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Discontinuous Galerkin Time Domain (DGTD)
Methods for the Study of 2-D Waveguide-Coupled

Microring Resonators
Xia Ji, Tiao Lu, Wei Cai, Senior Member, IEEE, and Pingwen Zhang

Abstract—This paper presents the study of coupling efficien-
cies between two-dimensional (2-D) waveguides and microring
resonators with a newly developed high-order discontinuous
Galerkin time domain (DGTD) method for Maxwell’s equations.
The DGTD method is based on a unified formulation for the
physical media and the artificial media in the uniaxial perfectly
matched layer (UPML) regions used to truncate the computational
domain. The DGTD method employs finite element type meshes
and uses piecewise high-order polynomials for spatial discretiza-
tion of the Maxwell’s equations and Runge–Kutta methods for
time integration. After demonstrating the high-order convergence
of the DGTD method, the effect of separation gap between the
waveguides and one and two microrings on the coupling efficiency
and transmittance for pulse propagations is studied.

Index Terms—Discontinuous Galerkin time domain (DGTD),
Maxwell’s equations, microring resonators, uniaxial perfectly
matched layer (UPML).

I. INTRODUCTION

O PTICAL microring resonators, well known for their ex-
tremely high-quality factors [1]–[3], provide potential

applications in all-optical network devices such as ultranar-
rowband and large free spectral range channel dropping fil-
ters [4]. Many analytical methods have been used to model
microring resonators, such as the scattering matrix approach
[5], the method of conformal mapping [6], the coupled mode
theory [7], etc. Numerical method provides an indispensable
approach once the devices to be modeled are too complicated
as the analytic methods become inapplicable or intractable. The
finite difference time domain (FDTD) approach based on the
traditional Yee’s scheme for microring resonators have been
discussed in [8] and was used for the computation of whispering
gallery modes (WGMs) [9]. In [10], a finite element method is
used to analyze the WGM in anisotropic dielectric resonators.

In this paper, a discontinuous Galerkin time domain (DGTD)
method [14] will be applied to simulate the coupling between
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waveguides and microring resonators. To the authors’ knowl-
edge, this is the first time to apply DGTD to study such a
device. The DGTD used in this paper was developed recently
for dispersive media and the uniaxial perfectly matched layer
(UPML) regions that are used to truncate the computational
domain [11]. Careful comparison between the DGTD and
FDTD is also given in [11] for the scattering of dielectric
objects. The main advantages of the DGTD method are the
high-order accuracy even in the presence of material interface
(the accuracy of the FDTD method with Yee’s scheme will
degenerate into first order), phase-preserving properties, and
easy parallel implementation. Even for discontinuous field,
exponential convergence with respect to the order of the basis
functions can be obtained with the DGTD methods [11]. Such
high-order convergence will be demonstrated in this paper for
the calculation of coupling efficiency and transmittance for the
coupling of waveguides and microrings. In [12], the successful
optical transfer between microcylinders with the DGTD method
has already been demonstrated. In this paper, the authors will
simulate how the resonant modes can be excited by the in-
coupling via a waveguide and also the out-coupling to an output
waveguide.

The remaining part of the paper is organized as follows. In
Section II, a unified formulation for the Maxwell’s equations
for microring resonators in physical regions and UPML regions
is given. The DGTD method with the definition of numerical
flux is proposed in Section III. In Section IV, the numerical
convergence of the proposed DGTD method is first studied and
then applied to the coupling and transmission properties of two-
dimensional (2-D) one- and two-microring resonators. Finally,
a conclusion is given in Section V.

II. UNIFIED FORMULATION OF MAXWELL’S EQUATIONS

IN PHYSICAL AND UPML REGIONS

We consider a nondimensionalized form of Maxwell equa-
tions for both transverse electric (TE) and transverse magnetic
(TM) cases in physical regions and UPML regions [11] by
introducing nondimensionalized variables

x

L
→ x,

y

L
→ y,

ct

L
→ t, Z0H → H, E → E (1)

where L is the reference length associated with a given prob-
lem; in this paper, we set L = 1 µm, c is the speed of light in
free space, and Z0 =

√
µ0/ε0 is the free-space impedance. In
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the UPML region, we introduce the polarization variables Pm,
Qm

x , and Qm
y for the TM case and P e, Qe

x, and Qe
y for the TE

case. Here, the TE case refers to a situation where the magnetic
field has only one component, while two electric fields exist
on the plane transverse to the magnetic field. The TM case is
defined similarly.

