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Abstract: The dumbbell model is a coupled hydrodynamic-kinetic model for poly-
meric fluids in which the configurations of the dumbbells are described by stochastic
differential equations. We prove well-posedness of this model by deriving directly a
priori estimates on the stochastic model. Our results can be used to analyze stochastic
simulation methods such as the ones that are based on Brownian configuration fields.

1. Introduction

The dumbbell model is the simplest model of polymeric fluids that takes into account
the microscopic behavior of the solute polymers [1]. It models the dilute polymers by
dumbbells, each with two beads connected by a spring. The configuration of the spring
then specifies the conformation of the polymer. Denote by u and p the velocity and
pressure of the fluid, and Q the configuration of the spring, and hence the dumbbell,
then Q obeys the following equation:

∂Q
∂t

+ (u · ∇)Q − (∇u)TQ = −F(Q)+ ẇ(t). (1)

Here ẇ(t) is Gaussian white noise in time.
This equation is the result of the balance between the friction force (caused by the

viscous fluid) on the left hand side and the spring and Brownian force on the right hand
side. For simplicity we will set all physical constants to be 1, and we will write the spring
force in the form F(Q) = γ (|Q|2)Q.

In writing down (1) for an individual dumbbell we made the crucial assumption
that the polymer-polymer interaction can be neglected. Thermal noise is then naturally
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expressed as white noise in time. In this description, the conformation of the dumbbell is
described by a stochastic field Q(x, t): for any fixed x in the flow domain, the ensemble
{Q(x, t)} represents possible dumbbell conformation at x. Q is called Brownian config-
uration fields. An alternative description, which was used in earlier stochastic simulation
methods such as CONNFFESSIT[10], attempts to keep track of each individual dumb-
bells, which are then subjected to independent thermal noises. The relation between
these two descriptions are not fully understood.

The complete model for the full polymer-polymer system is then given by

∂u
∂t

+ (u · ∇)u + ∇p = �u + ∇ · τ, ∇ · u = 0, (2)

where τ is the polymer contribution to stress, which is expressed via the Kramers expres-
sion

τ(x, t) = E(F(Q)⊗ Q). (3)

In contrast to traditional models of complex fluids which express polymer stress τ
using empirical constitutive relations, (1)-(3) expresses the polymer stress in terms of
the microscopic conformations of the polymers using (3). To this end, a new dynamic
equation (1) is added to the model which describes the evolution of the internal degrees of
freedom of the polymers. Since the polymeric stress is computed directly from the con-
figuration distribution of the polymers, there is no need to introduce ad hoc constitutive
relations.

Equations (1)–(3) is a system of stochastic differential equations in which the dynam-
ics of (u, p) is deterministic. One way of studying such systems is to use the equivalent
Fokker-Planck equation for the (x,Q) distribution function, denoted byψ , of the dumb-
bells

∂ψ

∂t
+ (u · ∇)ψ + ∇Q · {(∇u)TQψ − F(Q)ψ} = �Qψ. (4)

In (4), Q is an independent variable and we use the subscript Q to denote differentia-
tion with respect to Q. Without the subscript, the differentiation is understood to be in x.

The novelty of Eqs. (2)–(4) is that the macroscopic fluid equation is coupled with
the mesoscopic Fokker-Planck equation in kinetic theory. Mathematical study of such
systems is still in its infancy. In [16, 17, 11], the local existence and uniqueness has been
established.

In the special case when the spring force is linear, F(Q) = HQ, we get from (1)-(3)
a reduced system of equations for u and τ ,

∂u
∂t

+ (u · ∇)u + ∇p = �u + ∇ · τ, ∇ · u = 0, (5)

∂τ

∂t
+ (u · ∇)τ − (∇u)T τ − τ∇u + τ − I = 0. (6)

In this way, one eliminates Q as an independent variable. This is the well-known Oldroyd-
B model. Its well-posedness has been studied by Saut et al. [5], Lions and Masmoudi
[13]. However, their methods do not seem to extend to more general cases when closed
systems of equations such as (4)–(5) are not available.

Despite the fact that a purely deterministic analysis based on the Fokker-Planck equa-
tion is possible, it is of great interest to treat directly the stochastic system (1)–(3) for
several reasons:
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1. Equation (1) gives a more direct and intuitive description of the conformation and
dynamics of the polymers.

2. One may expect that analysis based on (1) is easier to generalize to more general
models of polymers such as liquid crystal polymers, bead and spring models. Some
evidence is already provided in [12].

3. There has been a great deal of interest in designing stochastic modelling techniques
for polymeric fluids [15]. One of our interest is in the analysis of such stochastic
methods. So far this is only done in [7] for one-dimensional shear flows using the
specified structure of the shear flow system. The numerical analysis in the general
case will depend crucially on proving that (1)-(3) is locally well-posed which is the
main purpose of the present paper.

To avoid complications from the boundary of the physical domain, we assume that
the physical domain is D = [0, 1]d with periodic boundary conditions. We will denote
by Q0(x) = Q(x, 0) the initial condition for the configuration field. We take it to be
deterministic. But certainly our results can be extended to the case when it is random.

Our main result is the following:

Theorem 1.1. Assume that the spring force F and the initial value satisfy the following
conditions (A) and (B):

(A) The function γ is C∞-smooth from [0,+∞) to (0,+∞), and γ ′(|Q|2) ≥ 0, and
the derivative of F satisfies that |∇m

Q F(Q)| ≤ C(1 + |Q|p) (m = 0, 1, 2, 3, 4), where C
is a constant and p is a certain non-negative integer.

