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Abstract

The first part of this paper is concerned with the well-posedness for the rigid rod-like
model in shear flow of a polymeric fluid. The constitutive relations considered in this work
are motivated by the kinetic theory. The stress tensor is given by an integral which involves
the solution of the Fokker-Planck equation. A novel numerical scheme for the Fokker-
Planck equation is proposed, which preserves the positivity of the distribution function.
Another part of this work establishes the convergence theory of the fully discretized schemes
for a simple micro-macro simulation of a polymeric flow.
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1. Introduction

The study of polymeric low is motivated by the interest of understanding how large molecules
interact with each other and with the flow, as well as by the desire of obtaining the continuum
constitutive relation in the modeling of the process flow systems. The most well studied con-
tinuum constitutive equation for modeling rigid rod polymer comes from the Leslie-Ericksen
theory in Chapter 7 of [3]. However, it is only valid for low deformation rates, and is not
appropriate for describing the rheological properties such as shear thinning. Other continuum
theories for the rigid rod and liquid crystalline solutions have been developed in Chapter 11-13
of [2], which can handle liquid crystalline polymers, as they allow the inclusion of an inter-
molecular potential. If we denote by u and p the velocity and pressure of the fluid, ¥ the joint
position-configuration distribution funetion, then the rigid rod-like model can be expressed as

v . 1— _
uy + (u- V’)u-l-pr?{juu RI)gv T (1.1)
V.ou=0 (1.2)
ap ‘
3 = De R Ry + YRU] —R - (m x k- map) (1.3)
U=U, [ |m x m’|*y(x, m’, t)dm’ (1.4)

Im’|=1
De

Tij = 3Sij — ((m x RU)imy) + —— kg {mimimpm) (1.5)

where (1.1) is the governing equation of the macroscopic isothermal flow of an incompress-
ible fluid by the momentum balance, (1.2) the continuity equation, De, Re are Deborah and
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Reynolds constants, respectively: 0 < v < 1 is a given constant; m is the configuration of
the rod-like particle, R = m x ;,% is the rotational operator, Kk = (Vu)”, U represents the

excluded-volume potential of the Maier-Sauper form [2]; S is the order tensor
. 1.
Sij = (mym; — i(),_,}

and (-) denotes the average operator

{9) = j gtdm.
m|=1

In contrast to traditional models of complex fluids which express polymer stress T using em-
pirical constitutive relations, (1.5) expresses the polymer stress in terms of the microscopic
conformations of the polymers.

The Doi theory (1.1)-(1.5) takes into account the effects of flow, Brownian motion and inter-
molecular forces on the molecular orientation distribution. Thus it gives a good representation
of the molecular viscoelasticity. Numerical results in [1, 4, 10, 11, 12, 14] have shown that the
rigid rod-like model is indeed capable of predicting most of the rheological response of polymers
in the nematic phase, including the existence of ranges of shear rates with negative values of the
first normal stress difference, and dynamics such as tumbling, wagging, log rolling and kayaking
etc.

The present work aims at giving a global existence theory and a numerical analysis for the
system (1.1)-(1.5) in a simple case, which may be useful for analyzing more complicated models.
To this end, we will consider the “1417-dimensional case and the pressure driven channel flow.
More precisely, we assume that the rod-like particles rotate in shear plane, and

u=(u,0", V=(0,09)T, Vp=(c,0)T

where ¢ is a positive constant. Under these assumptions, (1.1)-(1.5) becomes

Ut + ¢ = m'lty.y + m?’y. Y e (U 1),
e = =—voo + = (¥Ug)g + uy (1 sin 0)s, 0 €S,
De on D (1.6)
U= Uu/ sin?(0 — @")u(y, &', t)d’
0
2 De " y
= 2(sinf# cos ) + (Ug cos” 0) + Trn.y - (sin® f cos® @),

3 &

where S is the unit circle. This is a coupled non-linear parabolic system. Despite the simplicity
of the underlying model, our work is a first step towards the better understanding for more
sophisticated models that are commonly used in the context of the so called micro-macro
approach in computational rheology [1, 4, 10, 11, 12, 14].