1) TM case

εr
∂Ez

∂t
=

∂Hy

∂x
− ∂Hx

∂y
− εr(σx + σy)Ez + Pm

µr
∂Hx

∂t
= − ∂Ez

∂y
− µr(σy − σx)Hx + Qm

x

µr
∂Hy

∂t
=

∂Ez

∂x
− µr(σx − σy)Hy + Qm

y

∂Pm

∂t
= − εrσxσyEz

∂Qm
x

∂t
= − σxQm

x + µrσx(σy − σx)Hx

∂Qm
y

∂t
= − σyQm

y + µrσy(σx − σy)Hy. (2)

2) TE case

µr
∂Hz

∂t
= − ∂Ey

∂x
+

∂Ex

∂y
− µr(σx + σy)Hz − P e

εr
∂Ex

∂t
=

∂Hz

∂y
− εr(σy − σx)Ex − Qe

x

εr
∂Ey

∂t
= − ∂Hz

∂x
− εr(σx − σy)Ey − Qe

y

∂P e

∂t
=µrσxσyHz

∂Qe
x

∂t
= − σxQe

x − εrσx(σy − σx)Ex

∂Qe
y

∂t
= − σyQe

y − εrσy(σx − σy)Ey. (3)

The derivation of these equations can be found in [11].
When the UPML parameters σx = 0 and σy = 0, the above
equations are reduced to the normal Maxwell’s equations in
the physical media. The P ′’s and Q′’s above are the auxiliary
polarization variables used to handle the temporal convolution
of the electromagnetic fields of the UPML regions. The UPML
losses σx(x) is usually set to have a polynomial profile [15]

σx(x) =
(

l

d

)m

σx,max (4)

where l is the distance away from the interface between the
UPML and the physical solution domain, and d is the thickness
of the UPML. The definition of σy(y) is similar. The reflection
factor for the UPML can be found to be [15]

R(θ) = e−
2ησx,maxd cos θ

εr(m+1) (5)

where θ is the incident angle, and η is the UPML’s characteristic
wave impedance.

Considering the TM case, we set U = (εrEz, µrHx, µrHy,
Pm, Qm

x , Qm
y )T, the conservation form for U is

∂U
∂t

+ ∇ · (ĀU) = S (6)

where Ā and S are given below. The fourth to sixth equations
in (2) are actually ordinary differential equations, and thus, we
can rewrite the conservation system as

∂U(1)

∂t
+ ∇ · (AU(1)) =S(1) (7)

∂U(2)

∂t
=S(2) (8)

where U(1) =(εrEz, µrHx, µrHy)T, U(2) =(Pm, Qm
x , Qm

y )T,

U = (U(1),U(2))
T

, S = (S(1),S(2))
T

, and A = (Ax, Ay),
where

Ax =

 0 0 − 1
µr

0 0 0
− 1

εr
, 0 0

 (9)

Ay =

 0 1
µr

0
1
εr

0 0
0 0 0

 . (10)

Ā is given as

Ā = (Āx, Āy)

where

Āx =
(

Ax 03×3

03×3 03×3

)
, Āy =

(
Ay 03×3

03×3 03×3

)
.

Here, 0n×m denotes zero matrix with n rows and m columns.
The source terms S(1) and S(2) represent body forces, e.g.,
polarization currents

S(1) =

 −εr(σx + σy)Ez + Pm

−µr(σy − σx)Hx + Qm
x

−µr(σx − σy)Hy + Qm
y

 (11)

S(2) =

 −εrσxσyEz

−σxQm
x + µrσx(σy − σx)Hx

−σyQm
y + µrσy(σx − σy)Hy

 . (12)

Similar equations can be derived for the TE case and will not
be repeated here.

III. DISCONTINUOUS GALERKIN TIME DOMAIN METHOD

To solve (6) in general geometries, the physical domain Ω
under consideration is divided into nonoverlapping quadrilat-
eral and/or triangular elements, denoted by K. Each physical
element K is then mapped by an isoparametric transformation
[16] onto a reference element I , either a reference square
[−1, 1]2 or a reference triangle {(x, y)|, 0 ≤ x, y ≤ 1, 0 ≤ x +
y ≤ 1}.
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Let Th be a discretization of the solution domain Ω; εr

and µr are assumed constant on each element for each element
K ∈ Th. We denote a finite dimensional space of smooth
functions (polynomials for DGTD methods) defined on the
element K by P(K), which will be used to approximate the
variable U. We define