(B)

‖u0‖H 4 ≤ Const., (7)

|∇mQ0| ≤ Const. (m = 0, 1, 2, 3, 4). (8)

Then there exists a T ∗ such that for t ≤ T ∗, (1)-(3) has a unique strong solution u with
u ∈ C1([0, T ∗], C2(D)) ∩ L2([0, T ∗], H 5(D)).

Our strategy is quite simple. We will treat (1)-(3) as if it is deterministic and fol-
low general strategies for proving local well-posedness of such systems (see [14]). It is
well-known that the crucial step in such a procedure is to establish a priori estimates
for

∫ t
0 ‖∇u(·, s)‖∞ds. As usual this is done by controlling sufficiently high Sobolev

norms. This is carried out in Sect. 2. As one might expect, the key technical component
is to estimate Q. The equation for Q is a vector transport equation, plus a noise term.
Fortunately the noise term depends only on time which disappears after differentiation
in x. This makes it possible to control high Sobolev norm.

2. A Priori Estimates

In this section, we derive a priori estimates for smooth solutions of the system

∂u
∂t

+ (u · ∇)u + ∇p = �u + ∇ · τ, ∇ · u = 0, (9)

τ = E(F(Q)⊗ Q), (10)

∂Q
∂t

+ (u · ∇)Q = (∇u)TQ − F(Q)+ ẇ(t). (11)
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Here E denotes expectation with respect to the statistics of the Gaussian white noise
ẇ(t).

Equations (9), (10), and (11) are supplemented with initial conditions

u(x, 0) = u0(x), (12)

Q(x, 0) = Q0(x), (13)

which are assumed to be smooth. {Q0} can be random, however.

2.1. A priori estimates for u. Here we recall some standard estimates for Navier-Stokes
type of equations.

Consider
{

ut + (h · ∇)u + ∇p = �u + ∇ · τ, ∇ · u = 0

∇ · h = 0
, (14)

where u, h and f are assumed to be smooth. Then we have

‖u(·, t)‖2
L2 +

∫ t

0
‖∇u(·, s)‖2

L2ds ≤ ‖u0‖2
L2 +

∫ t

0
‖τ(·, s)‖2

L2ds. (15)

Lemma 2.1. Let v = ∇u, v0 = ∇u0, then

‖v(·, t)‖2
L2 ≤ e

∫ t
0 ‖∇h(·,s)‖L∞ds

(

‖v0‖2
L2 +

∫ t

0
‖∇τ(·, s)‖2

L2ds

)

, (16)

∫ t

0
‖∇v(·, s)‖2

L2ds ≤ ‖v0‖2
L2 +

∫ t

0
ds
(
‖∇h(·, s)‖L∞‖v(·, s)‖2

L2 + ‖∇τ(·, s)‖2
L2

)
.

(17)

Lemma 2.2. For α = 0, 1, 2, 3, 4,

‖u(·, t)‖2
Hα ≤ e

∫ t
0 ‖h(·,s)‖

H4ds

(

‖u0‖2
Hα +

∫ t

0
‖τ(·, s)‖2

Hαds

)

, (18)

∫ t

0
‖u(·, s)‖2

Hα+1ds ≤ ‖u0‖2
Hα +

∫ t

0
(‖h(·, s)‖H 4‖u(·, s)‖2

Hα + ‖τ(·, s)‖2
Hα)ds.

(19)

2.2. A priori estimates for Q. Consider

∂tQ + (u · ∇)Q = κQ − F(Q)+ ẇ(t), (20)

where κ = (∇u)T , F is a smooth function. To be precise (20) should be written as

dQ = (−u · ∇Q + κQ − F(Q))dt + dw. (21)

u is assumed to be a given smooth deterministic velocity field, s.t. ∇ · u = 0.
Let (	,F,P) be the probability space upon which the Wiener process w(·) is defined.

We will use ω to denote realizations of the Brownian path.
We will always assume that F satisfies the growth condition (A) in Theorem 1.1.
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Denote by X(α, t) the Eulerian-Lagrangian flow map induced by the velocity field u:

{
d

dt
X(α, t) = u(X(α, t), t)

X(α, 0) = α
. (22)

Let Q be the solution of (20). Fix a α ∈ Rd , let q(α, t) be the solution of

dq = (k(t)q − F(q))dt + dw, q(α, 0) = Q0(α), (23)

where k(t) = κ(X(α, t), t). Then

Lemma 2.3. For almost all ω ∈ 	,

q(α, t) = Q(X(α, t), t)

for all α ∈ Rd .

Proof. Let q̄α(t) = Q(X(α, t), t). It is easy to see that q̄α(·) is a solution of (23) under
the C1(D)-smooth condition of u which will be shown later. Hence Lemma 2.3 follows
from the uniqueness results for (23). ��
Lemma 2.4. There exists a unique solution to the SDEs (23) with valuesC([0,+∞),Rd).

Proof. It is a standard procedure to prove the existence and uniqueness of the SDEs
before the stopping time τN = inf{t | |Q| > N} for the smoothness of F and u. The
only needed thing is to show that the lifespan of the solution of (23) is R

+ a.s., i.e.
limN→+∞ τN = +∞. Because the stretching term k(t)q is just a linear growth term of
q, we only need to show that the equation

dq = −F(q)dt + dw (24)

will not blow up in finite time. We use Feller’s test for explosion to deal with this problem
[8, 9].

