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A framework for adaptive meshes based on the Hamilton–Schoen–Yau theory
was proposed by Dvinsky. In a recent work (2001, J. Comput. Phys. 170, 562–
588), we extended Dvinsky’s method to provide an efficient moving mesh algorithm
which compared favorably with the previously proposed schemes in terms of sim-
plicity and reliability. In this work, we will further extend the moving mesh methods
based on harmonic maps to deal with mesh adaptation in three space dimensions.
In obtaining the variational mesh, we will solve an optimization problem with some
appropriate constraints, which is in contrast to the traditional method of solving
the Euler–Lagrange equation directly. The key idea of this approach is to update
the interior and boundary grids simultaneously, rather than considering them sep-
arately. Application of the proposed moving mesh scheme is illustrated with some
two- and three-dimensional problems with large solution gradients. The numerical
experiments show that our methods can accurately resolve detail features of singular
problems in 3D. c© 2002 Elsevier Science (USA)

Key Words: finite element method; moving mesh method; harmonic map; partial
differential equations; optimization.

1. INTRODUCTION

Moving mesh methods have important applications in a variety of physical and engineer-
ing areas such as solid and fluid dynamics, combustion, heat transfer, material science, etc.
The physical phenomena in these areas develop dynamically singular or nearly singular so-
lutions in fairly localized regions, such as shock waves, boundary layers, detonation waves,
etc. The numerical investigation of these physical problems may require extremely fine
meshes over a small portion of the physical domain to resolve the large solution variations. In
multidimensions, developing effective and robust adaptive grid methods for these problems
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becomes necessary. Successful implementation of the adaptive strategy can increase the
accuracy of the numerical approximations and also decrease the computational cost.

Several moving mesh techniques have been introduced in the past, in which the most
advocated method is the one based on solving elliptic PDEs first proposed by Winslow
[34]. Winslow’s formulation requires the solution of a nonlinear, Poisson-like equation to
generate a mapping from a regular domain in a parameter space �c to an irregularly shaped
domain in physical space �. By connecting points in the physical space corresponding to
discrete points in the parameter space, the physical domain can be covered with a com-
putation mesh suitable for the solution of finite difference/element equations. Brackbill
and Saltzman [8] formulated the grid equations in a variational form to produce satisfac-
tory mesh concentration while maintaining relatively good smoothness and orthogonality.
Their approach has become one of the most popular methods used for mesh generation
and adaptation. In [7], Brackbill incorporates an efficient directional control into the mesh
adaptation, thereby improving both the accuracy and efficiency of the numerical schemes.

Dvinsky [14] suggests the possibility that harmonic function theory may provide a general
framework for developing useful mesh generators. His method can be viewed as a gener-
alization and extension of Winslow’s method. However, unlike most other generalizations
which add terms or functionals to the basic Winslow grid generator, his approach uses a
single functional to accomplish the adaptive mapping. The critical points of this functional
are harmonic maps. Meshes obtained by Dvinsky’s method enjoy desirable properties of
harmonic maps, particularly regularity, or smoothness.

Motivated by the work of Dvinsky, a moving mesh finite element strategy based on
harmonic mapping was proposed and studied by the authors in [21]. The key idea is to
construct the harmonic map between the physical space and a parameter space by an iteration
procedure. This procedure is simple, easy to program, and also enables us to keep the map
harmonic even after long time of numerical integration. In practice, there are three types
of adaptive methods using finite element approach, namely the h-method, p-method, and
r-method. In the h-method, the overall method contains two parts, i.e., a solution algorithm
and a mesh selection algorithm. These two parts are independent in the sense that the change
of the PDEs will affect the first part only. However, in some of the existing r -methods (also
known as moving mesh methods), these two parts are strongly associated with each other
and as a result any change of the PDEs will result in the rewriting of the whole code. The
algorithm proposed in [21] keeps the advantages of the r -method (e.g., keep the number
of nodes unchanged) and of the h-method (e.g., the two parts in the code are independent
of each other). The simplicity and reliability were demonstrated by a number of numerical
examples in two space dimensions.