Vh :=
{
v ∈ L1(Ω) | v|K ∈ P(K) ∀K ∈ Th

}
(13)

and

V 6
h := Vh × Vh × · · · × Vh︸ ︷︷ ︸

6

. (14)

The DGTD space discretization of the hyperbolic system (7)
and (8) can be obtained as follows: Find U ∈ V 6

h such that for
all vh ∈ Vh∫

K

(
∂U(1)

∂t
vh − S(1)vh − AU(1) · ∇vh

)
dx

+
∫

∂K

hK

(
U(1),−,U(1),+

)
· n̂Kvhds = 0 (15)

∫
K

(
∂U(2)

∂t
vh − S(2)vh

)
dx = 0 (16)

where n̂K = (nx, ny) is the outward unit normal to ∂K, and
U(1),− and U(1),+ are defined as

U(1),±(x) = lim
δ→0+

U(1)(x ± δn̂k)

as U is, in general, discontinuous across ∂K, the numerical flux
hK(U(1),−,U(1),+) is an approximation to n̂K · AU(1)|∂K on
the faces of the element K, and should satisfy the following
consistent condition

hK

(
U(1),U(1)

)
= n̂K · AU(1)|∂K . (17)

We can obtain hK(U(1),−,U(1),+) by solving a local Riemann
problem. In [11] and [17], the Riemann problem for Maxwell’s
equations is discussed in detail, which gives a numerical flux
hK(U(1),−,U(1),+) for the 3-D Maxwell’s equations as

hK =

(
−n̂K × (ZH+n̂K×E)−+(ZH−n̂K×E)+

Z−+Z+

n̂K × (Y E−n̂K×H)−+(Y E+n̂K×H)+

Y −+Y +

)
(18)

where Z± and Y ± are the local impedance and admittance,
respectively, and are defined as

Z± =
1

Y ± =

√
µ±

r

ε±r
.

For the TM case, from (18), the numerical flux is reduced to

hK

(
U(1),−,U(1),+

)

=

 − [Z(nxHy−nyHx)−Ez ]−+[Z(nxHy−nyHx)+Ez]+

Z−+Z+

ny
[Y Ez−(nxHy−nyHx)]−+[Y Ez+(nxHy−nyHx)]+

Y −+Y +

−nx
[Y Ez−(nxHy−nyHx)]−+[Y Ez+(nxHy−nyHx)]+

Y −+Y +


(19)

where U(1) = (εrEz, µrHx, µrHy)T, while the numerical flux
for TE case is

hK

(
U(1),−,U(1),+

)

=


[Y (nxEy−nyEx)+Hz]−+[Y (nxEy−nyEx)−Hz ]+

Y −+Y +

−ny
[ZHz+(nxEy−nyEx)]−+[ZHz−(nxEy−nyEx)]+

Z−+Z+

nx
[ZHz+(nxEy−nyEx)]−+[ZHz−(nxEy−nyEx)]+

Z−+Z+


(20)

where U(1) = (µrHz, εrEx, εrEy)T.

A. Basis Function Space P(K)

By constructing a set of basis functions on a standard
reference element I , we can obtain a basis function space
P(K) on the physical element K using a mapping Ψ between
I and K. For example, we can define a set of basis functions
for the standard rectangular element

span {Li(ξ)Lj(η); i, j ≥ 0; i + j ≤ n} = span{φj}N
j=1

(21)

where Li(·) is the Legendre polynomial of order i, and N =
(n + 2)(n + 1)/2.

A set of basis functions on the standard reference triangle
element I can be defined as

P 2
n = span{ξiηj ; i, j ≥ 0; i + j ≤ n} = span{φj}N

j=1 (22)

where n is the maximum order of the polynomial, and N =
(n + 2)(n + 1)/2. Dubiner orthogonal polynomial basis func-
tions are a good choice when higher order basis (n > 7) is used
in triangular elements; they can provide well-conditioned mass
matrices defined in (34) and yield exponential convergence
even for discontinuous fields [12].

The set of basis functions on each physical element K is
obtained by the mapping Ψ as

span {φj (ξ(x, y), η(x, y)) ; 1 ≤ j ≤ N} (23)

where (ξ, η) = Ψ−1(x, y).
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B. Space Discretization

Expand the electric field Ez and magnetic fields Hx and Hy

in terms of the basis functions φj(x)

Ez,N (x, t) =
N∑

j=1

Ez,jφj(x) (24)

Hs,N (x, t) =
N∑

j=1

Hs,jφj(x), s = x, y (25)

where Ez,j , Hx,j , and Hy,j are functions of time and φj(x)
is the jth basis function. We also project U(2) to the function
space expanded by the basis functions

Pm,N (x, t) =
N∑

j=1

Pm,jφj(x) (26)

Qm,N
s (x, t) =

N∑
j=1

Qs,m,jφj(x), s = x, y. (27)

On each element K setting vh = φj(x) in (15) and (16),
a system of ordinary differential equations (ODEs) will be
obtained for the expansion coefficients (24)–(27).