The first part of this study is to establish the global existence theory for the system (1.6),
which is done by utilizing the result for the linear parabolic equations. A linearization technique
will be used for this nonlinear system. The second part of this study is to analyze some numerical
schemes for (1.6). Large scale computer simulations have been proven very valnable in the field
of polymeric flow modeling. With continuum models, predictions for the stress and velocity in
complicated flow geometries have been achieved mainly by computational simulations. However,
the interesting aspects of the polymer flow behavior are inherently due to their molecular
structure. The task of solving the continuum model equations involves either computing the all
of the molecule configurations or computing the pointwise probability distribution function. In
the past, it had been unpractical to attempt such molecular level simulations. However, with
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the great leaps in the computational capability over the last two decades, this can now be done
with very simple molecular models. The success of research in this area is dependent on the
numerical methods available and on the validity of the physical models employed. In this work,
we take the approach of computing the probability distribution of molecules pointwise in space.
We will design a simple implicit finite difference scheme to solve the distribution function,
with particular attention to guarantee its non-negativity property. The non-negativity of the
probability distribution, second order rate of convergence and the discrete inverse inequality are
three crucial elements for the establishment of the convergence theory for the fully discretized
scheme.

This paper is organized as follows. We prove the global existence of the solution in Section
2. Section 3 is devoted to the numerical analysis to the model (1.6).

2. Exsistence

In this section, we consider the existence of the (1.6). To this end, we first rewrite (1.6) in
the following equivalent form:

wy — aly, t)uy, + by, ey, = gy, t) (2.1)
‘ 1 . ‘
Ve — paves + Ay, 0,t)0g + By, 0,t)y =0, (2.2)
where
fies = 27 N ) .
b(y,t) = - L [ sin” @ cos® By (y.0,1)do (2.3)
2Re [y ‘
1 —~ 2% 9 .
a(y,t) = 2R: /“ sin? 6 cos® Oy, 0, t)dd + % (2.4)
(. 4) 2(]_“’)/2#-' 0 cos 0, (y. 0. 1)d0
; = — sin @ cos Oy, (y, 0, 1)dd — ¢
5% DeRe [, Y (
_of (1 —#) .
*0sin2(0 — ') [y (y.0', ) (y, 0,1
“DeRe / 'A cos™ 0 sin 2( Ny (9. 0", )Y (y, 0, t)
+aby (y, 0, )20 (y, 0, 1))dd' db, (2.5)
1 [ y
Aly,0,t) = —— [ sin2(6 — 6" (y, 0',4)do" — uy sin” 6, (2.6)
.[)t” Jo :
: I
B(y,0,t) = ~Te 2c0s2(0 — 0')(y, 0, t)df’ — uy sin 26, (2.7)
De [,

Now we consider the initial-boundary problem (2.1)-(2.2) with the initial data

u(y,0) = uo(y), (Y. 0,0) = vo(y,0) > 0, (2.8)
and the boundary conditions

u(0,t) =u(l,t) =0. (2.9)

Since ¥ (y, ., t) is the distribution function, it satisfies

27
/ U(y,0.t)do = 1 Vyel0,1]andt >0 (2.10)

0

and is periodic in space variable @, i.e.

Py, 0,t) =Y(y, 27 + 6,t), Yy, t. (2.11)



322 H. ZHANG AND P.W. ZHANG
The restriction to the initial data
2m
/ woly, 8, t)de = 1, and vo(y, 0) = oy, 27 + 6), Yy (2.12)
J0

implies that (2.10)-(2.11) are true from the second equation of (1.6). Meanwhile we can see
that «» = 0 is one of its sub-solutions. So ¥ > 0 as /g = 0 for all £ = 0.