Consider the equation for Xt = |q|2 by applying Itô’s formula

dXt = 2q · dq + ndt

= −2q · F(q)dt + ndt + 2q · dw

= (n− 2Xtγ (Xt ))dt + 2
√
XtdBt , (25)

where Bt is a Brownian motion by Paul Lévy characterization. n = d is the spatial
dimension. Define the scale function p(x) satisfies

2(n− 2γ (x)x)p′(x)+ 4xp′′(x) = 0, (26)

and, we obtain

p(x) =
∫ x

c

y− n
2 eh(y)dy, (27)

where h′(x) = γ (x), c is a fixed positive number. Clearly h(x) is a monotonely increas-
ing function of x. The speed measure is defined as

m(dx) = 1

2
x
n
2 −1e−h(x)dx; (28)

thus if n = 2, we have
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v(x) =
∫ x

c

(
p(x)− p(y)

)
m(dy)

=
∫ x

c

(1

2

∫ x

y

y

z
· 1

y
e(h(z)−h(y))dz

)
dy

≥ 1

2

∫ x

c

ln
x

y
dy = x

2

∫ c
x

1
ln zdz. (29)

It is clear that v(+∞) = +∞.
If n = 3, we have

v(x) =
∫ x

c

(
p(x)− p(y)

)
m(dy)

=
∫ x

c

(1

2

∫ x

y

(
y

z

) 3
2

· 1

y
e(h(z)−h(y))dz

)
dy

≥ 1

2

∫ x

c

√
y
(− 2z−

1
2 |xy
)
dy =

∫ x

c

(

1 −
√
y

x

)

dy

= x

(

1 −
∫ 1

c
x

z
1
2 dz

)

− c. (30)

It is clear that v(+∞) = +∞.
Thus we obtain the existence and uniqueness on R

+. ��
Here and in the following we will often use the Frobenius-norm of the vectors or the

tensors A which is defined as

|A|F � (
∑

i,j,... ,k

a2
i,j,... ,k)

1
2 . (31)

It is not difficult to find that this norm satisfies the common triangle inequality and the
product inequality

|A ∗ B|F ≤ |A|F |B|F , (32)

where ∗ may be · , : or higher order contraction operators. We will still abbreviate | · |F
as | · | through the paper.

Lemma 2.5. Define:

Q(0)
m (t) = supαE|q(α, t)|m = supxE|Q|m, (33)

then we have the following recursive inequality

Q(0)
m (t) ≤ Q(0)

m (0)+m

∫ t

0
‖∇u‖L∞Q(0)

m (s)ds + 1

2
(mn+m(m− 2))

∫ t

0
Q(0)
m−2(s)dt.

(34)

If m = 2, then we have

Q(0)
2 (t) ≤ Q(0)

2 (0)+ nt + e
∫ t

0 2‖∇u‖L∞ds
∫ t

0
2(Q(0)

2 (0)+ ns)‖∇u‖L∞ds, (35)

where n = d is the spatial dimension.
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Proof. For |q|m, we use Itô’s formula

d|q|m = m|q|m−2q · dq + 1

2
(mn+m(m− 2))|q|m−2dt. (36)

Paying attention that the term q · F(q) ≥ 0, we obtain

d|q|m ≤ m|∇u||q|mdt +m|q|m−2q · dw + 1

2
(mn+m(m− 2))|q|m−2dt. (37)

Integrating on [0, t], and taking the expectation on both sides, we get

Q(0)
m (t) ≤ Q(0)

m (0)+m

∫ t

0
‖∇u‖L∞Q(0)

m (s)ds + 1

2
(mn+m(m− 2))

∫ t

0
Q(0)
m−2(s)dt.

(38)

Taking m = 2, we have

Q(0)
2 (t) ≤ Q(0)

2 (0)+ nt + e
∫ t

0 2‖∇u‖L∞ds
∫ t

0
2(Q(0)

2 (0)+ ns)‖∇u‖L∞ds. (39)

For generalm, we will obtain the recursive estimate for Q(0)
m (t). Ifm is odd, we may get

the corresponding estimate by using the inequality |q| ≤ 1 + |q|2. ��
Remark 1. For arbitrary m, we have the L∞-norm estimate of E|Q|m.

Lemma 2.6. Define

Q(1)
m (t) =

∫

D

E|∇Q|mdx, (40)

then we have

Q(1)
m (t) ≤ e

∫ t
0 (‖∇u‖L∞+c)ds

(

Q(1)
m (0)+

∫ t

0
Q(0)
m (s)‖∇2u(·, s)‖mLmds

)

. (41)

Proof. Define R � ∇Q; we have

Rt + (u · ∇)R + (∇u · ∇)Q = ∇κ · Q + κ · R − ∇F(Q). (42)

Taking the inner product on both sides with R|R|m−2, and noting that

(∇F(Q))ijRij = 2γ ′(|Q|2)Ql∂iQlQj∂iQj + γ (|Q|2)|R|2 ≥ 0, (43)

where the summation convention is applied, thus we get

1

m
|R|mt ≤ ‖∇u‖L∞|R|m − (u · ∇)R ∗ R|R|m−2 + |∇2u||Q||R|m−1. (44)

Here and following we will represent the inner product as ∗. Hence we have

1

m

d

dt
Q(1)
m ≤ ‖∇u‖L∞Q(1)

m −
∫

D

E((u · ∇)R ∗ R|R|m−2)dx+
∫

D

E(|∇2u||Q||R|m−1)dx.