We define the unknown vectors on each element K

Ez = (Ez,1, Ez,2, · · · , Ez,N )T

Hs = (Hs,1,Hs,2, · · · ,Hs,N )T , s = x, y

Pm = (Pm,1, Pm,2, · · · , Pm,N )T

Qm
s = (Qs,m,1, Qs,m,2, · · · , Qs,m,N )T , s = x, y

and also the basis function vector

φ = (φ1, φ2, . . . , φN )T.

Assuming εr, µr, σx, σy be constant on each element K,
we can obtain the following ODEs for the unknown vectors
while Gauss quadrature formulations are used to evaluate the
integration in (15) and (16)

dEz

dt
= −(εrM)−1MxHy + (εrM)−1MyHx − (εrM)−1

×
∫

∂D

hEz

D

(
U(1),−

N ,U(1),+
N

)
φ(x)ds +

1
εr

SEz

N (28)

where

SEz

N =
(
SEz

1 , SEz
2 , · · · , SEz

N

)T

SEz
j = − εr(σx + σy)Ez,j + Pm,j

dHx

dt
= (µrM)−1MyEz − (µrM)−1

×
∫

∂D

hHx

D

(
U(1),−

N ,U(1),+
N

)
φ(x)ds +

1
µr

SHx

N

(29)

where

SHx

N =
(
SHx

1 , SHx
2 , · · · , SHx

N

)T

SHx
j = − µr(σy − σx)Hx,j + Qx,m,j

dHy

dt
= − (µrM)−1MxEz − (µrM)−1

×
∫

∂D

h
Hy

D

(
U(1),−

N ,U(1),+
N

)
φ(x)ds +

1
µr

SHy

N

(30)

where

SHy

N =
(
S

Hy

1 , S
Hy

2 , · · · , SHy

N

)T

S
Hy

j = − µr(σx − σy)Hy,j + Qy,m,j .

Furthermore

dPm,j

dt
= − εrσxσyEz,j (31)

dQx,m,j

dt
= − σxQx,m,j + µrσx(σy − σx)Hx,j (32)

dQy,m,j

dt
= − σyQy,m,j + µrσy(σx − σy)Hy,j . (33)

Here, Mij is the local mass matrix defined as

Mij =
∫
D

φi(x)φj(x)dx (34)

and Mx
ij and My

ij are two local stiffness matrices defined as

Mx
ij =

∫
D

∂φi(x)
∂x

φj(x)dx

My
ij =

∫
D

∂φi(x)
∂y

φj(x)dx.

IV. NUMERICAL RESULTS

Simulation Geometry and Parameters: A typical geometry of
a waveguide-coupled microring resonator is shown in Fig. 1. A
mode in the form of continuous wave or an impulse is excited
at the left end of waveguide WG1, and waveguides WG1 and
WG2 serve as evanescent wave input and output couplers. For
all numerical examples, the reference length L = 1 µm. For
the single-ring case, we set the center of the ring as the origin
of the coordinate system. The ring’s outer radius is R = 1.7 µm,
the width of WG1, WG2 and the ring is 0.2 µm, the separation
of the ring and waveguide is denoted as g which can be
adjusted for different examples, while the separation of the
waveguide and UPML region h = 0.2 µm. The width of the
physical region is 4 µm, and the height of the physical region is
4.2 µm plus 2g (g again is the separation of waveguide and
microring). For the case of two microrings, we have used the
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Fig. 1. Schematic of a microresonator (a microring coupled to two straight
waveguides) and UPML layer.

same parameters as the single-ring case except that we put the
origin of the coordinate system at the middle point of the center-
to-center line, and the separation of the ring and waveguide and
the gap between the rings is g = 0.1 µm.

The ring and the waveguide have the same index value
n = 3.0, surrounded by air (n0 = 1.0). We will use sinusoidal
excitation to study numerical convergence and pulse excitation
to get coupling efficiency and transmittance.

