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Abstract

A two-dimensional model for the simulation of a binary dendritic growth with convection has been developed in order
to investigate the effects of convection on dendritic morphologies. The model is based on a cellular automaton (CA) tech-
nique for the calculation of the evolution of solid/liquid (s/l) interface. The dynamics of the interface controlled by tem-
perature, solute diffusion and Gibbs–Thomson effects, is coupled with the continuum model for energy, solute and
momentum transfer with liquid convection. The solid fraction is calculated by a governing equation, instead of some
approximate methods such as lever rule method [A. Jacot, M. Rappaz, Acta Mater. 50 (2002) 1909–1926.] or interface
velocity method [L. Nastac, Acta Mater. 47 (1999) 4253; L. Beltran-Sanchez, D.M. Stefanescu, Mat. and Mat. Trans.
A 26 (2003) 367.]. For the dendritic growth without convection, mesh independency of simulation results is achieved.
The simulated steady-state tip velocity are compared with the predicted values of LGK theory [Lipton, M.E. Glicksmanm,
W. Kurz, Metall. Trans. 18(A) (1987) 341.] as a function of melt undercooling, which shows good agreement. The growth
of dendrite arms in a forced convection has been investigated. It was found that the dendritic growth in the upstream direc-
tion was amplified, due to larger solute gradient in the liquid ahead of the s/l interface caused by melt convection. In the
isothermal environment, the calculated results under very fine mesh are in good agreement with the Oseen–Ivanstov solu-
tion for the concentration-driven growth in a forced flow.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

During the last two decades, experimental techniques [1–3], analytical models [4–9] and numerical models
have been developed to understand the dendritic growth and microstructure formation in alloy solidification.
Deterministic and stochastic methods, which are the two main methods in numerical models, have been
applied to simulate microstructure evolution. Phase field models (PFM) [10–15], where the s/l interface is
described by phase-field variable, have been known as one of the most adequate deterministic models for
0307-904X/$ - see front matter � 2006 Elsevier Inc. All rights reserved.
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directly simulating the dendritic growth. Other notable tracking methods of s/l interface, that can be used for
simulating dendritic growth, are described in details in [16,17]. The stochastic methods such as the Monte
Carlo (MC) or the cellular automaton (CA) method have been developed for the prediction of macroscopic
grain structure. The MC method [18] was first used to reproduce the selection of grains in the columnar zone
and columnar-to-equiaxed transition (CET). However, MC method suffers from the lack of physics basis and
thus cannot quantitatively analyze the effects of the various physical phenomena. In order to overcome this
drawback, the CA model that accounts for the dendritic growth kinetics has been applied to simulate the
solidification grain structures and CET [19–21]. Brown et al., [22] and Sasikumar et al., [23] tried to simulate
thermal dendrites using the CA models. The simulation of growth for solute dendrites was also reported in
Ref. [24–27]. All of these works focused on the evolution of grain structure without convection.

It has been known that forced convection in a melt has effect on dendrite growth morphologies. Becker-
mann et al., [28] have applied the phase field model to study the effects of melt convection on the growth
of thermal dendrite in a pure melt. Recently, Lan et al., [29] have coupled Wheeler–Bottinger–McFadden
(WBM) model [13] with the melt flow to study the growth of the solute dendrites, and they compared the sim-
ulation results with the classic Oseen–Ivantsov solution for the concentration-driven growth in a forced flow.
Shin et al., [30] applied modified CA model to study the effects of forced convection on the morphologies of
solutal dendrites, but no quantitative comparison with theoretical results is given.

In the present study, a two-dimensional model of a binary dendritic growth with melt convection has been
developed to investigate the effects of convection on dendritic morphologies. A continuum model for energy,
solute, and momentum transfer with liquid convection, which are valid in the entire domain, was derived using
the volume-averaged technique. The CA technique was used to calculate the evolution of s/l interface. Mesh
independency was obtained for dendritic growth without convection and the tip velocity was compared with
LGK theory. The growth of dendrite arms in a forced convection has been investigated. In the isothermal
environment, the calculated results were compared with the Oseen–Ivanstov solution for the concentration-
driven growth in a forced flow.