(45)
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Notice that
∫

D

(u · ∇)R ∗ R|R|m−2dx = 0; (46)

we get

1

m

d

dt
Q(1)
m ≤ ‖∇u‖L∞Q(1)

m +
∫

D

|∇2u|E(|Q||R|m−1). (47)

Since
∫

D

E(|∇2u||Q||R|m−1) ≤
∫

D

(E|R|m)m−1
m (E|∇2u|m|Q|m) 1

m dx

≤ m− 1

m
Q(1)
m + Q(0)

m (t)

m

∫

D

|∇2u|mdx, (48)

finally we get

Q(1)
m (t) ≤ e

∫ t
0 (‖∇u‖L∞+c)ds

(

Q(1)
m (0)+

∫ t

0
Q(0)
m (s)‖∇2u(·, s)‖mLmds

)

. (49)

��
Remark 2. Notice that if m < +∞, we have ‖∇2u‖Lm ≤ ‖u‖H 4 ∈ L∞(0, t). The
estimate of Q(1)

m (t) is valid.

Lemma 2.7. Define

Q(2)
m (t) =

∫

D

E|∇2Q|mdx, (50)

then we have

Q(2)
m (t) ≤ e

∫ t
0 (‖∇u‖L∞+c)ds ·

(
Q(2)
m (0)+

∫ t

0
(‖∇2u‖2m

L2m

+Q(0)
m (s)‖∇3u‖mLm + Q(0)

4p (s)+ Q(1)
4m(s))ds

)
. (51)

Proof. Define S � ∇R = ∇2Q, then

St+(u·∇)S+2(∇u·∇)R+(∇2u·∇)Q = ∇2κ ·Q+2∇κ ·R+κ · S−∇2F(Q), (52)

∇2F(Q) = ∇x(∇QF · ∇xQ) = ∇2
QF∇xQ∇xQ + ∇QF · ∇2

xQ. (53)

Taking the inner product on both sides with S|S|m−2, and noting that

(∇QF)ilSljkSijk = 2γ ′(|Q|2)QiQl∂ljQk∂ijQk + γ (|Q|2)|S|2 ≥ 0, (54)

where the summation convention is applied, thus we get

1

m
|S|mt ≤ ‖∇u‖L∞|S|m − (u · ∇)S ∗ S|S|m−2 + |∇2u||∇Q||S|m−1

+|∇3u||Q||S|m−1 + (1 + |Q|p)|∇Q|2|S|m−1. (55)
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Integrating on D and taking the expectation

1

m

d

dt
Q(2)
m ≤ ‖∇u‖L∞Q(2)

m −
∫

D

E((u · ∇)S ∗ S|S|m−2)dx

+
∫

D

E(|∇2u||∇Q||S|m−1)dx +
∫

D

E(|∇3u||Q||S|m−1)dx

+
∫

D

E

(
(1 + |Q|p)|∇Q|2|S|m−1

)
dx, (56)

and using
∫

D

(u · ∇)S ∗ S|S|m−2dx = 0, (57)

we get

1

m

d

dt
Q(2)
m ≤ ‖∇u‖L∞Q(2)

m +
∫

D

E(|∇2u||∇Q||S|m−1)dx +
∫

D

E(|∇3u||Q||S|m−1)dx

+
∫

D

E

(
(1 + |Q|p)|∇Q|2|S|m−1

)
dx

= P1 + P2 + P3 + P4, (58)

and we have

P2 ≤
∫

D

(E|S|m)m−1
m (E|∇2u|m|∇Q|m) 1

m dx

≤ m− 1

m
Q(2)
m + 1

2m
(‖∇2u‖2m

L2m + Q(1)
2m(t)), (59)

P3 ≤
∫

D

(E|S|m)m−1
m (E|∇3u|m|Q|m) 1

m dx

≤ m− 1

m
Q(2)
m + Q(0)

m (t)

m
‖∇3u‖mLm, (60)

P4 ≤
∫

D

(E|S|m)m−1
m
(
E((1 + |Q|2p)|∇Q|2m)) 1

m dx

≤ m− 1

m
Q(2)
m + 1

2m
(Q(1)

4m(t)+ 2Q(1)
2m(t)+ Q(0)

4p (t)). (61)

After dropping some lower order terms, we obtain

Q(2)
m (t) ≤ e

∫ t
0 (‖∇u‖L∞+c)ds ·

(
Q(2)
m (0)+

∫ t

0
(‖∇2u‖2m

L2m

+Q(0)
m (s)‖∇3u‖mLm + Q(0)

4p (s)+ Q(1)
4m(s))ds

)
. (62)

��
Remark 3. Notice that ifm ≤ 6, we have ‖∇2u‖L2m ≤ ‖u‖H 4 ∈ L∞(0, t), ‖∇3u‖Lm ≤
‖u‖H 4 ∈ L∞(0, t). The estimate of Q(2)

m (t) is valid.
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Lemma 2.8. Define

Q(3)
m (t) =

∫

D

E|∇3Q|mdx, (63)

then we have

Q(3)
m (t) ≤ e

∫ t
0 (‖∇u‖L∞+c)ds ·

(
Q(3)
m (0)+

∫ t

0
(‖∇2u‖2m

L2m + ‖∇3u‖2m
L2m

+Q(0)
m (s)‖∇4u‖mLm + Q(0)

4mp(t)+ Q(1)
6m(s)+ Q(2)

2m(s))ds
)
. (64)

Proof. Define T � ∇S = ∇3Q, then we have

Tt + (u · ∇)T + 3(∇u · ∇)S + 3(∇2u · ∇)R + (∇3u · ∇)Q
= ∇3κ · Q + 3∇2κ · R + 3∇κ · S + κ · T − ∇3F(Q), (65)

∇3
xF(Q) = ∇x(∇2

QF∇xQ∇xQ + ∇QF · ∇2
xQ)

= ∇3
QF∇xQ∇xQ∇xQ + ∇2

QF∇2
xQ∇xQ + ∇QF∇3

xQ. (66)

