )]+

Z− + Z+

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
hHz
K

hEx
K

h
Ey
K

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

where Z± and Y± are the local impedance and admittance, respectively, defined as

Z± = 1/Y± = (�±
r /�±r )1/2

and U(1) = (�r Hz, �r,∞Ex , �r,∞Ey)
T.

2.3. Space discretization

Let {	 j (x)}Nj=1 be the basis function of the polynomial space P(K ) defined in Reference [11], we
can expand the magnetic field Hz , and the electric fields Ex and Ey in terms of the basis functions
	 j (x),

Hz,N (x, t) =
N∑
j=1

Hz, j	 j (x) (16)

Es,N (x, t) =
N∑
j=1

Es, j	 j (x), s = x, y (17)

where Hz, j and Ex, j , Ey, j are functions of time.We also projectU(2) to the function space expanded
by the basis functions,

Qz,N (x, t) =
N∑
j=1

Qz, j	 j (x) (18)

Ps,k,N (x, t) =
N∑
j=1

Ps,k, j	 j (x), k = 2, 3, 4, s = x, y (19)

Setting vh =	 j (x) in Equations (13) and (14) on each element K , a system of ODES can be
obtained for the expansion coefficient Equations (16) and (19).
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We define the unknown vectors on each element K

Hz = (Hz,1, Hz,2, . . . , Hz,N )T

Es = (Es,1, Es,2, . . . , Es,N )T, s = x, y

Qz = (Qz,1, Qz,2, . . . , Qz,N )T

Ps,k = (Ps,k,1, Ps,k,2, . . . , Ps,k,N )T, k = 2, 3, 4, s = x, y

and also the basis function vector

/= (	1, 	2, . . . , 	N )T

Using Gauss quadrature formulas to evaluate the integration in Equations (13) and (14) and assuming
�r,∞, �r , �x , �y constant on each element K , we obtain the following ODEs for the unknown
vectors:

dHz

dt
= (�r M)−1MxEy − (�r M)−1MyEx

− (�r M)−1
∫

�K
hHz
K (U(1),−

N ,U(1),+
N )/(x) ds + 1

�r
SHz
N (20)

where

SHz
N = (SHz

1 , SHz
2 , . . . , SHz

N )T

SHz
j = −�r d0,z Hz, j − �r d1,z Qz, j

dEx

dt
= −(�r,∞M)−1MyHz − (�r,∞M)−1

∫
�K

hEx
K (U(1),−

N ,U(1),+
N )/(x) ds + 1

�r
SEx
N (21)

where

SEx
N = (SEx

1 , SEx
2 , . . . , SEx

N )T

SEx
j = −(�r,∞c1,x Ex, j + �2

pPx,4, j + �2
pc1,x Px,3, j + c2,x Px,2, j )

dEy

dt
= (�r,∞M)−1MxHz − (�r,∞M)−1

∫
�K

h
Ey
K (U(1),−

N ,U(1),+
N )/(x) ds + 1

�r,∞
S
Ey
N (22)

where

S
Ey
N = (S

Ey
1 , S

Ey
2 , . . . , S

Ey
N )T

S
Ey
j = −(�r,∞c1,y Ey, j + �2

pPy,4, j + �2
pc1,y Py,3, j + c2,y Py,2, j )

dQz, j

dt
= Hz, j (23)
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and for w = x, y

dPw,2, j

dt
= �2

pPw,3, j + �r,∞Ew, j − �wPw,2, j (24)

dPw,3, j

dt
= Pw,4, j (25)

dPw,4, j

dt
= Ew, j − �Pw,4, j (26)

Here, Mi j is the local mass matrix defined on each element K as

Mi j =
∫
K

	i (x)	 j (x) dx (27)

and Mx
i j and My

i j are two local stiffness matrices defined as

Mx
i j =

∫
K

�	i (x)
�x

	 j (x) dx, My
i j =

∫
K

�	i (x)
�y

	 j (x) dx (28)

3. CROSS SECTIONS OF AG NANOWIRES ARRAYS
AND TIME-DOMAIN BEHAVIOUR

In this section, we will first study the cross sections and time-domain behaviour of coupled plasmon
resonant modes for coupled Ag nanowires. The integration path for the calculation of the cross
sections [17] is selected to be a circle of large radius r∞, which will encircle all the Ag cylindrical
nanowires. The circle does not have to be very large as all Ag nanowires are placed in the non-
absorbing free space.