The organization of the paper is as follows. The mathematical description of the model is presented in Sec-
tion 2. In Section 3, the model without melt convection is tested for mesh size independency and is compared
with LGK model. The effects of melt convection on the dendritic growth is also studied, and the results is com-
pared with Oseen–Ivantsov solution. Conclusions are given in Section 4.

2. Mathematical description of the model

The mathematical description of the dendritic solidification process of an alloy in two-dimensional domain
(X) is depicted in Fig. 1. The s/l interface evolves in time and has to be found as part of the solution.

The alloy solidification is governed by the evolution of the temperature T(t,x), concentration C(t,x) and
melt velocity vl(t,x), which have to satisfy several boundary conditions at the moving s/l interface. Here we
assume that the solid grain is fixed and rigid such that the velocity in solid phase vs is zero, and that the solid
and liquid density are equal. wk indicates the restriction of a quantity w on phase k and wki indicates the
restriction of wk on s/l interface. The equations that describe the physics of the solidification process are

• Microscopic conservation equations, valid at a point within solid phase (k = s) or liquid phase (k = l) for
any conserved quantity w, can be expressed as
Liquid

n
Solid (black color)

S/L interface

Fig. 1. Schematic representation of solidification domain X.
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o

ot
ðqkwkÞ þ r � ðqkwkvkÞ � r � J k ¼ 0; ð1Þ
where q and v are the density and velocity, respectively. w and J for the mass, momentum, energy and solute
conservation are defined by
w ¼ 1; J ¼ 0 for mass

w ¼ v; J ¼ �P for momentum

w ¼ h; J ¼ �P � v� q for energy

w ¼ C; J ¼ �j for solute

8>>><>>>: ; ð2Þ
where P is the total stress tensor, h the enthalpy, q the heat flux and j the solute flux.
• Microscopic conservation equations on s/l interface for any conserved quantity w, can be expressed as
X

k

ð _mkwk � nk � J kÞ ¼ 0: ð3Þ
Here _mk ¼ qkðvk � wÞ � nk denotes the mass transport of convection relative to the movement of s/l inter-
face, where w is the s/l interface velocity and nk is the normal vector of s/l interface that is pointing out
of phase k.

• Local equilibrium at the s/l interface
Csi ¼ kCli; ð4Þ

where k is the solute equilibrium partition coefficient.

• Assume that the s/l interface is in local equilibrium, the temperature Ti on s/l interface is defined by
T i¼
D T li ¼ T si ¼ T eq

l þ ðCli � C0Þml � Cjf ðu; hÞ; ð5Þ

where C0 is the initial concentration, T eq

l is the equilibrium liquidus temperature at the initial concentration,
ml is the liquidus slope, iC is the Gibbs–Thomson coefficient, j is the local curvature of s/l interface, h is the
angle of the preferential growth direction with respect to a reference axis, u is the angle of the normal to the
s/l interface with respect to the same axis, and the anisotropy of the surface tension is described by a func-
tion f(u,h) proposed in [27]. In Eq. (5), the s/l interface is assumed to be rough so that the kinetic time of
transfer of molecules between solid and liquid is very fast compared to the characteristic diffusion time of
heat or solute. Therefore, the kinetic undercooling is not accounted for in the model. Moreover, the s/l
interface is assumed to be in heat equilibrium (Tli = Tsi) since the transfer time of heat is fast compared
to the characteristic diffusion time of solute for the growth of solutal dendrites.

The two-domain model (1)–(5) for dendritic growth is not easy to solve, since the s/l interface should be
tracked explicitly, especially for the complicated s/l interface. To overcome this shortcoming, a volume-aver-
aged technique [31] are applied to derive the averaged conservation equations, which are valid in the entire
domain. Particularly, the tracking of s/l interface is avoided since the governing equation of solid fraction
is obtained by this technique.