Taking the inner product on both sides of the equation for T with T |T |m−2, we get

1

m
|T |mt ≤ ‖∇u‖L∞|T |m − (u · ∇)T ∗ T |T |m−2 − (∇QF · T ) ∗ T |T |m−2

+|∇2u||∇2Q||T |m−1 + |∇3u||∇Q||T |m−1 + |∇4u||Q||T |m−1

+(|∇Q|3|T |m−1 + |∇2Q||∇Q||T |m−1)(1 + |Q|p). (67)

Integrating both sides and using the identity
∫

D

(u · ∇)T ∗ T |T |m−2dx = 0 (68)

and the inequality (∇QF · T ) ∗ T ≥ 0, we get

1

m

d

dt
Q(3)
m ≤ ‖∇u‖L∞Q(3)

m +
∫

D

E(|∇2u||∇2Q||T |m−1)dx

+
∫

D

E(|∇3u||∇Q||T |m−1)dx +
∫

D

E(|∇4u||Q||T |m−1)dx

+
∫

D

E((1 + |Q|p)|∇Q|3|T |m−1)dx

+
∫

D

E((1 + |Q|p)|∇2Q||∇Q||T |m−1)dx

= P1 + P2 + P3 + P4 + P5 + P6. (69)

Note that

P 2 ≤
∫

D

(E|T |m)m−1
m (E|∇2u|m|∇2Q|m) 1

m dx

≤ m− 1

m
Q(3)
m + 1

2m
(‖∇2u‖2m

L2m + Q(2)
2m(t)), (70)
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P3 ≤
∫

D

(E|T |m)m−1
m (E|∇3u|m|∇Q|m) 1

m dx

≤ m− 1

m
Q(3)
m + 1

2m
(‖∇3u‖2m

L2m + Q(1)
2m(t)), (71)

P4 ≤
∫

D

(E|T |m)m−1
m (E|∇4u|m|Q|m) 1

m dx

≤ m− 1

m
Q(3)
m + Q(0)

m (t)

m
‖∇4u‖mLm, (72)

P5 ≤
∫

D

(E|T |m)m−1
m (E|∇Q|3m(1 + |Q|mp)) 1

m dx

≤ m− 1

m
Q(3)
m + 1

2m
(Q(1)

6m(t)+ 2Q(1)
3m(t)+ Q(0)

2mp(t)), (73)

P6 ≤
∫

D

(E|T |m)m−1
m (E|∇2Q|m|∇Q|m(1 + |Q|mp)) 1

m dx

≤ m− 1

m
Q(3)
m + 1

4m
(2Q(2)

2m(t)+ 2Q(1)
2m(t)+ Q(1)

4m(t)+ Q(0)
4mp(t)), (74)

where some constants have been omitted. After dropping some lower order terms, we
obtain

Q(3)
m (t) ≤ e

∫ t
0 (‖∇u‖L∞+c)ds ·

(
Q(3)
m (0)+

∫ t

0
(‖∇2u‖2m

L2m + ‖∇3u‖2m
L2m

+Q(0)
m (s)‖∇4u‖mLm + Q(1)

6m(s)+ Q(0)
4mp(t)+ Q(2)

2m(s))ds
)
. (75)

��
Remark 4. Notice that if m ≤ 3, we have ‖∇2u‖L2m, ‖∇3u‖L2m ≤ ‖u‖H 4 ∈ L∞(0, t).
If m = 3, we have

‖∇4u‖3
L3 ≤ ‖∇4u‖3

H
1
2

≤ (‖∇4u‖
1
2
H 0)

3(‖∇4u‖
1
2
H 1)

3 ≤ ‖∇4u‖
3
2
L2‖u‖

3
2
H 5 , (76)

and a simple Hölder inequality shows that ‖∇4u‖3
L3 belongs to L1(0, t). The estimate

of Q(3)
m (t) is valid.

Lemma 2.9. Define

Q(4)
m (t) =

∫

D

E|∇4Q|mdx, (77)

then we have

Q(4)
2 (t) ≤ e

∫ t
0 (‖∇u‖L∞+c)ds ·

(
Q(4)

2 (0)+
∫ t

0
(‖∇2u‖6

L6 + ‖∇3u‖4
L4 + ‖∇4u‖3

L3

+Q(0)
2 (s)‖∇5u‖2

L2 + Q(0)
12p(s)+ Q(1)

16 (s)+ Q(2)
6 (s)+ Q(3)

3 (s))ds
)
. (78)
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Proof. Define U � ∇T = ∇4Q, then we have

Ut + (u · ∇)U + 4(∇u · ∇)T + 6(∇2u · ∇)S + 4(∇3u · ∇)R + (∇4u · ∇)Q
= ∇4κ · Q + 4∇3κ · R + 6∇2κ · S + 4∇κ · T + κ · U − ∇4F(Q). (79)

Straightforward calculation gives ∇4
xF(Q) = ∇QF · U + Rem, where

|Rem| ≤ C(|∇3Q||∇Q| + |∇2Q|2 + |∇2Q||∇Q|2 + |∇Q|4)(1 + |Q|p). (80)

Hence

1

2
|U |2t ≤ ‖∇u‖L∞|U |2 − (u · ∇)U ∗ U − (∇QF · U) ∗ U + |∇2u||∇3Q||U |

+|∇3u||∇2Q||U | + |∇4u||∇Q||U | + |∇5u||Q||U | + (|∇3Q||∇Q|
+|∇2Q|2 + |∇2Q||∇Q|2 + |∇Q|4)(1 + |Q|p|)|U |. (81)