Although the PDE time-evolution algorithm used in this work is based on finite element
approach, it should be pointed out that there have been also extensive studies of moving
mesh algorithms based on finite difference approaches; see, e.g., Azarenok [2], Azarenok
and Ivanenko [3], Ceniceros and Hou [11], Dorfi and Drury [13], Liu et al. [24], and Tang
[31]. Moving mesh methods based on finite difference (or finite volume) methods enjoy
the simplicity in coding and are more appropriate for problems in which finite difference
has shown advantages (such as nonlinear hyperbolic problems). Apart from the flexibility
of solution domains, the other reasons that we use finite elements but not finite differences
in this work are the following: first, with the finite element method we can avoid using
interpolation which was used in many moving mesh finite difference methods; second, with
the use of finite element approach, some error-estimator-based indicators available for finite
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element methods can be chosen as monitor functions, which has been demonstrated in our
recent work in solving elliptic optimal control problems with mesh adaptation [20]. In the
past two decades, there have been extensive studies of moving mesh finite element methods,
and some of them are based on interesting motivations and theories; see, e.g., Baines [4],
Miller et al. [25, 10], and Tourigny et al. [32, 33].

To completely specify the coordinate transformation, the moving mesh methods must
be supplemented with suitable boundary conditions. In theory, as pointed out in [7, 9],
there are a number of ways to redistribute the mesh points on the boundary, such as using
homogeneous Neumann boundary conditions, extrapolating the interior mesh points to the
boundary, and relocating the mesh points by solving a lower-dimensional moving-mesh
PDE. However, these methods seem quite inefficient if 3D problems are being considered.
In this work, we present a moving mesh method, which is based on the minimization of the
mesh energy, for solving problems in three space dimensions. In the mesh-restructuring step,
we solve an optimization problem with some appropriate constraints, which is in contrast to
the traditional method of solving the Euler–Lagrange equation directly. The key idea of this
approach is to treat the interior and boundary grids as a whole, rather than considering them
separately. Therefore, the new solution algorithm also provides an alternative boundary grid
redistribution technique, which turns out to be useful in solving 3D problems. We point out
that there are other mesh movement approaches that can deal with boundary and interior
points in a unified manner. For example, to solve variational problems, the approach by
Tourigny and Hülsemann [32] is dimension independent.

The main contributions of this work are two-fold: First, some theoretical and numerical
issues in obtaining moving meshes by minimizing the mesh energy are investigated. Second,
the algorithm is applied to two nonlinear 3D partial differential equations, one scalar and
one system. To our knowledge, there have existed very few moving mesh results for three-
dimensional problems. Using the moving mesh methods proposed in this work, we are
able to carry out the 3D simulations successfully. An outline of the paper is as follows.
In Section 2, we present a short overview over the harmonic mapping theory. Section 3
describes the numerical schemes to be used in this work. Section 4 provides some necessary
details of the mesh-redistribution and solution-updating at a given time level. Numerical
results for two- and three-dimensional problems are obtained in Section 5. Some discussions
on the quality of the generated meshes are presented in Section 6. Finally, Section 7 contains
some concluding remarks.

2. HARMONIC MAPPING

We consider the time-dependent PDEs in a domain � ⊂ R
n

�ut = L(�u) in � × (0, T ], (2.1)

with boundary and initial conditions

B �u|∂� = �ub in ∂� × [0, T ] (2.2)

�u|t=0 = �u0 in �. (2.3)

To solve the above time-dependent problem, we will introduce the moving mesh method
based on harmonic mapping.
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Let � and �c be compact Riemannian manifolds of dimension n with metric tensors
di j and rαβ in some local coordinates �x and �ξ , respectively. Following Dvinsky [14] and
Brackbill [7], we define the energy for a map �ξ = �ξ(�x) as

E(�ξ) = 1

2

∫ √
d di jrαβ

∂ξα

∂xi

∂ξβ

∂x j
d �x, (2.4)

where d = det(di j ), (di j ) = (di j )−1, and the standard summation convention is assumed.
The Euler–Lagrange equations, whose solution minimizes the above energy, are given
by

1√
d

∂

∂xi

√
d di j ∂ξ k

∂x j
+ di j�k

βγ

∂ξβ

∂xi

∂ξγ

∂x j
= 0, (2.5)

where �k
βγ is the Christoffel symbol of the second kind, defined by

�k
βγ = 1

2
rkλ

[
∂rλβ

∂ξγ
+ ∂rλγ

∂ξβ
− ∂rβγ

∂ξλ

]
.