For any space position x, an averaging volume V(x) is defined such that the shape and volume jV(x)j of
V(x) is not dependent of x. For example, V(x) is the uniformly rectangular mesh and x is the center of the
mesh. Vk(t,x) denotes the phase k occupied in V(x). Ai(t,x) denotes the s/l interface in V(x). The notation
‘‘jj’’ denotes the area in two dimensions or length in one dimension. The notation jV(x)j is replaced by jVj,
since the area of V(x) is not dependent of x.

The volume average of a quantity w of phase k is defined by
hwkiðt; xÞ¼
D 1

jV j

Z
V kðt;xÞ

wðt; yÞdy: ð6Þ
The volume fraction �k(t,x) of phase k is defined by choosing w = 1 in (6), i.e.,
�kðt; xÞ¼
D jV kðt; xÞj

jV j : ð7Þ
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The intrinsic volume average of w of phase k is defined by
hwki
kðt; xÞ¼D �khwki: ð8Þ
bwk ¼

D
w� hwki

k denotes the fluctuation of w. wkiðt; xÞ indicates the average of a quantity w of phase k over the
s/l interface:
wkiðt; xÞ¼
D 1

jAiðt; xÞj

Z
Aiðt;xÞ

wkðt; yÞdy: ð9Þ
Averaging (1) in V(x) yields an averaged conservation equation in phase k:
o

ot
ð�khqki

khwki
kÞ þ r � ð�khqki

khvkikhwki
kÞ þ r � hqk v̂k

bwki � r � ð�khJ kikÞ þ
1

jV j

Z
Aiðt;xÞ

qkwkðvk � wÞ � nk

� J k � nkdA ¼ 0; ð10Þ
for any (t,x) such that V(x) contains phase k. The physical meaning of (10) is illustrated in Appendix A. Under
the assumptions in Appendix C, we get

• Mixed averaged conservation equation for energy
qCp
oT
ot
þ qCpr � ðT �lhvlilÞ ¼ r � ðKrT Þ þ qL

o�s

ot
; ð11Þ
where Cp is the heat capacity, K the thermal conductivity, and L the latent heat of solidification. The fol-
lowing boundary condition at the walls of the domain X is used:
�KrT � n ¼ hðT � T1Þ; ð12Þ
where n is the normal to the wall, h is the coefficient of heat transfer by conduction, and T1 is the environ-
ment temperature.

• Mixed averaged conservation equation for solute
oC
ot
þr � ð�lhvlilhClilÞ ¼ r � ðDl�lrhClilÞ þ r � ðDs�srhCsisÞ; ð13Þ
where
C ¼ �shCsis þ �lhClil; ð14Þ
denotes the total solute in V(x). Dl and Ds are the solute diffusion coefficient in liquid and solid phase,
respectively. Zero flux boundary conditions are applied at the four walls of the domain X. Assume that
the solute is well-mixed in the liquid phase of an averaging volume (Assumption 10), i.e.,
Cli ¼ hClil; ð15Þ
one obtains hCsis from (14),(15) if Cli is given.
• Mixed mass conservation equation
r � ð�lhvlilÞ ¼ 0: ð16Þ

• Averaged liquid momentum conservation equation
oðql�lhvlilÞ
ot

þr � ðql�lhvlilhvlilÞ þ �lrhpli
l ¼ r � fllfrð�lhvlilÞ þ ½rð�lhvlilÞ�tgg �Md

l ; ð17Þ
where pl is the pressure in the liquid phase and the dissipative interfacial stress term is defined by [28]
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Md
l ¼

D hll

�2
s

d2
�lhvlil: ð18Þ
Here ll are the liquid viscosity coefficient, d is the thickness of s/l interface, and h is chosen to be 2.757. The
drag term Md

l vanishes in the single-phase (�s = 0 or 1).