Integrating both sides and using
∫
(u · ∇)U ∗ Udx = 0 (82)

and the inequality (∇QF · U) ∗ U ≥ 0, we get

1

2

d

dt
Q(4)

2 (t) ≤ ‖∇u‖L∞Q(4)
2 (t)+

∫

D

E|∇2u||∇3Q||U |dx +
∫

D

E|∇3u||∇2Q||U |dx

+
∫

D

E|∇4u||∇Q||U |dx +
∫

D

E|∇5u||Q||U |dx

+
∫

D

E|∇3Q||∇Q|(1 + |Q|p)|U |dx +
∫

D

E|∇2Q|2(1 + |Q|p)|U |dx

+
∫

D

E|∇2Q||∇Q|2(1 + |Q|p)|U |dx +
∫

D

E|∇Q|4(1 + |Q|p)|U |dx
� P1 + P2 + P3 + P4 + P5 + P6 + P7 + P8 + P9, (83)

P2 ≤
∫

D

E|U |2dx +
∫

D

E(|∇2u|2|∇3Q|2)dx

≤ Q(4)
2 (t)+ ‖∇2u‖6

L6 + Q(3)
3 (t), (84)

P3 ≤
∫

D

E|U |2dx +
∫

D

E(|∇3u|2|∇2Q|2)dx

≤ Q(4)
2 (t)+ ‖∇3u‖4

L4 + Q(2)
4 (t), (85)

P4 ≤
∫

D

E|U |2dx +
∫

D

E(|∇4u|2|∇Q|2)dx

≤ Q(4)
2 (t)+ ‖∇4u‖3

L3 + Q(1)
6 (t), (86)



Well-Posedness for the Dumbbell Model of Polymeric Fluids 421

P5 ≤
∫

D

E|U |2dx +
∫

D

E(|∇5u|2|Q|2)dx

≤ Q(4)
2 (t)+ Q(0)

2 (t)‖∇5u‖2
L2 , (87)

P6 ≤
∫

D

E|U |2dx +
∫

D

E(|∇3Q|2|∇Q|2(1 + |Q|2p))dx

≤ Q(4)
2 (t)+ Q(0)

12p(t)+ Q(1)
12 (t)+ Q(1)

6 (t)+ Q(3)
3 (t), (88)

P7 ≤
∫

D

E|U |2dx +
∫

D

E(|∇2Q|4(1 + |Q|2p))dx

≤ Q(4)
2 (t)+ Q(0)

6p (t)+ Q(2)
4 (t)+ Q(2)

6 (t), (89)

P8 ≤
∫

D

E|U |2dx +
∫

D

E(|∇2Q|2|∇Q|2(1 + |Q|2p))dx

≤ Q(4)
2 (t)+ Q(2)

4 (t)+ Q(1)
4 (t)+ Q(1)

8 (t)+ Q(0)
8p (t), (90)

P9 ≤
∫

D

E|U |2dx +
∫

D

E(|∇Q|8(1 + |Q|2p))dx

≤ Q(4)
2 (t)+ Q(1)

16 (t)+ Q(1)
8 (t)+ Q(0)

4p (t), (91)

where some constants are omitted. After dropping some lower order terms, we obtain

Q(4)
2 (t) ≤ e

∫ t
0 (‖∇u‖L∞+c)ds ·

(
Q(4)

2 (0)+
∫ t

0
(‖∇2u‖6

L6 + ‖∇3u‖4
L4 + ‖∇4u‖3

L3

+Q(0)
2 (s)‖∇5u‖2

L2 + Q(0)
12p(s)+ Q(1)

16 (s)+ Q(2)
6 (s)+ Q(3)

3 (s))ds
)
. (92)

��
Lemma 2.10. Assume that F satisfies Condition (A) as in Theorem 1.1, then

|F(Q)⊗ Q| ≤ C(1 + |Q|p1), (93)

|∇x(F(Q)⊗ Q)| ≤ C|∇Q|(1 + |Q|p2), (94)

|∇2
x (F(Q)⊗ Q)| ≤ C(|∇Q|2 + |∇2Q|)(1 + |Q|p3), (95)

|∇3
x (F(Q)⊗ Q)| ≤ C(|∇Q|3 + |∇2Q||∇Q| + |∇3Q|)(1 + |Q|p4), (96)

|∇4
x (F(Q)⊗ Q)| ≤ C(|∇4Q| + |∇3Q||∇Q| + |∇2Q|2

+|∇2Q||∇Q|2 + |∇Q|4)(1 + |Q|p5), (97)

where p1, p2, p3, p4 and p5 are suitable integers which are greater than p.

Proof. This follows from a direct calculation. ��
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Lemma 2.11. The stress τ has the following estimates:

‖τ‖2
L2 ≤ C(1 + Q(0)

2p1
(t)) ·meas(D), (98)

‖∇τ‖2
L2 ≤ C(1 + Q(0)

2p2
(t))Q(1)

2 (t), (99)

‖∇2τ‖2
L2 ≤ (1 + Q(0)

2p3
(t))(Q(1)

4 (t)+ Q(2)
2 (t)), (100)

‖∇3τ‖2
L2 ≤ (1 + Q(0)

2p4
(t))(Q(1)

6 (t)+ Q(2)
4 (t)+ Q(3)

2 (t)), (101)

‖∇4τ‖2
L2 ≤ (1 + Q(0)

2p5
(t))(Q(1)

8 (t)+ Q(2)
4 (t)+ Q(3)

3 (t)+ Q(4)
2 (t)), (102)

where some lower order terms have been omitted.