After choosing the circle with a radius r∞, we compute the time-averaged Poynting vector S
along this circle by

Ssca = 1
2 Re{Esca ×H∗

sca}, Sext = 1
2 Re{Ei ×H∗

sca + Esca ×H∗
i }

where subscript sca represents scattering, i represents input and ext represents extinction, all the
variables are functions of frequency, obtained by Fourier transform from the time-domain. Then
we compute the following values:

Wsca =
∫
A
Ssca · êr dA, Wext = −

∫
A
Sext · êr dA, Wabs =Wext − Wsca

where abs represents absorption, and the integration is done along the circle and êr is the outward
unit normal to the circle. Finally, we get the cross sections:

Cext = Wext

Ii
, Cabs = Wabs

Ii
, Csca = Ws

Ii

where Ii is the incident irradiance.
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For the computation, we use curved triangles to describe the circle exactly, a curved triangle
can be mapped by an isoparametric transformation [19] onto a reference triangle {(x, y)|, 0�x,
y�1, 0�x + y�1}. We set the UPML parameters R(0)= exp(−16),m = 3, and fourth-order
basis functions (except in the example of exponential convergence analysis) are used for the
space discretization and a fourth-order Runge–Kutta method for the time integration. Finally,
a pulse input described in Reference [21] is used for computing cross sections.

3.1. An isolated nanowire

First we discuss TE scattering off a single Ag nanowire with radius r = 25 nm, in which case the
analytical solution is known [17]. We will demonstrate an exponential convergence of the DGTD
method. All results presented in this paper use Drude parameters from Lynch–Hunter [22]

�r,∞ = 8.926, �p = 11.585 eV, � = 0.203 eV

Figure 1 and Table I give a convergence analysis of the DGTD method. An exponential conver-
gence is obtained in Figure 1 and it is more accurate than the FDTD results from Reference [5]
while in Table I a pth order convergence error is obtained that L2 error= O(�x p). Figure 2 gives
a comparison of the analytical cross sections and numerical cross sections on a mesh �x = 5 nm
with a 5 cell UPML with a thickness of 25 nm.

2 3 4
10−5

10−4

10−3

10−2

10−1

100

n
1

er
ro

r

Figure 1. Exponential convergence: error of SCS as a function of the order of basis functions
(single Ag nanowire r = 25 nm, �x = 2.5 nm).

Table I. Convergence analysis of SCS of one Ag cylinder
with radius r = 25 nm.

Mesh size L2 error Order

�x = 10 nm 3-cell UPML 3.57e-2 —
�x = 5 nm 5-cell UPML 1.33e-3 4.75
�x = 2.5 nm 10-cell UPML 9.531e-5 3.80
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300 350 400 450 500
0

50

100

150

200

λ /nm

σ 
/n

m

Scattering
Absorption
Extinction

Figure 2. Comparison of analytical (smooth curves) and DGTD numerical (symbols, �x = 5 nm) cross
sections for a single circular Ag nanowire of radius 25 nm.
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Figure 3. Cross sections for two r = 25 nm circular Ag nanowires.

3.2. Linear arrays of Ag nanowires

We consider two kinds of illuminations here, illumination normal to the axis of Ag nanowires and
parallel to it. Here r is the radius of nanowires and d is the distance between the centres of Ag
nanowires.

• Normal illumination
Figure 3 presents cross sections for two r = 25 nm nanowires with two different spacings

d . For the case of d/r = 2.2, in addition to the one weak maximum close to the resonance of
an isolated nanowire, an additional stronger resonance due to the interaction of the nanowires
is present. When d/r = 3, the separations is increased, as a result, cross sections are similar
to that of isolated nanowire case but with bigger magnitude. Figure 4 presents cross sections
for four r = 25 nm nanowires with different spacing d . Compared to two nanowire case, cross
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Figure 4. Cross sections for four r = 25 nm circular Ag nanowires.
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Figure 5. Cross sections for two r = 15 nm circular Ag nanowires.

sections for the four nanowire case are larger, and the stronger resonance is wider and red-
shifted more.
Figure 5 shows the results for two nanowires with smaller radius, r = 15 nm, our results

show clearly distinguished secondary resonance, which is missing in the FDTD results from
Reference [5]. This is due mainly to the higher-order accuracy of the DGTD method which
captures the interaction through the evanescent fields.