Averaging Gibbs–Thomson Eq. (5) over Ai(t,x) yields
T ¼ T eq
l þ ðCli � C0Þml � Cjf ð�u; hÞ; ð19Þ
by Assumption 5 and
1

jAiðt; xÞj

Z
Aiðt;xÞ

jf ðu; hÞ � jf ð�u; hÞ; ð20Þ
where j and �u are the average of j and u over Ai(t,x), respectively. By Assumption 16 and average Theorem
(B4), we obtain
n̂s¼D �
r�s

jr�sj
¼ ðcos �u; sin �uÞ; j ¼ r � �ns: ð21Þ
Averaging (4) over Ai(t,x) yields
Csi ¼ kCli: ð22Þ

Since the solid and liquid velocity on s/l interface vanish (Assumption 13), the solute conservation Eq. (3)
(w = C, J = �j = qD$C) on Ai(t,x) can be written as
X

k

1

jAiðt; xÞj

Z
Aiðt;xÞ

Ckw � nk þ DkrCk � nkdA ¼ 0: ð23Þ
By (22), (23), Assumption 11 and average theorem (B5) in Appendix B, we obtain
ðCli � CsiÞ�ws ¼ DsrhCsis � �ns þ DlrhClil � �nl; ð24Þ

where
�nk ¼
D 1

jAiðt; xÞj

Z
Aiðt;xÞ

nkdA ¼ �ns; k ¼ s; l; ð25Þ
by Assumption 15 and
�ws ¼
1

jAiðt; xÞj

Z
Aiðt;xÞ

w � nsdA: ð26Þ
Using the average theorem (B3), we obtain the increment of solid fraction
o�s

ot
¼ 1

jV j

Z
Aiðt;xÞ

w � nsdA ¼ jAiðt; xÞj
jV j �ws: ð27Þ
where jAi(t,x)j can be obtained by the assumption that the s/l interface in V(x) is straight line.
The model will be closed if five unknown variables (T, C, hvlil,hplil,�s) are solved from Eqs.

(11),(13),(16),(17) and (27), respectively. The other auxiliary variables Cli, Csi, hClil, hCsis and �ws are obtained
from Eq. (19), (22), (15), (14) and (24), respectively.

3. Model validation

3.1. Dendritic growth without convection

To show the validity of the model, the dendritic growth without melt convection for a Fe–0.6 wt% C alloy
is simulated. The initial temperature and concentration are T eq

l ¼ 1490 �C and C0 = 0.6 wt%, respectively.
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The environment temperature T1 is 298 K. Other thermophysical properties used in our simulation is listed in
Table 1. The square mesh n · n is generated from the square domain X.

To illustrate mesh independency, a set of numerical simulations were performed. The wall of simulated
domain X with the size of 1 · 10�4 m was cooled under a constant heat transfer coefficient h = 10 W/m�2 K�1.
A single grain was generated at the center of the domain, with the composition kC0. The concentration field
are shown in Fig. 2 after 0.2 s in different mesh size. It is shown that the dendritic morphology will tend to
stable form with the reduction of mesh size.

The comparison with the LGK model was made for Fe-0.6% C alloy. This theory predicts a unique velocity
and radius of the dendrite tip, at a given undercooling and concentration of the melt far away from the den-
drite tip. To keep a constant undercooling and concentration of the melt far away the dendrite tip, the size of
the simulated domain was chosen at least 3 times larger than the expected dendrite size, and the dendrite was
nucleated at the center of the left wall. The initial temperature of the entire domain was that of the initial und-
ercooling. If the left wall of the simulated domain was insulated and the latent heat of solidification was
extracted from the other walls, the undercooling far away from the dendrite tip was kept almost constant.
The grid size of the domain X of size 2 · 10�4 m is 0.5 lm. The comparison of steady-state tip velocity of
our model with the LGK theory at different melt undercooling is shown in Fig. 3. It is seen that the numerical
results agree well with the analytical ones.

