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Abstract. The Doi-Hess equation that describes the evolution of an orientational dis-
tribution function is capable of predicting several rheological features of nematic poly-
mers. Since the orientational distribution function becomes sharply peaked as poten-
tial intensity increases, powerful numerical methods become necessary in the relevant
numerical simulations. In this paper, a numerical scheme based on the moving grid
techniques will be designed to solve the orientational distribution functions with high
potential intensities. Numerical experiments are carried out to demonstrate the effec-
tiveness and robustness of the proposed scheme.
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1 Introduction

The rheological behavior of rod-like polymers in the nematic phase is analyzed by the
Doi-Hess kinetic theory (Doi [5], Hess [9]). A homogeneous population of equal rods is
described with an orientational distribution function (ODF). The evolution of the ODF is
modeled by the Smoluchowski equation (Doi and Edwards [4]). Once the ODF is known,
the rheological response will be determined. It was demonstrated in [10] that under shear
flows this theory can give a variety of behaviors for the dynamics of the rod population.
The existing numerical schemes include a spectral type method with spherical harmonic
functions as basis functions, see, e.g., [7,10,12]. More precisely, the expansion of the ODF
in spherical harmonics is truncated at some level lmax, and the Smoluchowski equation is
reduced to a system of lmax(lmax +3)/2 first-order ordinary differential equations through
a Galerkin procedure.
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The intensity of the excluded volume potential U is proportional to the concentration
of polymers. When the intensity increases, the ODF becomes sharply peaked and behaves
more or less like a δ function. In this case, it is expected that the accuracy of the spherical-
harmonic scheme with fixed lmax is degraded. Since the accuracy and efficiency of the
spectral Galerkin methods rely highly on the solution regularity, higher-order spherical-
harmonic functions have to be used in the spectral expansion. However, this may involve
a large amount of computational time. In fact, earlier works did not explore high-intensity
situations due to computer limitations ( [6, 7, 11]).

The main purpose of this paper is to apply the moving grid technique to resolve the
ODF with large potential intensities. In the past few years, it has been demonstrated that
the moving mesh methods are very useful in solving problems with singularity, layers, or
spikes (see, e.g., [13, 14, 17]). In this paper, we will also pay particular attention to the
rheological features and phase transitions with high potential intensities.

The finite element method on a sphere [15] is used where the basis function is carefully
chosen to guarantee the conservation of the ODF. Using the properties of the ODF, we
will propose a special moving mesh method for solving the Smoluchowski equation on a
sphere. In this respect, it is useful to introduce a vector as the average orientation of
the population, the director [4], that serves as a reference for mesh moving. The goal of
moving mesh methods is to resolve the small scale of the ODF by clustering more grid
points in the smallest scale areas, i.e., around the director. To this end, a two-step scheme
is designed: Firstly find the director, rotate the mesh according to the director orientation;
this is called 0-d moving; secondly, adjust the mesh according to the numerical solution for
ODF; this is called 1-d moving. It is pointed out that the mesh on the sphere is structured
in this approach.

The present paper is built up as follows. The Doi-Hess model is introduced in Section
2. The finite element method on the sphere is presented in Section 3. The moving mesh
strategy will be described in Section 4. Numerical experiments for high intensities are
given in the final section.

2 The Smoluchowski equation

In recent years, the microscopic model has been introduced to study polymeric fluids suc-
cessfully. Especially, for the rod-like polymer, the Doi-Hess model (Doi [4]) is the most
commonly used model, which is capable of predicting several rheological features of rod-like
polymers in the nematic phase. In the Doi model, the orientation of a rod is determined
by a pseudo-vector u on the unit sphere, or equivalently by two angles θ and φ. A homo-
geneous population of rod-like, rigid, extremely high-aspect-ratio molecules is described
with an orientational distribution function Ψ(u, t). The ODF gives the probability density
that a rod is oriented along u at time t. The evolution of the ODF is modeled with the
Smoluchowski equation or the Fokker-Planck equation [4]:

∂Ψ

∂t
=

1

De
R · (RΨ + ΨRVev) −R · (u × κ · uΨ), on Ω = S2 (2.1)
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where De is the Deborah number and without loss of generality, is assumed to be 1 as
in [6], R is the rotational gradient operator [1] defined by R := u × ∂