Below we will introduce some notations. Let €2 be a bounded domain in R"™ and S the
boundary of Q. €2 is the closure of ©, i.e. © = QU S and Qr is the cylinder Q x (0,7).
Let C'(Q) denote the Banach space whose element u(z) is continuous in €2, has continuous
derivatives up to order [I] in © and also has a finite value for quantity

1]
(1) PR (| o (1) (D 1°
|N|“I = u :}>:I) + E < u ‘»;;’ ; (2.13)
71=0
where
() — g0 _
lulg }u\” 7111(;)1.\|u|.
. ([n
KL u: E | D2 ulg "

(1)

1=l
<u>y= E & Dlly 41

(e lu(x) —ulz")] )
LU = E ——— ——, o is a constant.
e |z — x|
z,2'ef|e—a'|<po

Equality (2.13) defines the norm |'rt\}§) in C'(Q). Furthermore, let C""/2(Qr) be the Banach
space of functions u(z,t) that are continuous in Q7, which has derivatives of the form D] D3
for 2r + s < [, and has a finite norm

i'li
[}
(£) (1) ) < ()
=<K > . LU >Aa,
|“|(J'.-‘ Lu>g. + L u>g,
j=0
where
(0) _
ul g, = |u | = “(M\|“|
’ < () (0
< u _5;-"’2;:7 = E | Dy D ].
(2r+s=3)
) o e JED) o 1w s (1/2)
LUPg, =K u>n, +<<Uu> o,
. s (D - Ty S, s =)
LUP,0,= E < D{Dju ..e>J_‘Q[!| .
(2r+s=][l])
- | ’I )q J
XU ,Q: 2 <« D{Diu > , LJ
0<I—-2r—s<2
\ /
S _ [z, t) —u(x', )| o
S sup z = 2o ; a1,
(x.t). (2" DEQy:|e—z'|<pu . §
( |ee(z, t) — u(a’, t)]
LUuU>, 5= sup << 1.
Q1 = ‘f — ,M‘rn !
(i.t) (2 #YEQRQT:|t—1|<po
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We denote by L(x.t,d/dx,d/dt) the linear uniformly parabolic differential operator with real
coeflicients:

o ou i 0%u
Llzt, — = |u = - i@t
(’ dx «")t) ! ot ,JZ—1 %1% )r)h().rj
+Zr1.,{;1:.f}g_:_i + a(z, t)u. (2.14)
i=1 i

A crucial lemma useful for establishing the existence theory for (2.1)-(2.9) is the one given in
Section 5 of Chapter IV in [6]. For completeness, it is stated below.

Lemma 2.1. Let | > 0 be a non-integral number. Assume that the coefficients of the operator
C defined in (2.14) belongs to CH1/2(Qr), and that the boundary S belongs to C'*2. Then for
any g € CY2(Qr), ¢ € CH2(Q),® € CH2I/2+1(Sy) satisfying the compatibility condition of
order [1/2] + 1, the initial boundary problem

a 0
Iyl oy o d 18 — G 2% ) 1A 2.15)
E(J_t g i)f) u(z,t) = g(z,t), (2.15)
uli=0 = &(x), uls, = P(z,t), (2.16)

has a unique solution in C'F21/2+1(Qr). Moreover, the solution of the above system satisfies
the following estimate:

ulpt < C(lgly + elg™ + @5 ). (2.17)

Next we will consider the well-posedness of the initial boundary value problem (2.1)-(2.9).
Let {u® O} = {ug,10}. We define {u™), ("} recursively by alternately solving the follow-
ing decoupled linear problem:

w" T — a(y, !)u““’l + b(y, !)u(”” = g(y, t) (2.18)
w1 (y, 0) = uo(y), w00, 8) = w"tV(1,8) =0, (2.19)
where
1 —y 2T ) =
bly,t) = ‘)Rr‘J / sin® @ cos® 0'41‘*5”-’(;;.9.!):19 (2.20)
D-'.Z?r =
a(y,t) = ‘)RF’/ sm'-’acus?uw‘“‘{y.ﬂ.r)df)+E’: (2.21)
20—79) [*
gly.t) = ﬁl / ﬁil‘lflcosﬂu.!:i,”)(y.(J'.f)dH —¢c
Jo
1 _ 2
”Drfi’(‘}) / f cos® Osin2(6 — ¢ [t'(m (y, 8, )™ (y,0,1)
+0{" (y, 0, )™ (y, 0/, t)]d6’ d; (2.22)
and
T l 7 n
i =Yoo it 1 Ay, 8, 005 + By, 8, )™t =0, (2.23)