• Parallel illumination
Retardation is essential for the case of parallel incident illumination [23]. We will consider

nanowire with r = 25 nm and d/r = 2.2. Figure 6 gives scattering cross section for different
nanowire numbers. Figure 7 give the dependence of the main resonance on the numbers of
nanowires, the main resonance red-shifted when nanowire number increases.
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Figure 6. Scattering cross section.
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Figure 7. Collective plasmon resonance frequency for r = 25 nm circular Ag
nanowire arrays of different lengths.

3.3. Time-domain behaviour of complex structures

To demonstrate the capability of the DGTDmethod, we apply it to study the time-domain behaviour
of light in a funnel of nanowires feeding into a double chain array, a configuration of same parameters
suggested in Reference [5]. Figure 8 gives time sequence of the magnitude of the electric field with
a 
 = 448 nm pulse. Figure 9 plots time-averaged flux across two representative lines, the results
agree qualitatively with the results in Reference [5]. Here, we have used L = 25 nm for the length
non-dimensionalization and the origin of co-ordinate is placed at the centre of the channel mouth.
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Figure 8. Time sequence of the magnitude of the electric field as a pulse of light interacts with the
funnel only (left), and with a funnel and a double chain attached: (a) T = 25; (b) T = 30; (c) T = 35;

and (d) T = 40 (non-dimensionalized time).
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Figure 9. Time-averaged flux, Sx (y) is obtained along a y-direction line 0.8 from
the last nanowire centres of the double chain, Sy(x) is along an x-direction line 0.8

from the upper chain nanowire centres.

4. ENERGY LOSS OF RESONANT MODES IN A LINEAR CHAIN

An important issue for the study of coupled nanowires for circuit application is the attenuation
of energy transport. Here we investigate the electromagnetic energy transport via linear metal
chains in this section. First, we find the resonance frequency �c of one nanowire by calculating its
scattering cross section, then use a pulse centred at that frequency to illuminate the first nanowire

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2007; 69:308–325
DOI: 10.1002/nme



DGTD SIMULATION OF PLASMON RESONANT COUPLING 321

only in a linear chain (illumination direction is shown in the inset of pictures). Next, we record
the time history of the fields at some selected space locations, using the Fourier transformation in
time, we can compute the intensity I (r, �c) = |E(r, �c)|2 at those space locations. As a result, the
transmission losses can be extracted by a least-square fit of an exponential form I = I0 exp(−�x)
[3]. Here, the signal-damping coefficient � gives an estimate of energy loss of resonant mode along
a linear chain. In all the examples computed here a chain of ten nanowires is used, we take the field
values at identical position of each nanowire shown by the black circles in the insets, the radius of
circular nanowire is 25 nm while the overall size of ellipse nanowire is 50 nm× 25 nm.

Figure 10 gives the decay of field intensity of circular nanowire case, the resonance frequency is
346.9847 THz. The vertical axis is intensity at log-scale normalized to the first nanowire’s intensity,
the signal-damping coefficient � is shown in Table II. It can be seen that d/a = 3 is the optimum
case for the least attenuation per nanometer, where a is the radius of the circular nanowire.

Figure 11 gives the decay of field intensity of ellipse nanowires with the short axis of the ellipse
aligning with the direction of the chain, the resonance frequency is 333.7157THz for the given
illumination direction. The vertical axis is intensity at log-scale normalized to the first nanowire’s
intensity, the signal-damping coefficient � is shown in Table III, which shows that d/a = 3 is again
the optimum case, where a is the ellipse radius in the chain direction.
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Figure 10. Decay of field intensity in the chain direction, we take the values at identical position of
each nanowire shown by the black circle in the inset, the arrow is the illumination direction. The

parameter d/a is the ratio of inter-nanowire (centre–centre) distance and nanowire radius.