∂u
, κ is the velocity

gradient tensor, Vev is an effective excluded-volume potential which is treated with the
Maier-Saupe form:

Vev(u) =
3

2
U

∫

Ω
|u × u′|2Ψ(u′)du′. (2.2)

In (2.2), U is the non-dimensional potential intensity. Here, we consider the simple shear
flow in Cartesian coordinates (x, y, z) with the velocity in the direction of x, the gradient
of the velocity in the direction of z (κ13 = G), and the vorticity in the direction of y. Then
κ becomes

κ =





0 0 G
0 0 0
0 0 0



 , (2.3)

where G is the non-dimensional shear rate. Moreover, the orientational distribution func-
tion Ψ satisfies

Ψ > 0 and

∫

Ω
Ψdu = 1. (2.4)

3 The finite element method on sphere

We will project the linear basis functions of the triangles on the polyhedron onto the
spherical geodesic triangles. The vertices (anti-clockwise) of a spherical geodesic triangle
K are denoted by A, B and C. The plane triangle Kp has the same vertices. For any
point P on K, the intersection point of OP and Kp is denoted by W . We define the basis
functions on the spherical geodesic triangle K

λ1(u) =
1

D
(w · a2 × a3), λ2(u) =

1

D
(w · a3 × a1), λ3(u) =

1

D
(w · a1 × a2), (3.1)

where

a1 =
−→
OA, a2 =

−−→
OB, a3 =

−−→
OC, u =

−−→
OP, w =

−−→
OW, D = (a1 · a2 × a3),

w(u) = Du/u · d, d = a1 × a2 + a2 × a3 + a3 × a1.

With the given shape functions, we can obtain the finite element space on the sphere,

Hh :=
{

Ψh ∈ C0 (Ω) : Ψh|K ∈ span {λ1, λ2, λ3} ,∀K
}

. (3.2)

Then we have

∇λ1(u) =
1

x · d
(a2 × a3 − λ1(u)d),

Rλ1(u) =
1

D
(w × a2 × a3) −

1

D
λ(u)(w × d).

(3.3)
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Similarly, ∇λ2(u), ∇λ3(u) and Rλ2(u), Rλ3(u) can be obtained. It is easy to verify that

λ1(u) + λ2(u) + λ3(u) ≡ 1,

Rλ1(u) + Rλ2(u) + Rλ3(u) ≡ 0.
(3.4)

Denote by H1(Ω) the Hilbert space on the sphere with the norm

‖f‖2
H1(Ω) := ‖f‖2

L2(Ω) + ‖Rf‖2
L2(Ω). (3.5)

Then Hh defined by (3.2) is a subspace of H1(Ω). The weak formation of the equation
(2.1) reads as follows: Find Ψ ∈ H1(Ω) such that

∫

Ω

∂Ψ

∂t
vdu +

1

De

∫

Ω
RΨ · Rvdu

= −
1

De

∫

Ω
ΨRV (Ψ) · Rvdu +

∫

Ω
Ψ(u× κ · u) · Rvdu, ∀v ∈ H1(Ω).

(3.6)

Following [3], (3.6) can be approximated in Hh semi-implicitly using a three-step Runge-
Kutta scheme: Find Ψn+1

h ∈ Hh such that

1. Step 1: ∀vh ∈ Hh(Ω),

∫

Ω

Ψ∗,1
h − Ψn

h

∆t/3
vhdu +

1

De

∫

Ω
RΨ∗,1

h · Rvhdu

= −
1

De

∫

Ω
Ψn

hRV (Ψn
h) · Rvhdu +

∫

Ω
Ψn

h(u × κ · u) · Rvhdu.

(3.7)

2. Step 2: ∀vh ∈ Hh(Ω),

∫

Ω

Ψ∗,2
h − Ψn

h

∆t/2
vhdu +

1

De

∫

Ω
RΨ∗,2

h · Rvhdu

= −
1

De

∫

Ω
Ψ∗,1

h RV (Ψ∗,1
h ) · Rvhdu +

∫

Ω
Ψ∗,1

h (u × κ · u) · Rvhdu.