We use a five-cell UPML (with a total thickness of 2) for
∆x = 0.4, a five-cell UPML (with a total thickness of 1) for
∆x = 0.2, a 10-cell UPML (of thickness 1) for ∆x = 0.1,
and a 20-cell UPML (of thickness 1) for ∆x = 0.05. The
UPML parameters are R(0) = e−16, m = 3 for a 10-cell and a
20-cell UPML, and R(0) = e−8, m = 3 for a five-cell UPML.
We use a freeware software Easymesh [20] to discretize the
physical region with unstructured triangles and the UMPL
region with rectangles. Mesh conformity is enforced along the
UPML interface. ∆x represents the maximum dimension of all
mesh elements, except the examples of studying convergence
rate, and ∆x is set to 0.1.

The total field in the physical region and the scattered field
in the UPML region are calculated using total-field/scattered-
field (TF/SF) technique discussed below. A fourth-order
Runge—Kutta method is employed for the time integration of
the ODE systems (28)–(33); ∆t = 0.008 for ∆x = 0.2 and
∆x = 0.4, ∆t = 0.004 for ∆x = 0.1, and ∆t = 0.002 for
∆x = 0.05, and the time step is taken heuristically to be

∆t = CFL min
Ω

√
εrµrl

l is the minimum length of the sides, and CFL typically takes
the value of 1/(2n + 1); here, n is the order of basis functions,

and n = 4 in all the examples. More rigorous criteria for the
selection of the time steps for unstructured meshes can be found
in [19].
Time Interval of Simulations: Time interval T = 40 is used

to calculate coupling efficiency and T = 600 to calculate
transmittance of the single-ring case. For the two-ring case,
time interval T = 60 is used for calculating coupling efficiency
and T = 1000 for calculating transmittance. Finally, for the
steady state of an on-resonance or off-resonance, the time
interval T = 200 is used for the single-ring case and time
interval T = 400 for the two-ring case.
Memory Requirements: The memory requirement for DGTD

is N , where N is the degree of freedom of the numerical
solution. In the one-ring case with ∆x = 0.1 and four-order
basis functions, N is around 300 000. The memory requirement
for FDTD for a 3-D computation is [15]

6NxNyNz + 8NUPML(NxNy + NyNz + NzNx)

−16NUPML(Nx + Ny + Nz) + (24NUPML)2

where NUPML is the thickness of the UPML, and Ni, i =
x, y, z, is the number of mesh point in each dimension. For
a 2-D TE case or a 2-D TM case, the memory requirement
for the FDTD is about 15 000 with ∆x = 0.1 and a ten-
cell UPML.
Number of Floating Point Operations: To compute the right-

hand side in (28)–(30) for the DGTD, it takes about 5500
floating point operations with four-order basis functions and
900 floating point operations with two-order basis functions.
While in the FDTD, the number of floating point operations
needed for space discretization is around 17 for each mesh
point. In the one-ring case with ∆x = 0.1 and four-order basis
functions, the wall clock time for the DGTD is approximately
150 min for a simulation time interval T = 50 using eight nodes
on LSSC-II [21].

A. Numerical Fluxes and Input Sources

1) TF/SF Technique in DGTD Methods: The TF/SF formu-
lation is based on the linearity of Maxwell’s equations and
widely used in FDTD modeling [15]. It permits modeling of
long-duration pulsed or sinusoidal illuminations for arbitrary
plane-wave propagation directions. We will also use this formu-
lation in the DGTD by changing the flux (18) on the interface
between physical media and UPML regions. Suppose the field
U(1),− is the value on the element being considered and U(1),+

is the value on a neighboring element. The stored U(1) in the
physical media is the total field, and in the UPML region is the
scattered field. If the first element is in the physical media and
the neighboring element is in the UPML, the flux (18) will be
modified to be

hK =

(
−n̂K× [ZH+n̂K×E]−+[Z(H+Hinc)−n̂K×(E+Einc)]

+

Z−+Z+

n̂K× [Y E−n̂K×H]−+[Y (E+Einc)+n̂K×(H+Hinc)]
+

Y −+Y +

)
.

(35)
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Otherwise, the flux (18) changes to

hK =

(
−n̂K× [ZH+n̂K×E]−+[Z(H−Hinc)−n̂K×(E−Einc)]

+

Z−+Z+

n̂K× [Y E−n̂K×H]−+[Y (E−Einc)+n̂K×(H−Hinc)]
+

Y −+Y +

)
(36)

where Einc and Hinc are the values of the incident-wave fields,
assumed to be known at all points on the face between physical
domain and UPML at all time steps.
2) Sourcing Specific Waveguide Modes: We can source a

propagating TE (TM) mode of a dielectric slab by specifying
the electromagnetic field distribution along a one-dimensional
(1-D) transverse cross section of the waveguide. In the case of
a sinusoidal excitation, the distribution of desired mode can be
obtained by solving an equation for the transverse propagation
and the decay constants [18].