Existence and uniqueness of the harmonic map are guaranteed when the Riemannian curva-
ture of �c is nonpositive and its boundary is convex (see Hamilton–Schoen–Yau [16, 29]).
Since �c is obtained by construction, both requirements can usually be satisfied. With a
Euclidean metric, �k

βγ = 0, the Euler–Lagrange equations become

∂

∂xi

√
d di j ∂ξ k

∂x j
= 0. (2.6)

We emphasize that d = det(di j ) = 1/det(di j ). For ease of notation, we let Gi j = √
d di j .

The inverse of (Gi j ) is called monitor functions. Therefore, the Euler–Lagrange equations,
with Euclidean metric for the logical domain �c, are given by

∂

∂xi

(
Gi j ∂ξ k

∂x j

)
= 0, (2.7)

and the corresponding mesh energy is of the form

E(�ξ) =
∑

k

∫
�

Gi j ∂ξ k

∂xi

∂ξ k

∂x j
d �x . (2.8)

Solutions to (2.7) are harmonic functions giving a continuous, one-to-one mapping with
continuous inverse, which is differentiable and has a nonzero Jacobian. A detailed descrip-
tion for solving (2.7), as well as how to interchange its dependent and independent variables,
can be found in Li et al. [19, 21].

In [14], Dvinsky suggests that harmonic function theory may provide a general framework
for developing useful mesh generators. The idea is that one is free to specify Gi j as a function
of physical coordinates when defining the energy (2.8), and that minimizing that energy
will result in a harmonic mapping with the desired metric and robustness. A good feature
of the adaptive methods based on harmonic mapping is that existence, uniqueness, and
nonsingularity for the continuous map can be guaranteed from the theory of harmonic
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maps: The existence and uniqueness of harmonic maps are established by Hamilton [16]
and Schoen and Yau [29]. Such theoretical guarantees are rare in the field of adaptive mesh
generation. To solve the Euler–Lagrange equation (2.7), one can usually use a deformation
from a given homomorphism to the harmonic map by the heat equations. Namely, solving
the heat equation

∂ξ k

∂µ
= ∂

∂xi

(
Gi j ∂ξ k

∂x j

)
to µ → ∞ (2.9)

leads to the harmonic map defined by (2.7). The existence of the solution for the problem
(2.9) is addressed by Eell and Sampson [15]. Moreover, the singularity of three-dimensional
harmonic maps is discussed by Liao and Smale [22, 23] where harmonic maps having
nontrivial singularities of dimension greater than zero are constructed. These theoretical
results may have some impact on 3D adaptive schemes based on the harmonic mapping,
although it has not been observed in the present 3D computations.

3. THE FRAMEWORK OF THE MOVING MESH SCHEME

For some physical problems, large solution gradients may exist initially or may be de-
veloped to the boundaries in a later time. As a consequence, boundary-point redistribution
should be made in order to improve the quality of the adaptive mesh. With the algorithms
proposed in the past, special strategies are provided to redistribute the boundary grids. In
2D computations, one common practice is to redistribute the grids inside the physical do-
main by solving (2.7) and to move the boundary points by solving some appropriate 1D
moving mesh equations; see, e.g., [9, 21, 31]. In other words, the grid redistributions for
the interior domain and boundaries are carried out separately. It seems that the extension of
this approach to three space dimensions is quite difficult, in particular when a finite element
approach is used in evolving the underlying partial differential equations.