3.2. Dendritic growth with convection

Fig. 4 illustrates a square physical system X of size 1 · 10�4 m for free dendritic growth with forced con-
vection. It is assumed that melt flows into the domain with a bulk flow velocity of Uin from left to right.
The top and the bottom are assumed to be the symmetrical boundaries. A seed was nucleated at the center
of X. Thermophysical properties for Fe-0.6% C alloy listed in Table 1 is used in simulation.

In order to compare the dendritic growth without melt convection, the simulation conditions for free den-
dritic growth with melt convection are same as Sec.3.1. Fig. 5 shows the predicted growth morphologies and
concentration field after 0.2 s, where uniform inflow velocity Uin is 5 · 10�4 m/s. Compared with the dendritic
Table 1
Thermophysical properties for Fe-0.6 wt% C alloy used in simulation [25]

L (J/kg) q (J/m3) K (W/m K) cp (J/kg K) T eq
l (�C)

2.70 · 105 7300 30 800 1490
C (Km) k DL (m2/s) Ds (m2/s) mL (�C/%)
1.9 · 10�7 0.34 2.0 · 10�9 5.0 · 10�10 �80

Fig. 2. Simulated concentration field C after 0.2 s, (a) n = 200, (b) n = 300.
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Fig. 4. Illustration of the physical system X for free dendritic growth with melt convection.

0 2 4 6 8 10 12
10

–7

10
–6

10
–5

10
–4

10
–3

Δ T (K)

T
ip

 v
e

lo
c

it
y

 (
m

/s
)

°
°

°

°

°
LGK  model 

°   Our model 
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morphologies without melt convection (see Fig. 2), it is found that the dendritic arm in the upstream direction
grows fast, whilst the growth of the dendrite in the downstream direction is much delayed. In addition, the
dendrite arms perpendicular to the bulk flow direction are slightly defected in the upstream direction. This
behavior is called ‘‘the wash away action’’. The solute rejected in the liquid ahead of the s/l interface is washed
away from the upstream to downstream direction, and steep concentration gradient in the upstream direction
is formed, as illustrated in Fig. 6, which leads to faster growth in the upstream direction. An extension of the
Ivantsov solution to the convective growth for pure alloy is derived by Bouissou and Peclec [9]. Similarly, in a
isothermal environment, the Oseen–Ivantsov solution for a steady-state concentration-driven growth in a
forced flow can be written as
D ¼ P c expðP c � P f Þ
Z 1

1

expf�P cgþ P f ½2þ
R g

1
gðnÞ=

ffiffiffi
n
p

dn� g�gffiffiffi
g
p dg; ð28Þ



Fig. 5. The predicted growth morphologies and concentration field after 0.2 s.
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where Pf and Pc are the flow and solute Peclet number defined by UR/(2Dl) and VR/(2Dl), respectively. Here
U, R and V denote the bulk melt velocity Uin, tip radius and tip velocity in the upstream direction, respectively.
The function g(n) is defined by
gðnÞ ¼
ffiffiffi
n
p

erfcð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Re n=2

p
Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðpReÞ

p
½expð�Re=2Þ � expð�Re n=2Þ�

erfcð
ffiffiffiffiffiffiffiffiffiffi
Re=2

p
Þ

; ð29Þ
where Reynold number Re is defined by URq/ll. The driving force for solute dendritic growth is defined by
D ¼ Cli � C1l
Cli � Csi

; ð30Þ
where C1l is the liquid concentration far away from the tip. In a constant undercooling environment
DT = 3 K, a seed is nucleated in the center of X of size 1 · 10�4 m. The comparison between simulation values
and Oseen–Ivantsov solution is illustrated in Table 2, where DPc and DSI are obtained by Oseen–Ivantsov solu-
tion (28) and the definition of driving force (30), respectively. In order to estimate the local tip radius, a fourth-
order polynomial was used to fit the dendrite tip in the upstream direction within a half of primary arm
distance. For the coarse mesh (n = 200), the relative error of the simulated driving force DSI is about 26%.