In the case of a pulsed source, such as a Gaussian pulse
modulating a carrier wave, a method called “bootstrapping” is
described in [15]. Here, we obtain an accurate Gaussian pulse
inside dielectric slab waveguide by the following steps.

1) Assume that the time dependence for the pulse is

f(t) = exp [iωc(t − t0)] exp

[
−

(
t − t0
tDecay

)2
]

where the ωc is a selected central frequency.
2) Take the Fourier transform of f(t)

f̂(ω) =
tDecay√

2
exp

(
−

(ωc − ω)2t2Decay

4

)
exp(−it0ω).

3) Set

f(x, y, t) =
1√
2π

∫
F (x, y, ω)f̂(ω) exp(iωt)dω

where F (x, y, ω) is the distribution of desired mode in the
case of sinusoidal excitation mentioned above. f(x, y, t)
so defined will satisfy the Maxwell’s equations inside a
dielectric slab waveguide and contains a range of frequen-
cies around ωc.

B. Waveguide-Coupled Microring Resonators

Coupling Efficiency and Transmittance: The coupling effi-
ciency between the input/output waveguides and microring is
computed as in [15]. Coupling efficiency gives an estimation
of how much energy is transferred from waveguide to micror-
ing. The coupling efficiency is defined as the ratio between
the power at the cross section of the microring at location
D(y = 0 µm) in Fig. 1 and that at the cross section of the input
waveguide at location A(x = −1.85 µm) in Fig. 1. However,
the power at location D is computed using the fields recorded
for the duration when the whole pulse passes the cross section
at D for the first time along the microring. We then compute
the discrete Fourier transform (DFT) of the time-dependent
fields and integrate the Poynting power densities across the
waveguide cross section to get the power as a function of the
frequency. The integration for the power density is done along

a region that is three times bigger than the cross section of the
waveguide or microring in order to get an estimated 99% of the
full modal power.

Transmittance gives an estimation of how much energy go
through original waveguide and how much is transmitted by
the microring. The transmittance spectrum at the right port of
WG1 is defined as the ratio between the power at the cross
section of the waveguide WG1 at location B(x = 1.85 µm)
in Fig. 1 and that at the cross section of the input waveguide
at location A(x = −1.85 µm) in Fig. 1. The transmittance
spectrum at the left port of WG2 is defined as the ratio between
the power at the cross section of the waveguide WG2 at location
C(x = −1.85 µm) in Fig. 1 and that at the cross section of the
input waveguide at location A(x = −1.85 µm) in Fig. 1. The
difference with computing coupling efficiency is that we need
to record the whole process of the pulse movement until the
energy in the resonator and the amplitudes of the pulse have
sufficiently decayed.
1) Single-Ring Case: We will study the numerical conver-

gence of DGTD methods for calculating the coupling efficiency
and transmittance between waveguides and a microring res-
onator. We use a TE sinusoidal excitation with ω = 224 THz
in the g = 0.1 µm case. First, we compute with the DGTD
method on a fine mesh ∆x = 0.05, and the result denoted by
H3

z will be used as a reference to measure the numerical conver-
gence. Then, we apply the DGTD method with ∆x = 0.2 and
∆x = 0.1 to obtain solutions H1

z , H2
z , respectively. We record

the Hz field at a fixed point in the output port of WG2, which
will be a function of time, and define the error in time at that
location as

∥∥Hi
z − Hj

z

∥∥
error

=

√∫ (
Hi

z − Hj
z

)2

dt, i 	= j. (37)

Here, the integration is over a time period when the field be-
comes steady. The following numerical convergence is
obtained: ∥∥H1

z − H3
z

∥∥
error

= 2.4724e − 3∥∥H2
z − H3

z

∥∥
error

= 9.6631e − 5

giving a convergence rate ∆xr, where r = 4.6.
Considering the same structure and parameters described

above, we use a TE Gaussian pulse with central frequency
ωc = 224 THz for excitation, and we compute coupling effi-
ciency with three different meshes mentioned above, defined
as TE1(ω), TE2(ω), TE3(ω), respectively. From the L2 norm
error over the frequency concerned (from 200 to 250 THz for
this example), we obtain the following numerical convergence
in coupling efficiency:∥∥TE1(ω) − TE3(ω)

∥∥
L2 = 4.9594e − 4

and ∥∥TE2(ω) − TE3(ω)
∥∥

L2 = 4.0459e − 6

giving a convergence rate ∆xr, where r = 6.94. Fig. 2(a)
shows a coupling efficiency of three meshes; the results for
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Fig. 2. Coupling efficiency κ as a function of frequency with different meshes for the g = 0.1 µm and 3.4-µm-diameter ring of Fig. 1. (a) TE polarization.
(b) TM polarization.