" (y,6,0) = Yoy, 8) >0, (2.24)
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where
1 2T _
A(y,0.t) = ~ e sin2(0 — 0") "™ (y. 0, 1)d6’ — ul™ sin? 0, (2.25)
B(y.0.t) = e / 2c0s2(0 — 0" (. 8. t)d' — u{™) sin 29. (2.26)
€Jo )

It can be verified that for any constant v > 0 the function a(y. t) is upper bounded by v/Re.
Hence the equation (2.18) is uniformly parabolic. By Lemma 2.1 we can obtain:

Lemma 2.2. Letl > 0 be a non-integral number. Assume that W € (7"*2(5'[) M (."’“(:[U. 1] x
S%),ug € C*2([0,1]), uo(y) satisfies the compatibility condition of order [1/ 2]+1. For any given
T >0, if u™) € CH22+1([0, 1] x [0, T])and v™) € CH2/2+1(§1x [0, T))NCH/241/2(([0, 1] x
§*) x [0.T)) are given, then the initial boundary problem (2.18)-(2.19) has a unique solution
w1 e CH24/241 ([0, 1] x [0,T)) for any given v > 0. Moreover, the solution of (2.18)-(2.19)
satisfies the following estimate:

1 2 O (1+2) o
|”(n a-l)](-'+ ) < TeC rl”""un.m- (2.27)

Proof. Since (") € CH2U/2H1(G1 x [0, T]) n CHL/2+1/2(([0, 1) x SY) x [0,T]), it is easy to
verify that the coefficients of the equation (2.18) satisfies the conditions stated in Lemma 2.1.
A direct application of Lemma 2.1 vields the existence and uniqueness result. The estimate
(2.27) can be established following the method of Lemma 1 of Page 229 in [3)].

Next we consider the equation for /("*1). The equation (2.23) is a uniformly parabolic
equation, in which the derivatives are with respect to # and ¢, while y appears only as a
parameter.

Lemma 2.3. Let | > 0 be a non-integral number. Assume that vy € C'+2(§') n Cl+1 ([0,1] x
SY), and is periodic for the variable 6 of order [l] +2. For any given T > 0, if u®
CHRHL(10,1] x [0,T]) and %) € CH2U/2+1(81 x [0, T]) N CHI/2F1/2(([0, 1] x §*) x [0, 7))
are given, then the problem (2.23)-(2.24) has a unique solution (") € C'+21/2+1(81 x [0, T])N
CHU2H1/2(([0,1] x 8Y) x [0, T]) which is periodic for the variable 8 of order [1]+2. Moreover,
the following estimates for ¢"*1) hold:

11+1]|i{;ﬁ-2) <e

r(“TJ (:1"4"2)‘ luf,(rz-é-l)l“JrU < EfC'T|'U'0|('I+1} (2.28)

9! tolg ([0.1]x81) = ([0,1]xS81)"

Proof. The periodicity of (**1) with respect to # can easily be obtained by the second
equation of (1.6). So we only prove the existence and regularity for # € S!. Since u(® €
CH2U241(10, 1] %[0, T]), we can verify that A(y, 6, t) and B(y, 6, t) belong to C1+1/2+1/2(([0, 1] x
S x [0,T]). If we take the variable y as a parameter, then the equation (2.23) satisfies the
conditions stated in Lemma 2.1 with respect to # and t. Therefore, we have the existence
of ¢"*1) and the regularity of ¥("+1)(g,¢) € CHH/2H1(S1 x [0,T]). Next we prove ¢(n+1)
possesses the desired regularity with respect to y. For y € (0,1) and y + Ay € [0, 1], we set