Table 2
Comparison between simulation values and Oseen–Ivantsov solution, Error = jDPc � DSIj/DPc

n U (m/s) V (m/s) R (m) Pc (�) Pf (�) Re Cli (wt%) DSI (�) DPc (�) Error (�)

200 5 · 10�4 4.87 · 10�5 9.841 · 10�7 0.012 0.123 0.006 0.633 0.079 0.058 26%
300 5 · 10�4 5.47 · 10�5 8.331 · 10�7 0.0114 0.104 0.005 0.629 0.072 0.061 16%
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The relative error was decreased to be 16% for the fine mesh (n = 300), which shows that the agreement be-
tween the model and Oseen–Ivantsov solution will be achieved with the reduction of mesh size.
4. Conclusions

A quantitative CA model for simulating a binary dendritic growth with convection is presented. Heat con-
duction, solute diffusion and melt flow, which are valid in the entire simulation domain, are coupled with the
evolution of s/l interface in the model. Mesh independency of simulation results is achieved for the dendritic
growth without melt convection. Moreover, the simulated tip velocity agrees well with the predicted values of
the LGK theory for free dendritic growth in large range of undercooling melt. Compared with the dendritic
growth without convection, the phenomena of ‘‘the wash away action’’ is rather obvious in the free dendritic
growth in the forced convection, which leads to faster growth in the upstream direction. Although it is difficult
to obtain mesh independency for simulating the convective growth in an non-isothermal environment due to
the restriction of computational time, the simulated steady-state driving force of convective growth in an iso-
thermal environment agrees well with Oseen–Ivantsov solution with the reduction of mesh size. To obtain
more precise comparison with the theoretical results, it is necessary to use adaptive technique to reduce the
computational time.
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Appendix A. Physical meaning of (10)

From Assumption 1, we have
hq̂k
bwkik ¼ 0; hqk v̂k

bwkik ¼ hqki
khv̂k

bwkik: ðA1Þ
Under the assumption of (A1), the physical meaning of every term in (10) is illustrated as follows:

• The increment of w in Vk(t,x)
o

ot
ð�khqki

khwki
kÞ ¼ o

ot
1

jV j

Z
V k

qkwkdV
� �

: ðA2Þ
• The amount of flux from Vk(t,x) through o Vk(t,x)nAi(t,x), where oVk(t,x) denotes the boundary of
Vk(t,x),
r � ð�khqki
khvkikhwki

kÞ þ r � ðhqk v̂k
bwkiÞ ¼

1

jV j

Z
oV kðt;xÞnAiðt;xÞ

qkwkvk � nkdA: ðA3Þ
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• The action of J on oVk(t,x)nAi(t,x)
r � ð�khJ kikÞ ¼
1

jV j

Z
oV kðt;xÞnAiðt;xÞ

J k � nkdA: ðA4Þ
• The action of J of phase k on Ai(t,x)
1

jV j

Z
Aiðt;xÞ

J k � nkdA: ðA5Þ
• The increment of w in Vk(t,x) due to the fluid velocity relative to the s/l interface velocity w in V(x)
1

jV j

Z
Aiðt;xÞ

qkwkðvk � wÞ � nkdA: ðA6Þ
Appendix B. Averaging theorem

For any (t,x), such that Ai(t,x) is contained in V(x), we have
owk

ot

� �
¼ ohwki

ot
� 1

jV j

Z
Aiðt;xÞ

wkw � nkdA; ðB1Þ

hrwki ¼ rhwki þ
1

jV j

Z
Aiðt;xÞ

wknkdA: ðB2Þ
Especially,
o�k

ot
¼ 1

jV j

Z
Aiðt;xÞ

w � nkdA; ðB3Þ

r�k ¼ �
1

jV j

Z
Aiðt;xÞ

nkdA; ðB4Þ

hrwki ¼ �krhwki
k þ 1

jV j

Z
Aiðt;xÞ

bwknkdA; ðB5Þ

1

jV j

Z
Aiðt;xÞ
hwki

k
nkdA ¼ �hwki

kr�k: ðB6Þ
Appendix C. Assumptions of the model

Assumption 1. Density in solid and liquid phase (qs,ql) are constant, respectively, i.e., qs ¼ ql¼
D

q.