(3.8)

3. Step 3: ∀vh ∈ Hh(Ω),

∫

Ω

Ψn+1
h − Ψn

h

∆t
vhdu +

1

De

∫

Ω
RΨn+1

h · Rvhdu

= −
1

De

∫

Ω
Ψ∗,2

h RV (Ψ∗,2
h ) · Rvhdu +

∫

Ω
Ψ∗,2

h (u × κ · u) · Rvhdu.

(3.9)
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Figure 1: An illustration of the triangulation.

4 Moving mesh strategy

It is noted that the orientational distribution function Ψ(u, t) satisfies (2.4). Since u is a
pseudo-vector, we have the following result:

Ψ(u, t) = Ψ(−u, t), (4.1)

which indicates that the ODF is an even function. In the absence of flow, we can obtain
from the Smoluchowski equation (2.1) the equilibrium ODF expressed as a Boltzmann
distribution:

Ψ(u) = C exp (−Vev(u)) , (4.2)

where C is the normalization constant. At equilibrium, nematics have uniaxial symmetry
around a certain direction denoted by a unit vector n called the “director” that describes
the average orientation of the population. There is reflection symmetry with respect to
the plane normal to n. As the parameter U increases, the ODF converges to a δ function.
In this instance, Ψ(u, t) has nonzero values only in a small area near the director. These
features will be used in designing our special moving mesh finite element method.

4.1 Prepare meshes on a sphere

In this section we will construct a special mesh on spheres. An axis of symmetry is chosen
as the polar axis of the spherical mesh and its two opposite ends are set as poles of the
mesh. Consequently, the latitudes and longitudes can be defined for the spherical mesh.
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Without loss of generality, we may choose the initial director as the polar axis of the
spherical mesh. Firstly divide the sphere into (N + 1)E grids using N latitudes and E
longitudes. Then connect the catercorners of any quadrangle in the mesh to obtain two
triangles. This leads to a triangulation consisting of NE + 2 nodes and 2NE elements,
see Fig. 1 for a simple illustration. The resulting mesh is non-uniform but structured. In
the triangulation, the mesh is dense and has axial symmetry around the director. Such a
mesh can be used to approximate the solution effectively.

4.2 Moving mesh scheme

Our special mesh is designed specifically for the problem concerned. In particular, the
mesh is determined by the director. Our scheme consists of two steps: Firstly, find the
director, and rotate the polar axis of the mesh into that direction. This step is called 0-d
moving; secondly, redistribute the latitudes according to the ODF. This step is called 1-d
moving. The first step makes the dense area of the special mesh generated by Section
4.1 just around the director and the second step can cluster more grid points in the small
scale areas.

4.2.1 0-d moving

Set the polar axis of the mesh as d1, the new director as d2, the angle between d1 and d2

as φ, and the normal vector of the plane constructed by d1 and d2 as n. Then we have

n =
d1 × d2

|d1 × d2|
, cos φ = d1 · d2, sin φ =

√

1 − cos2 φ.

We propose to use the following map to rotate the polar axis into the director:

rnew = rold cos φ + n(n · rold)(1 − cos φ) + (n× rold) sin φ

= rold(d1 · d2) + n(n · rold)(1 − d1 · d2) + (n× rold)
√

1 − (d1 · d2)2,

which is called the rotation formula [8]. It rotates the vector rold by a counterclockwise
angle φ about an axis n.

4.2.2 1-d moving

Due to the approximate symmetry of the ODF about the director, it is natural to only
move the latitudes to the areas near the two poles. The adapted latitude distribution can
be viewed as the image of a transformation:

φ = φ(ξ), φ = (φ0, . . . , φN )T , ξ = (ξ0, . . . , ξN )T .

It is natural to set the integral of the ODF about the longitude as the monitor function:

m(φ) =

∫ 2π

0
Ψ(θ, φ)dθ. (4.3)
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Our goal is to construct a quasi-uniform latitude distribution under the new metric,
{φ∗

0, . . . , φ∗

N}. Without loss of generality, we may assume 0 < φi < π (0 < i < N)
and φ0 = φ∗

0 = 0, φN = φ∗

N = π. The equidistribution principle gives

ξ(φ) =

∫ φ

0
m(t)dt/

∫ π

0
m(t)dt := F (φ). (4.4)

We will call F (φ) the latitude distribution function. The new latitude distribution can
be obtained by inverting the latitude distribution function. More precisely, φ∗

i = F−1(ξi),
with ξi = i/N, 1 ≤ i ≤ N − 1. Theoretically, finding the inverse can be done by using the
Newton method. However, high accuracy for the inverse is not necessary here so we just
need use a piecewise linear approximation for F . This yields a fast and easy approach for
finding the inverse.