U(y,0.t) = 6y 50"tV (y,0,1),
where the operator § is defined by

w(y + Ay, 0,t) —w(y, 0. t)
|Ay|?

dy.aw(y,0,t) = 0:< g<1, (

b
[
o
—
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Then W(y, @, ) satisfies the equation

1 .
Wy, 0,t) — E\p(m(y.ff. t)+ Ay + Ay, 0, ) We(y. 0.t) + By + Ay, 0, )% (y, 0,t)

= —08y,8A(y. 0.1)05" ) (y,0.1) — 3, 5B(y, 0, )0 (3, 0,1), (2.30)
W (y,0,0) = dy sipo(y, 0). (2.31)

Since uy”(y,t) € CM2H1([0,1] x [0,T]), ¥™ e CHMW/2H/2(([0,1] x §') x [0,T]) and
P9, t) € C1H2I2H(SY x [0, T]), it can be verified that the coefficients of (2.30) also satisfy
the conditions of Lcmmd 2.1 for the variables # and t. Therefore, it follows that [W(y.8,t)|
is bounded for the parameter y € (0, 1), which implies that »(**% is hélder continuous with
respect to /4. Similarly, we set

Gy 0.t) ="V (y.0.8),  B(y.0,t) =5y,30" V) (y,0,0),
y

where the operator d, g is defined by (2.29). By differentiating the equation (2.23) with respect
to y, we can obtain the equations for ¢ and &:

1 i
Or — E(DW + Agg + Bo = —A,,(y.ﬂ,t)t}rénﬂ) — By(y, 8, )yt (2.32)

1
b, — D—P@ge + A(y + Ay, 0.t)Pg + By + Ay, 0,1)P
= —(55,“51"‘1(‘1} o, f] = (sy.;-iB 2 Q(y, a, f) = A;}(U + ._\y a, t)‘l"(y a, i)
~0ypAy -0y (y,0,) — By(y + Ay, 0,)(y,0,t) — 6,58, - ", (2.33)

The repeated utilization of the above method concludes that ¢(y, 0, 1) and ®(y, #,t) are bounded
for the parameter y € (0, 1). Higher order derivatives with respect to # and y can be estimated
similarly. Thus we obtain

YD) g RS [0, T]) N CHMWHH2(([p, 1] x SY) x [0, 7).

This completes the proof of this lemma.

It follows from the above two lemmas that there exist two sequences {u!™} and {4}
possessing certain regularity for the variables y, # and t. Arzela Lemma implies that there exists
a pair of convergent sub-sequences {u™ )™} (still denoted by the same notation) which are
the solution of the problem (2.1)-(2.9). More precisely, we end up with the following result.

Theorem 2.1. Let | > 0 be a non-integral number. Assume that ug € C'*2([0,1]), ¢ €
CH2(SY N CHY([0,1] x 8Y), uo(y) satisfies the compatibility condition of order [1/2) + 1, and
1y satisfies the restriction (2.12). For any give T > 0 and v > 0, the problem (2.1)-(2.9)

possesses a unique pair of solutions {u,y} € C [1[1)“; [r[]é);l ((1 “H} Hlnﬁﬂ neC '[f(;,]]l]{izll])f : [0.7] ))

3. Numerical Analysis

Several landmarks studies of Brownian dynamics for polymers have been performed in past
to assess the effect of including hydrodynamic interaction in the governing equations. Ottinger
and Laso [8] were the first to combine finite element techniques with Brownian dynamics sim-
ulation to compute particle orientation averages at every node in the solution domain. Their
method is known as CONNFFESSIT (Calculation Of Non-Newtonian Flow: Finite Elements
and Stochastic SImulation Techniques). Brownian Configuration Fields (BCF) introduced by
van den Brule et al. [7] abandons the CONNFFESSIT idea of computing stress by averaging
over large collections of independently acting molecules, in analogy with real physical systems.
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Instead, it introduces a large ensemble of configuration fields. The Langevin equations for
the motion of collection of polymer molecules are stochastic equivalent, both physically and
mathematically, of the Fokker-Planck equations for evolution of the probability distribution of
configurations. Spherical harmonic [4, 10] were chosen because an expansion in this basis not
only can describe the equilibrium spherical distribution function exactly, but also can describe
very accurately the small deviations from the equilibrium distribution that are produced by
lower shear rate flow. The wavelet basis is known to provide efficient representation of peaked
and localized functions. Nayak [13] uses the wavelets as basis functions in solution of the equa-
tion for the orientation probability distribution. The finite element method on sphere [9] is
developed based on spherical geodesic grid to solve the Fokker-Planck equation.