Assumption 2. Thermal conductivity coefficients in solid and liquid phase (Ks,Kl) are constant, respectively,
i.e., Ks ¼ K l¼

D K. Moreover, the liquid thermal capacity Cp is constant.

Assumption 3. The effect of stress work on the transport of energy is omitted, i.e.,
r � ðP k � vkÞ ¼ 0: ðC1Þ
Assumption 4. Fourier thermal conductivity law holds, i.e.,
qk ¼ �KkrT k; k ¼ l; s: ðC2Þ
Assumption 5. The solid and liquid phases within an averaging volume are in thermal equilibrium, i.e.,
T ¼D T ki ¼ hT kik; k ¼ s; l: ðC3Þ
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Assumption 6. The enthalpy in liquid phase are assumed to vary with temperature, and the difference of aver-
aged liquid and solid enthalpy is given, i.e.,
hl ¼ CpT l

L¼D hhlil � hhsis

(
: ðC4Þ
Assumption 7. The thermal fluctuation can be omitted, i.e.,
Z
Aiðt;xÞ

bT knkdA ¼ 0; k ¼ l; s: ðC5Þ
Assumption 8. Ficker diffusion law holds, i.e.,
jk ¼ �qkDkrCk; k ¼ l; s: ðC6Þ
Assumption 9. Solute diffusion coefficients in solid and liquid phase are constants, respectively.

Assumption 10. The solute is well-mixed in the liquid phase of an averaging volume, i.e.,
Cli ¼ hClil: ðC7Þ
Assumption 11. The solute fluctuation can be omitted, i.e.,
R
Aiðt;xÞ

bCknkdA ¼ 0R
Aiðt;xÞðCk � CkiÞðw � nkÞdA ¼ 0R
Aiðt;xÞðrCk � hrCkikÞ � nkdA ¼ 0

8>>>><>>>>: ðC8Þ
Assumption 12. The pressure equilibrium holds in the liquid phase of an averaging volume, i.e.,
�pli ¼ hpli
l
: ðC9Þ
Assumption 13. The velocity in the solid phase and liquid velocity on the s/l interface are zero, i.e.,
vs ¼ 0; vli ¼ 0: ðC10Þ
Assumption 14. Dispersive flux is omitted, i.e.,
hqk v̂k
bwki ¼ 0; w ¼ C; h; v: ðC11Þ
Assumption 15. Liquid phase can be seen as Newtonian fluid, the fluctuation of shear stress at the s/l interface
is omitted, and average liquid friction at the s/l interface is proportional to the liquid viscosity ll and velocity
gradient, i.e.,
sl ¼ llðrvl þ ðrvlÞtÞ; ðC12ÞZ
Aiðt;xÞ
ðsl � sliÞ � nkdA ¼ 0; ðC13Þ

sli �
�r�s

jr�sj

� �
¼ hll�s

hvlil

d
: ðC14Þ
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The analytical solution of one-dimensional phase field model
�s ¼
1

2
1� tanh

n
2d

� �
ðC15Þ
is used to approximate $�s in the dissipative interfacial stress term Md
l ¼ 1

jV j
R

Aiðt;xÞ sl � nldA � sli � r�s. In Eq.

(C15), n is the distance to the s/l interface and d is the thickness of s/l interface.

Assumption 16. The s/l interface in an averaging volume V(x) is approximated by a straight line.
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