4.2.3 Update the solution on the new mesh

After the mesh redistribution in the physical domain Ω, we need to update the solution Ψ
on the new mesh. As proposed by Li et al. [13,14], we introduce a virtual time variable τ
to make the mesh moving process a linear homotopy from the old mesh to the new mesh
as τ goes from 0 to 1. Thus the mesh at virtual time τ is u(τ) := uold + τδu. In the finite
element space, Ψh is expressed as Ψh(u; τ) =

∑N
i=1 Ψi(τ)λi

τ (u, τ), where λi
τ (u, τ) is the

basis function of the finite element space. Direct calculation shows that

dλi
τ (u)

dτ
= −δu · ∇uλi

τ (u), (4.5)

where δu :=
∑N

i=1 δuiλ
i. It is expected that the solution updating does not introduce

errors of higher orders. To this end, we require that the variant of Ψh(·; τ) to τ will vanish
in the test function space:

〈

dΨh(·; τ)

dτ
,Φh

〉

= 0, ∀Φh ∈ Hh. (4.6)

Using the form of Ψh(·; τ) and (4.5), we get

N
∑

i=1

∫

Ω

{

dΨi

dτ
λi

τλ
j
τ − Ψiδu · ∇uλi

τλ
j
τ

}

du = 0, 1 ≤ j ≤ N. (4.7)

To match the order of accuracy for the PDE solver, the above ODE system (4.7) can be
solved by a three-step Runge-Kutta scheme similar to (3.7)-(3.9).

To summarize, the total moving mesh procedure is as follows:

1. Let t0 = 0. The initial director is given as m0. Construct a non-uniform mesh on
the sphere (Section 4.1) and make 1-d moving (Section 4.2.2) to obtain the initial
adaptive mesh using the initial value Ψ0

h;
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2. Use the finite element method on the sphere given in Section 3 to compute the

numerical solution Ψ
(n+1)
h and the director mn+1 at time step tn+1;

3. Use 0-d moving and 1-d moving to obtain the direction and the magnitude of the
movement for u. The information is used to move the mesh;

4. Update Ψ
(n+1)
h on the new mesh (Section 4.2.3) and go to step 2.

5 Results and discussion

The Doi equation is solved for the time-dependent orientational distribution function of
rod-like molecules in a nematic monodomain with high potential intensities. The initial
setting is a simple shearing flow with director orientation of various angles with respect to
the shearing plane. We find that at low and intermediate shear rates the director can be
attracted either to a time-periodic tumbling orbit (or wagging) or to a steady log-rolling
state. The final state then depends on the initial director. At high shear rates the ODF
achieves a steady state, i.e., flow-aligning.

5.1 Comparison with spherical harmonic expansion methods

The instantaneous average molecular orientation is quantified by the order parameter
tensor,

S = 〈uu〉 −
1

3
I. (5.1)

The scalar order parameter S = (3
2S : S)1/2 represents the degree of molecular alignment.

S lies in the range 0 ∼ 1, with S = 0 for an isotropic phase, and S = 1 for rods that are
all aligned in the same direction. At thermodynamic equilibrium in the absence of flow,
the scalar order parameter S takes on a value, Seq, which depends only on the parameter
U . Moreover, S has uniaxial symmetry; that is,

S = Seq(nn −
1

3
I) (5.2)

where the unit vector n is the director. When considering the dynamics of the orienta-
tional distribution function of polymers under external fields, the equation (5.2) is not
satisfied. The eigenvector associated with the highest eigenvalue of S corresponds to the
generalization of the director n.