In this section, we want to show the convergence of a fully discretized scheme for the
problem (1.6). We will use finite difference and backward Euler method in spatial and temporal
directions, respectively. The discrete veloeity is defined on a uniform mesh 7j,, where h = 1/N
is the space discretization step. The time interval (0,7") is discretized with a uniform step size
At. We will define the discrete functions 47, ,, and I.i_:,i_k. at ((j+1/2)h,nAt) and (jh, ko, nist),
respectively. We also let y; = jh, 6 = ko, where o = 27 /M is the discretization configuration
space step.

The problem (1.6) can be discretized in the following form:

H;'*Tll‘r 9 = u:;ij‘,l;.'j N ..' (I)h ”)”*l (1) -’!)“ . + 1 — ¥ {Tn }‘T._ 1 (_Tn )3.
At " Re h ReDe h
L= (D a) it (78)7 1 — (Da)} ™ (75)]
2Re h

—c (3.1)

1 (Do "fliim (02207) il +L(&(fg)"j_';?jm (W0) k112
" De a De a

(4 sin® H)HI‘H — (1) sin” (f)"”

+(Dpuw)}

with initial and boundary conditions:

”'5}4. 1/2 = Hr)((_} + l./'.?)h}_ ', = vov N =

(k+1/2)0
Yol jh, 0)do, j=0,-- ,N;k=0

(k—1/2)a

T — _on —_19 ...
Uy y1/2 = —Un_y/2 n=172 .

where

M=1

Z (sin(20x) + (Up) ] & cos” By ‘;1._‘"['_;.5
k=0

M-1

Z sin? 6 cos® O, o

k=0

M-—1 M-—1
b= Up|sin 26k cos 20007 o — cos 205 sin 26,0 '
j.k il EELl

=0 =0
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T —a_ o, — T
- +1/2 —1/2 Vg k41 ke e
(Dua)y = ZHL I (Do) = 2k (3.9)
> . 3 (sin®0)7, ., + (Psin®0)7
(¢ sin” ”J_r;i.lw 12 = il = i (3.10)
It follows from (3.2) that
M-1
o Z ” = for alln e N (3.11)
=0
provided that Jz[’—l 3'.! = .
We define u’ H/‘ = u((j+1/2)h, nAt), ¥, = ¥(jh, ko, nAt) and define (7a)7, (78)}, (Ug)] «

similarly. It is easy to verify that Uil o Y mtisl'.v the difference equations (3.1) and (3.2)with
the truncation errors Q(At+ h?+o?). The numerical boundary condition (3.5) is also of second
order accuracy in space.

Throughout this paper, the generic constant C' is assumed to be independent of the mesh
size h,o and At. Suppose ||uyllc < € and define

= Hll]){f] € [0,T); || Dpi" |i= < Cy + 1,nAt € [0, fl]}
Then there exists an oy such that
u;‘;. >0, o <oy, nAt < T, (3.12)

by using the property of the M-matrix. The non-negativity property of the probability distri-
bution and (3.11) yield

(r_;)_'i' > 0, (3.13)
T < C. |71alli= <C, (3.14)
Ug llie < C. (3.15)
We define
’.[fl+l/'l = """‘,,'f'fl_‘f'.? - "‘_’."‘41‘:2' (3.16)
E:?!I.k =. & ';l‘;‘. — f,‘-'j,"k. (3.17)
We then have
n+1 1L n—+ - 1 = AN
"_;:lj‘.! . (3+l_‘~2 _ g (Dh(']__,‘!.f: |l — (Dpe ' il n j (Ta — TL113.+1 — (Ta — Tu}:.
At Re h ReDe h
Dh(]f;:]! J,{l7(!)!‘:[)_"“![‘743);
.ZR( h