Table II. Signal-damping coefficient � for the nanowire
chain for different ratios of inter-nanowire distances

and nanowire radius.

d/a �(nm)−1 �(nanowire)−1

2.2 0.0179 0.9869
2.5 0.0187 1.1687
3 0.0138 1.0348
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Figure 11. Decay of field intensity in the chain direction, we take the values at iden-
tical position of each ellipse shown by the black circle in the inset, the arrow is the
illumination direction. The parameter d/a is the ratio of inter-nanowire (centre–centre)

distance and ellipse radius in the chain direction.

Table III. Signal-damping coefficient � for the ellipse
chain for different ratios of inter-nanowire distances

and ellipse radius (in the chain direction).

d/a �(nm)−1 �(nanowire)−1

2.2 0.0239 0.6568
2.5 0.0207 0.6477
3 0.0177 0.6634

Figure 12 gives the decay of field intensity along a chain of ellipse nanowire with the long axis
of the ellipse aligning with the direction of the chain, the resonance frequency is 363.8638 THz.
Again, the vertical axis is intensity at log-scale normalized to the first nanowire’s intensity. The
signal-damping coefficient � is shown in Table IV and d/a = 3 is the optimum case, where a is
the ellipse radius in the chain direction.

Finally, we consider a chain of ellipse nanowires rotated 45◦. Figure 13 gives the decay of field
intensity while the resonance frequency is 363.8638THz. The vertical axis is intensity at log-scale
normalized to the first nanowire’s intensity. The signal-damping coefficient � is shown in Table V

and d/a = 3 is the optimum case, where a =
√

(r2a + r2b )/2, ra, rb are the long and short axis of
the ellipse nanowire, respectively.

Discussion of results. Based on the simulation results above, Figure 14 shows the optimum decays
obtained for d/a = 3 for four different chains of circular and ellipse nanowires. It can be seen in the
case of linear chain of ellipse nanowires, the one where the long axis of the ellipse aligning with
the chain direction has the least decay rate, � = 0.0106 (nm)−1 while the one with the short axis
of the ellipse aligning with the chain direction has the largest decay rate, � = 0.0177 (nm)−1. The
improvement of the rate is about 40. The chain of ellipse nanowire rotated 45◦ is about the same as
the chain of circular nanowires, namely, � = 0.0140 (nm)−1 and � = 0.0138 (nm)−1, respectively,
which implies chain of rotated ellipse nanowire can be identified with a chain of effective circular
nanowires.
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Figure 12. Decay of field intensity in the chain direction, we take the values at iden-
tical position of each ellipse shown by the black circle in the inset, the arrow is the
illumination direction. The parameter d/a is the ratio of inter-nanowire (centre–centre)

distance and ellipse radius in the chain direction.

Table IV. Signal-damping coefficient � for the ellipse
chain for different ratios of inter-nanowire distances

and ellipse radius (in the chain direction).

d/a �(nm)−1 �(nanowire)−1

2.2 0.0158 0.8688
2.5 0.0144 0.8994
3 0.0106 0.7935
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Figure 13. Decay of field intensity in the chain direction, we take the values at identical position of
each ellipse shown by the black circle in the inset, the arrow is the illumination direction. The pa-

rameter d/a is the ratio of inter-nanowire (centre–centre) distance and a =
√

(r2a + r2b )/2, here ra, rb
are the long and short axis of the ellipse nanowire, respectively.
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Table V. Signal-damping coefficient � for the ellipse
chain for different ratios of inter-nanowire distances
and a =

√
(r2a + r2b )/2, here ra, rb are the long and

short axis of the ellipse nanowire, respectively.

d/a �(nm)−1 �(nanowire)−1

2.2 0.0201 0.6983
2.5 0.0167 0.6596
3 0.0140 0.6649
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Figure 14. Decay of field intensity in the chain direction with d/a = 3.

5. CONCLUSIONS

We have demonstrated high-order accuracy of the DGTD method of dispersive Maxwell’s
equations for the study of the plasmon resonant coupling of silver nanowires. The capability of the
DGTD for handling dispersive materials, arbitrary nanowire geometry, and evanescent fields of the
plasmon coupling allows us to obtain clearly resolved information about the resonant frequencies of
coupled metal nanowires than the traditional Yee scheme FDTD method. Also, we have shown that
the energy decay rate along chain of nanowires depends on the orientation of the ellipse nanowires.
We plan to extend these results to 3D cases where the nanowire has finite length.
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