Table 1 shows the values of Seq obtained using both the spherical harmonic expansion
method and the moving mesh approach proposed in this work. The value of lmax represents
the total number of spectral expansion terms. It is not surprising that the accuracy of
the spherical harmonic technique with fixed lmax is degraded when U is increased. As
Seq increases, the ODF Ψ becomes more sharply peaked, and one must use higher-order
spherical harmonic functions to represent it. For example, when U = 100, the numerical
result with lmax = 32 is not satisfactory. We note that lmax = 32 implies a set of 560
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Table 1: Computed values of Seq.

U = 20 U = 100

lmax = 20 0.9444 lmax = 32 0.8765
Spherical-harmonic lmax = 24 0.9460 lmax = 40 0.9653
expansion lmax = 28 0.9461 lmax = 60 0.9898

lmax = 32 0.9461 lmax = 64 0.9899

N = 20, E = 20 0.9373 N = 20, E = 20 0.9405
Moving mesh N = 30, E = 20 0.9462 N = 30, E = 20 0.9863
method N = 40, E = 20 0.9462 N = 40, E = 20 0.9879

N = 50, E = 20 0.9462 N = 50, E = 20 0.9899

Table 2: CPU time comparison (U = 10, G = 0, ∆t = 0.001, T = 1).

Method Parameters CPU time

Spherical-harmonic expansion method lmax = 28 5m20.326s

Spherical finite element method Voronoi mesh, 1600 nodes 22m17.590s

Moving mesh method N = 20, E = 20 7m20.150s

Moving mesh method N = 15, E = 10 3m0.420s

Table 3: CPU time comparison (U = 100, G = 10, ∆t = 0.0001, T = 1).

Method Parameters CPU time

Spherical-harmonic expansion method lmax = 60 280m32.058s

Moving mesh method N = 50, E = 20 133m4.165s

equations, while lmax = 60 a set of 1890 equations. In contrast to the spherical-harmonic
technique, the accuracy of the moving mesh method does not decrease as fast, since more
grids are moved to the area near the director to resolve the small scales of the sharply
peaked ODF.

Table 2 gives the CPU time of the spherical-harmonic expansion method, the spherical
finite element method on uniform mesh and the special moving mesh method presented
earlier for U = 10 and G = 0. The time step is set as ∆t = 0.001 and total time is T = 1.
The accuracy of the four schemes in Table 2 is assured to be the same by comparing the
values of the scalar order parameter S.

Table 2 shows that the speed-up when using the moving mesh method (N = 15,
E = 10) relative to uniform mesh is about 7, whereas the CPU time for the spherical-
harmonic expansion method and the special moving mesh method are almost the same (the
ratio between them is about 1.8 : 1). Obviously, the spherical-harmonic expansion method
is more effective for low potential intensities. By contrast, for high potential intensities
the moving mesh method is the method of choice. And the advantage of the moving
mesh method grows with the potential intensity size. Table 3 gives the CPU time of the
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Figure 2: The solution diagram for U = 10. In
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G

R
e

(
b

2
,2
)
,
M

a
x
[R

e
(
b

2
,2
)
]

0 50 100 150 200

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Tumbling Wagging

Flow-aligning

Log-rolling

Figure 3: The solution diagram for U = 20. In the
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spherical-harmonic expansion method and the special moving mesh method for U = 100
and G = 10. The time-step is set as ∆t = 0.0001 and the total time is T = 1. In fact,
U = 100 is almost the limit that the spherical-harmonic expansion method can simulate
for PC. So some special treatment has to be considered to avoid the computation beyond
the power of PC. But the moving mesh method has not such limitation.

5.2 The flow phase diagram for high potential intensities

The solutions when the shear flow is present are described by plotting two different de-
scriptors of the system state versus the shear rate G. One descriptor is the real part of
b2,2, the other is the imaginary part of b2,2, where b2,2 is the coefficient of the spherical
harmonic Y2,2 of the ODF Ψ. It is easy to verify that

〈uu〉11 − 〈uu〉22 = 4

√

2π

15
Re[b2,2], 〈uu〉12 = −2

√

2π

15
Im[b2,2]. (5.3)

The former quantity is zero at isotropic state. The imaginary part clearly describes out-
of-plane solutions, since it is nonzero when solutions have no symmetry with respect to
the shear plane. Of particular interest to us is the quantity Re[b2,2]. Because from the
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following, for high U , no out-of-plane solutions are found, which shows that Im[b2,2] = 0.
By plotting Re[b2,2] versus the shear rate G, we can easily distinguish any drift of the
molecular orientation either toward or away from the shearing plane or the vorticity axis.