11— (Dpu)7] (78 — 18) 3 — (Daw) ] (T — 75)}
2R h
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and

141 m 1\ T4 1 41
’L-_,.xj - By B L(””’l' ]J.f:'* /2~ (")”h)‘,ikwuz
At  De a
1 (EUs) t!(,J"”
Df o
1 ((Us --HH”T' , — (¥(Us — Us)) 1
"De o
(¢ sin® 6)™7 — (3 sin® f))” .
Jr([),lf'”-l }"lll /2
T
(Esin®0)70), , — (BEsin®0)"1! .
'*'JD,‘i n+41"* g ? Jsk—=1/2
(Dyu); .
+C (At + h* +6?). (3.19)

Multiplying (3.19) with ¢ ')'Tll.*".? and summing the resulting equation with respect to j give

N-1 N-1

h n+l |2 1h T ;
+1 12 ., 7 n41)2
2AL Z](le 21{,.ZJI)"'.i |
3=0 5=0
; h 2 . .
g Z €34 1721” + CIIT = 72120, 1)
j=0
+C||72 2(jo,1)) + C(At + h? 4 07)2, (3.20)

Similarly, we obtain by using (3.19) that

ho ho .
H-H n+1 2
2_\.12[ " 2De Z” Ejks1pal

N-1

- ho m |2 v n41)2 T % 2
g = Zu “klP+Ch Y Drel P+ Cha Y TP
=0 gk
+C||OFtt -yt 2 (o.11x[0.25)) + C(AL + h? + 0%)2. (3.21)
It is easy to verify that
178 = 7allzqoay < Cho Y |E7[ (3.22)
2.k

175 = 3oy < ('fmZ\E“ : (3.23)

H( n+1 luqll
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Combining (3.19)-(3.24) gives

N-1
n+l 2 41|12
WY el +ha Y B
Jj=0 Jk
N-1 )
< (1+CAH (kY lefpl® +ha Y IBNP ) + C(AL+h2 + 022 (3.25)
i=0 ik

The above Gronwall-type inequality leads to

N-—1
h Z |ff:+1/2F + ho Z
Jk

3=0

E} < C(At+h*+a%) (3.26)

Theorem 3.1. Let 0 <1 <1, (u",¢") be the solutions of the problem (2.1)-(2.9) and (a", ™)
be the solutions of the corresponding discrete problem (3.1)-(3.5). If1g € CHA(SVACMHY [0, 1] x
51, up € C*2([0,1]), At < Ch%,a < Ch, then the following error estimate holds:

@™ — u™[li2qo,1) + l0™ — 3™ l2oayxpesy < C(At+h?+a®). (3.27)

Proof. It follows from Theorem 2.1 and the regularity assumption for ug and 9y that
Y e C*HS x [0,T]) N CHO(([0,1] x 8") x [0,T]), ue C*([0,1] x [0,7T]).
The estimate (3.26) implies
4™ = w™lleaqgo,ay + 19" = %" |li2o,1)xpo.2s)y < C (AL + h® +07), (3.28)

which holds on some interval [0, T*]. Using the discrete inverse inequality, we have

|Dpu™|i= < |[|[Dpu”|fi= + ||Dpa™ — Dpu™||i=

< Cr+Ch+h732|a" — u"||p2
Cy + Ch'/?, (3.29)

A

IA

provided that At < Ch? and o < Ch. Let us verify 7* = T. If this does not hold, then (3.29)
gives
. /2
| DR@"™|li= < Cy + Chy'* < Cy +1,
for nAt € [0, T*], where hy is sufficiently small. Thus we can enlarge T* by continuity and thus
deduce a contradiction. This completes the proof of the theorem.
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