Proof. The estimates of different order derivatives of τ will be done in different steps:

Step 1. Estimate of ‖τ‖L2 :

‖τ‖2
L2 =

∫
|E(F(Q)⊗ Q)|2dx ≤

∫
(E|F(Q)⊗ Q|)2dx

≤ C

∫
(
E(1 + |Q|p1)

)2
dx ≤ C

∫
(1 + E|Q|2p1)dx

= C

∫
(1 + E|q|2p1)dx ≤ C(1 + Q(0)

2p1
(t)) ·meas(D). (103)

Step 2. Estimate of ‖∇τ‖L2 :

‖∇τ‖2
L2 =

∫
|∇E(F(Q)⊗ Q)|2dx

≤ C

∫
E(1 + |Q|2p2)E|∇Q|2dx

≤ C(1 + Q(0)
2p2
(t))Q(1)

2 (t). (104)

Step 3. Estimate of ‖∇2τ‖L2 :

‖∇2τ‖2
L2 =

∫
|∇2
xE(F(Q)⊗ Q)|2dx

≤ C

∫
E(|∇Q|4 + |∇2Q|2)E(1 + |Q|2p3)dx

≤ C(1 + Q(0)
2p3
(t))(Q(1)

4 (t)+ Q(2)
2 (t)). (105)

Step 4. Estimate of ‖∇3τ‖L2 :

‖∇3τ‖2
L2 =

∫
|∇3
xE(F(Q)⊗ Q)|2dx

≤ C

∫
E(|∇Q|6 + |∇2Q|2|∇Q|2 + |∇3Q|2)E(1 + |Q|2p4)dx

≤ C(1 + Q(0)
2p4
(t))(Q(1)

6 (t)+ Q(1)
4 (t)+ Q(2)

4 (t)+ Q(3)
2 (t)). (106)
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Step 5. Estimate of ‖∇4τ‖L2 :

‖∇4τ‖2
L2 =

∫
|∇4
xE(F(Q)⊗ Q)|2dx

≤ C

∫
E(|∇4Q|2 + |∇3Q|2|∇Q|2 + |∇2Q|4 + |∇2Q|2|∇Q|4

+|∇Q|8)E(1 + |Q|2p5)dx

≤ C(1 + Q(0)
2p5
(t))(Q(1)

8 (t)+ Q(1)
6 (t)+ Q(2)

4 (t)+ Q(3)
3 (t)+ Q(4)

2 (t)).

(107)

This completes the a priori estimates. ��

3. The Local Well-Posedness

To prove local well-posedness, namely Theorem 1.1, we set up a standard iteration
scheme. Let u0(x, t) = u0(x),Q0(x, t, ω) = Q0(x, ω). From {u0,Q0}, we obtain a
sequence {un,Qn} by solving the following system






∂tun+1 + (un · ∇)un+1 + ∇pn+1 = �un+1 + ∇ · τn,
∇ · un+1 = 0,
τ n = E(F(Qn)⊗ Qn),

∂tQn+1 + (un+1 · ∇)Qn+1 = κn+1Qn+1 − F(Qn+1)+ ẇ(t),

(108)

where κn+1 = ∇un+1.
We will prove that for short times, the sequence {un} is uniformly bounded in a high

enough Sobolev norm, and contractive in the L2 norm.
Define the norm:

|||un||| =
(

max
s≤T ∗ ‖un(s)‖2

H 4 +
∫ T ∗

0
‖un(s)‖2

H 5ds

) 1
2

, (109)

where T ∗ is a constant to be determined later.

Step 1. Uniform boundedness of un. It follows from Lemma 2.2 that

|||un+1|||2 ≤ e
∫ T ∗

0 ‖un‖
H4ds(‖u0‖2

H 4 +
∫ T ∗

0
‖τn‖2

H 4ds)+ ‖u0‖2
H 4

+
∫ T ∗

0
{‖un‖H 4 [e

∫ T ∗
0 ‖un‖

H4ds(‖u0‖2
H 4 +

∫ T ∗

0
‖τn‖2

H 4ds)] + ‖τn‖2
H 4}ds.

(110)

Define C0 = ‖u0‖2
H 4 , assume |||un||| ≤ K , then

|||un+1|||2 ≤ eKT
∗
(

C0 +
∫ T ∗

0
‖τn‖2

H 4ds

)

+ C0

+
∫ T ∗

0

(

K[eKT
∗
(C0 +

∫ t

0
‖τn‖2

H 4ds)] + ‖τn‖2
H 4

)

ds. (111)

We only need to consider
∫ t

0 ‖τn‖2
H 4ds.
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From Lemma 2.11, the highest order terms in
∫ t

0 ‖τn‖2
H 4ds areQ(2)

6 (t),Q(3)
3 (t),Q(4)

2 (t),
which corresponds to the highest order spatial derivative terms. Their validity is easily
obtained by using

‖∇4u‖3
L3 ≤ ‖∇4u‖3

H
1
2

≤ (‖∇4u‖
1
2
H 0)

3(‖∇4u‖
1
2
H 1)

3 ≤ ‖∇4u‖
3
2
L2‖u‖

3
2
H 5 . (112)

We will simplify the term
∫ t

0 ‖τn‖2
H 4ds ≤ f (t,K), where f (t,K) denotes the right

hand side of the last inequality in Lemma 2.10. f (t,K) is a monotonely increasing
continuous function of t , and f (0,K) = 0, thus

|||un+1|||2 ≤eKT ∗
(C0+f (T ∗,K))+C0+KT ∗eKT

∗
(C0+f (T ∗,K))+Kf(T ∗,K).(113)