Fig. 3. Coupling efficiency κ as a function of frequency and gap size g for a 3.4-µm-diameter ring of Fig. 1 with ∆x = 0.1. (a) TE polarization.
(b) TM polarization.

Fig. 4. Time history of pulse at various locations indicated in Fig. 1 when
g = 0.1 µm for a 3.4-µm-diameter ring of Fig. 1 with ∆x = 0.1
(TM polarization).

the ∆x = 0.05 case and the ∆x = 0.1 case are hard to distin-
guish in the plot.

We also consider a TM Gaussian pulse in the same frequency
domain, resulting in the following convergence:∥∥TM1(ω) − TM3(ω)

∥∥
L2 = 4.8728e − 4

and ∥∥TM2(ω) − TM3(ω)
∥∥

L2 = 2.3271e − 6

Fig. 5. Visualization of snapshots in time of DGTD-computed Ez field of
a pulse circling around a 3.4-µm-diameter ring of Fig. 1 with ∆x = 0.1 and
g = 0.1 µm (TM polarization).

with a convergence rate ∆xr, where r = 8.0. Again, Fig. 2(b)
shows a coupling efficiency of three meshes with result
for the ∆x = 0.05 case indistinguishable from that of the
∆x = 0.1 case.
Effect of Gaps Between Waveguides and Microring(s)

on Coupling Efficiency and Transmittance: Here, we will
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Fig. 6. DGTD-computed transmittance spectrum of the 3.4-µm-diameter ring of Fig. 1 (g = 0.1 µm) at the right port of WG1 (TM polarization).
(a) Transmittance spectrum with ∆x = 0.1. (b) Comparison with three different meshes.

Fig. 7. DGTD-computed transmittance spectrum of the 3.4-µm-diameter ring of Fig. 1 (g = 0.1 µm) at the left port of WG2 (TM polarization).
(a) Transmittance spectrum with ∆x = 0.1. (b) Comparison with three different meshes.

investigate the effect of the separation between the input/output
waveguides on the coupling efficiency and transmittance of the
waveguide-microring resonators.

Fig. 3(a) and (b) shows the coupling efficiency of different
polarization modes and different separations. Here, we used a
mesh ∆x = 0.1 and a Gaussian pulse with central frequency
ωc = 224 THz. From the two figures, we observe that TM
polarization and TE polarization behave differently as the gap
between the waveguides and rings varies.

1) For a fixed frequency, as the gap size increases, the
coupling efficiency for the TM polarization decreases,
while that for the TE polarization increases.

2) For a fixed gap size, as the frequency increases, the
coupling efficiency for the TM polarization decreases,
while that for the TE polarization increases.

The difference of the dependence of the coupling efficiency
on the gap for the case of TE and TM could be related
to the fact that in the TM case, all fields are continuous, while
the electric fields for the TE case are discontinuous across
the waveguide/microring boundaries. This fact might cause
stronger reflection for the TE case than the TM case. A smaller

gap will feel the effects of reflections more, thus, the inverse
dependence of the coupling efficiency on the gap for the
TE case.

In Fig. 4, we plot the time history of the normalized |E|
at some selected observation points marked as A, B, C, D,
E, and F in Fig. 1, which demonstrates the pulse propagation
inside the structure. Snapshots at various times of DGTD-
computed Ez field (perpendicular to the plane) is shown in
Fig. 5 as the pulse couples into the ring and completes one
round trip around the ring. The transmittance spectrum at the
right port of WG1 is shown in Fig. 6(a), and the transmittance
spectrum at the left port of WG2 is shown in Fig. 7(a). We
use three different meshes to study transmittance spectrum
in Figs. 6(b) and 7(b), which shows the convergence for the
location of the resonance frequency. From the transmittance
spectrum in Fig. 6(a), we can select an on-resonant frequency
ω = 226.5587 THz, where the transmittance is at a minimum,
and an off-resonant frequency ω = 241.3601 THz, where the
transmittance is at a maximum. Fig. 8(a) shows the steady-
state electric field for a continuous wave (CW) excitation at
the on-resonant frequency, while Fig. 8(b) shows the steady-
state electric field for a CW excitation at the off-resonant
frequency.
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Fig. 8. Visualization of DGTD-computed steady-state Ez field for the 3.4-µm-diameter ring of Fig. 1 with ∆x = 0.1 and g = 0.1 µm (TM polarization).
Here, a single-frequency CW excitation is applied at port A of WG1. (a) On-resonant frequency 226.5587 THz. (b) Off-resonant frequency 241.3601 THz.