Fig. 2 shows the diagram obtained from the special moving mesh method with N = 20
and E = 20 for U = 10. Fig. 3 shows the situation with N = 40 and E = 20 for
U = 20. They are similar in formation. As G is increased, the molecular dynamics goes
from tumbling into the wagging regime, i.e., an oscillation of the direction of average
molecular orientation between two limiting angles. Above a critical value Gc of G, the
shearing plane is the only attractor for the director, while for a range of G below this
value both the shearing plane and the vorticity axis are attractors. The critical values of
the dimensionless shear rate are Gc ≈ 27.5 for U = 10 and Gc ≈ 83.7 for U = 20. As G
is increased further, the director is along the x-axis (the flow velocity direction). This is
called “flow-aligning”, a steady state direction of average molecular orientation.

The molecular dynamics undergoes some transitions as the shear rate is increased.
Fig. 4 shows the transition points for different potential intensities: transition points from
log-rolling to wagging (triangles), transition points from tumbling to wagging (squares)
and transition points from wagging to flow-aligning (diamonds).

5.3 Some features of Ψ(u, t) for high potential intensities

Fig. 5 shows the ODF contours for U = 8, U = 10 and U = 20 in the absence of flow
(G = 0). It is interesting that the ODF has no axial symmetry (as shown in the first line
of Fig. 5) even if a symmetrical initial value is given. The equilibrium distributions still
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Figure 5: ODF contours for U = 8 (left), U = 10 (middle) and U = 20 (right) in the absence of flow (G = 0)
at t = 1.0 (first line) and t = 10.0 (second line).

have the axial symmetry, as shown in the second line of Fig. 5, which is consistent with
the theoretical analysis [16]. It can be seen that as the potential intensity is increased, the
ODF becomes more peaked.

Fig. 6 shows the evolution of the ODF for U = 20 and G = 50 in a period. It can
be clearly observed that the director tumbles in the shear plane and the ODF changes
periodically. In a period, the director rotates slowly when it is adjacent to the flow-
direction (x-axis), whereas it rotates fast when it is adjacent to the flow-gradient direction
(z-axis). As can be seen, the ODF is most sharply peaked when the director is along the
flow-gradient direction (z-axis) and becomes planar gradually when the director rotates
from the positive direction of z-axis to the negative one. These can also be found in Fig. 7,
because the scalar order parameter S represents the degree of molecular alignment.

Fig. 7 shows S and Re(b2,2) versus time for U = 20 and different shear rates G =
25, 50, 75, 100 with the initial director adjacent to the shearing plane. The shearing plane
is defined to be parallel to both the velocity and its gradient. In all cases of Fig. 7, there is
a periodic oscillation of S and Re(b2,2) which reflects the tumbling or wagging motion of
the director. For initial director adjacent to the vorticity axis (y axis), the director drifts
toward the vorticity direction; when it reaches it, the log-rolling state is attained; thus S
and Re(b2,2) do not oscillate but remain nearly constant at a value. So we will not display
the corresponding figures.
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Figure 6: Time sequence of the ODF for U = 20 and G = 50 in a period. It can be seen that the director
tumbles in the shear plane and the ODF changes periodically. Contours are from 0 to 8 by 0.5 and figures are
0.5 apart.

6 Conclusions

In this paper, we have developed a moving mesh strategy useful for nematic polymer kinetic
simulations with high potential intensities under shear flows. This strategy fully utilizes
the properties of the orientational distribution function, which makes the moving mesh
method more effective than a general moving mesh method. We also investigated some
rheological features of nematic polymers for high potential intensities using the proposed
moving mesh method.

It is now well known [10] that, under shear flows, the dynamics of the rod population
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Figure 7: S (left) and Re(b2,2) (right) vs time for U = 20 and different shear rates.
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presents a variety of behaviors. However, due to the computer limitation the understand-
ings for high potential intensities are still lacking and further research along this direction
is still required. It is believed that our moving mesh method is useful in performing robust
and accurate simulations for this problem.
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