Let K = 2C0 + 1, and choose T ∗ sufficiently small such that

eKT
∗
(C0+f (T ∗,K))+C0+KT ∗eKT

∗
(C0+f (T ∗,K))+Kf (T ∗,K)≤K2, (114)

then we have

|||un||| ≤ K. (115)

Step 2. Contraction in the low norm:

Define vn+1 = un+1 − un, πn+1 = pn+1 − pn,Rn+1 = Qn+1 − Qn, then

vn+1
t + (un · ∇)vn+1 + (vn · ∇)un + ∇πn+1 = �vn+1 + ∇ · (τn − τn−1), (116)

∇ · vn+1 = 0,

Rn+1
t − (un+1 · ∇)Rn+1 − (vn+1 · ∇)Qn = κn+1Rn+1 + ∇(un+1 − un)Qn

−(F(Qn+1)− F(Qn)). (117)

From the definition of τ we have

‖τn − τn−1‖2
L2 ≤

∫

D

E|F(Qn)|2E|Qn − Qn−1|2dx

+
∫

D

E|Qn−1 ⊗ ∇QF(Qθ )|2E|Qn − Qn−1|2dx

≤ C(1 + Q(0)
2p+2(t))

∫

D

E|Rn|2dx, (118)

where Qθ = θQn + (1 − θ)Qn−1, θ ∈ [0, 1]. From (116)

d

dt
‖vn+1‖2

L2 ≤ ‖vn+1‖2
L2 − ‖∇vn+1‖2

L2 + ‖τn − τn−1‖2
L2

+‖∇un‖L∞(‖vn‖2
L2 + ‖vn+1‖2

L2)

≤ ‖vn+1‖2
L2 − ‖∇vn+1‖2

L2 + C(1 + Q(0)
2p+2(t))E‖Rn‖2

L2

+K(‖vn‖2
L2 + ‖vn+1‖2

L2). (119)
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From (117)

d

dt
‖Rn+1‖2

L2 ≤ ‖∇un+1‖L∞‖Rn+1‖2
L2 + 2

∫

D

(1 + |Qn+1|p + |Qn|p)|Rn+1|dx

+
∫

D

(vn+1 · ∇Qn · Rn+1)dx +
∫

D

(∇(un+1 − un) · Qn · Rn+1)dx

� P1 + P2 + P3 + P4, (120)

P3 ≤
∫

D

|vn+1|2|∇Qn|2dx + ‖Rn+1‖2
L2

≤ ‖∇Qn‖2
L∞

∫

D

|vn+1|2dx + ‖Rn+1‖2
L2

≤ ‖Qn‖2
H 3

∫

D

|vn+1|2dx + ‖Rn+1‖2
L2 , (121)

P4 ≤ C1

∫

D

|∇vn+1|2|Qn|2dx + C2‖Rn+1‖2
L2 , (122)

where C1, C2 is chosen such that C1Q(0)
2 (T ∗) ≤ 1. Thus

d

dt
E‖Rn+1‖2

L2 ≤ C(‖∇un+1‖L∞ +
√

Q(0)
2p (t)+ 1)E‖Rn+1‖2

L2

+E‖Qn‖2
H 3

∫

D

|vn+1|2dx

+C1

∫

D

|∇vn+1|2E|Qn|2dx

≤ C(‖∇un+1‖L∞ +
√

Q(0)
2p (T

∗)+ 1)E‖Rn+1‖2
L2 + C‖vn+1‖2

L2

+C1Q(0)
2 (T ∗)

∫

D

|∇vn+1|2dx

≤ CE‖Rn+1‖2
L2 + C‖vn+1‖2

L2 +
∫

D

|∇vn+1|2dx. (123)

Hence we have, for some constant C∗,

d

dt
(‖vn+1‖2

L2 + E‖Rn+1‖2
L2) ≤ C∗(‖vn+1‖2

L2 + E‖Rn+1‖2
L2)

+(‖vn‖2
L2 + E‖Rn‖2

L2). (124)

Gronwall’s inequality shows

‖vn+1(t)‖2
L2 + E‖Rn+1(t)‖2

L2 ≤ eC∗t
∫ t

0
(‖vn‖2

L2 + E‖Rn‖2
L2)ds. (125)

Let ‖vn‖C = maxs≤t (‖vn(s)‖2
L2 + E‖Rn(s)‖2

L2)
1
2 . If

T ∗eC∗T ∗ = β < 1, (126)



426 W. E, T. Li, P. Zhang

then we have

‖vn+1‖2
C ≤ β‖vn‖2

C. (127)

This establishes the contraction property.
The rest of the proof follows from standard arguments, see for example [14].

4. Conclusion

In this paper, we give a proof of well-posedness of the stochastic model (1)-(3) for
a dumbbell-solvent system. We believe that our method, which is based on analyzing
directly the stochastic model (1) is of interest by itself. The results of this paper have
been used in [4] for the numerical analysis of stochastic simulation methods based on
Brownian configuration fields (BCF). Through our analysis, we also demonstrate how
to handle directly the stochastic system (1)-(3).

The main technical restriction in our analysis is the fact that noise depends only on
time. This is fine for dilute polymer solutions since polymer-polymer interaction can
be neglected. But for semi-dilute or for concentrated solutions, this kind of technique
can only handle systems under the mean field approximation (see [2]). The mean field
approximation is typically made for liquid crystal polymer systems. Therefore a natural
next step is to extend the results of the present paper for that case [12].

In the special case when F is linear in Q, our results recover the local well-posedness
results of Saut, but not the results of Lions and Masmoudi for the global existence of
weak solutions for the Oldroyd model [13].
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