Fig. 9. Coupling efficiency κ as a function of frequency when gap size
g = 0.1 µm and ∆x = 0.1 for a 3.4-µm-diameter two-ring case (TM
polarization).

2) Two-Ring Case: In Fig. 9, we plot the coupling efficiency
of a two-ring case. The process of computing the coupling effi-
ciency is similar to that of the single-ring case. The sampling of
the input is done along the cross section at the location A(x =
−1.85 µm, y = −3.65 µm) in Fig. 10(a). For the coupling
coefficient of the first ring, the sampling of the field is along
the cross section at location D(x = 1.6 µm, y = −1.75 µm)
in Fig. 10(a), while for the coupling efficiency of the second
ring, the sampling is at the cross section at location E(x =
−1.6 µm, y = 1.75 µm) in Fig. 10(a). The size of the cross
section is the same as the single-ring case.

The transmittance spectrum at the right port of WG1 is
defined as the ratio between the power at the cross sec-
tion of the waveguide WG1 at location B(x = 1.85 µm, y =
−3.65 µm) in Fig. 10(a) and that at the cross section of the
input waveguide at location A(x = −1.85 µm, y = −3.65 µm)
in Fig. 10(a). The transmittance spectrum at the right port of
WG2 is defined as the ratio between the power at the cross
section of the waveguide WG2 at location C(x = 1.85 µm, y =
3.65 µm) in Fig. 10(a) and that at the cross section of the
input waveguide at location A(x = −1.85 µm, y = −3.65 µm)
in Fig. 10(a).

Fig. 10. Visualization of snapshots in time of DGTD-computed Ez field
of a pulse travelling around a 3.4-µm-diameter two-ring case when gap size
g = 0.1 µm and ∆x = 0.1 (TM polarization).

Fig. 10(a) and (b) gives snapshots in time of Ez field as the
pulse propagates. Fig. 11 shows transmittance spectrum at the
right port of WG1, while Fig. 12 shows transmittance spectrum
at the right port of WG2. Single resonance in the single-ring
case split into two resonances in the two-ring case due to the
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Fig. 11. DGTD-computed transmittance spectrum of the 3.4-µm-diameter
two-ring case at the right port of WG1 when gap size g = 0.1 µm and
∆x = 0.1 (TM polarization).

Fig. 12. DGTD-computed transmittance spectrum of the 3.4-µm-diameter
two-ring case at the right port of WG2 when gap size g = 0.1 µm and
∆x = 0.1 (TM polarization).

interaction of the rings. In [13], we have given an analysis of the
interaction of metal nanowires. There is only one plasmon res-
onance frequency in one metal cylinder nanowire, while when
several metal cylinders are brought together close enough, the
resonance pattern becomes more complex because of plasmon
interactions. The phenomena here can be interpreted similarly.
Fig. 13(a) shows the steady-state electric field pattern for
CW excitation at an on-resonance signal ω = 217.7255 THz;
Fig. 13(b) shows the steady-state electric field pattern for a CW
excitation at an off-resonance signal ω = 248.6653 THz.

V. CONCLUSION

The high-order accuracy of high-order discontinuous
Galerkin time domain (DGTD) methods for the calculation
of the coupling efficiency and transmittance of waveguide-
coupled microring resonators has been demonstrated. If
high-order accuracy and phase information of the signals are
required, the DGTD method will be superior to the popular
Yee’s scheme finite difference time domain (FDTD) method.
As the DGTD is based on a finite element type mesh, more
storage and number of floating point operations per mesh point
will be required. Further work will be needed to treat real three-
dimensional (3-D) microring resonators.

Fig. 13. Visualization of DGTD-computed steady-state Ez field for the
3.4-µm-diameter two-ring case when gap size g = 0.1 µm and ∆x = 0.1 (TM
polarization). Here, a single-frequency CW excitation is applied at port A of
WG1. (a) On-resonant frequency 217.7255 THz. (b) Off-resonant frequency
248.6653 THz.
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