In the following, we will introduce a new approach which will redistribute the interior
and boundary grids simultaneously. To begin, we consider physical problems in two space
dimensions. For simplicity, assume that � is a polyhedron. Let �i and �c,i denote the
corresponding edges of � and �c, respectively. The geometrical constraint to the boundary
grid movement is to keep the geometrical character of the physical domain unchanged. This
implies that the vertices (edges) of the physical domain will be mapped to the corrersponding
vertices (edges) of the computational domain. Therefore, it is reasonable to consider the
following mapping set from ∂� to ∂�c:

K ={ξb ∈ C0(∂�) | ξb :∂�→∂�c; ξb|�i
is a linear segment and strictly increasing

}
. (3.1)

One example of such a map is illustrated in Fig. 1. It follows from the theory of Eell and
Sampson [15] that for every ξb ∈ K, there exists a unique ξ : � → �c, such that ξ |∂� = ξb

and ξ is the extreme of the functional (2.8). Let us denote the mapping as ξ = P(ξb), and
consider the optimization problem

min E(P(ξb))

s.t. ξb ∈ K,
(3.2)
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FIG. 1. A map between ∂� and ∂�c .

where the functional E is defined by (2.8). Since E is convex and P is linear, it is easy to
see that
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Therefore, E(P(·)) is a convex functional, and as a result, the optimization problem (3.2)
has a unique solution in a closed subset of K.

Based on the above discussion, we will solve the following constrained optimization
problem:

min
∑

k

∫
�

Gi j ∂ξ k

∂xi

∂ξ k

∂x j
d �x

s.t. ξ |∂� = ξb ∈ K.

(3.3)

Note that the boundary values ξb are not fixed, instead they are unknowns in the same way as
the interior points. This is one of the main differences between the present approach and the
one proposed in our earlier work [21], where a Dirichlet problem is solved for ξ . By solving
the above problem, the meshes on the logical domain will be updated at each iteration. The
difference between the initial mesh and this updated mesh in the logical domain will yield
the grid redistribution for both the interior and boundary grids [based on the formula (4.11)
to be given in the next section]. One advantage of this approach is that the overall moving
mesh scheme can be easily implemented for 3D problems.

3.1. Initial Grid Distribution

To solve probelms (2.1)–(2.3), we will separate the computation into two parts: mesh-
moving and time-stepping. The mesh-moving computation is a procedure of iteration to
construct the harmonic map between the physical mesh and the logical mesh. Each iteration
step is to move the mesh closer to the harmonic map. In the process of the numerical
computation, we always keep the initial mesh in the logical domain fixed. This mesh is not
used to solve any PDEs, but its difference with the solution of the optimization problem
(3.3) is used to move the mesh in the physical domain. Therefore, in the first step we choose
a convex domain �c as the logical domain on which an initial mesh will be constructed.
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Traditionally (see, e.g., [34]), the initial mesh in the logical domain is obtained by solving
the Poisson equation ��ξ = 0 with some Dirichlet boundary condition. However, in order to
match the new global approach (3.3), we generate the initial mesh by solving the following
optimization problem:

min
∑

k

∫
�

∑
i

(
∂ξ k

∂xi

)2

d �x

s.t. ξ |∂� = ξb ∈ K.

(3.4)

In practice, if the physical domain is convex and is of regular shape (say a convex polygon),
then we can simply choose the physical domain as the logical domain with uniform initial
mesh.

3.2. Boundary and Interior Grid Redistribution

Once the initial mesh (in the logical domain) is given, it will be kept unchanged throughout
the computation. This initial mesh in �c, denoted by �ξ (0), is used as a reference grid only.
After the solution u is computed at time level t = tn , the inverse matrix of the monitor, Gi j

(which in general depends on u), can be updated. By solving (3.3), we will obtain a mesh
in the logical domain, denoted by �ξ ∗. If the difference between this �ξ ∗ and the initial mesh
�ξ (0) is not small, we move the mesh in the physical space to obtain the updated values for
u in the resulting new grid based on the following principles:

ALGORITHM 1 (MESH-REDISTRIBUTION ALGORITHM).

(a): solve the optimization problem (3.3) and compute the L∞-difference between the
solution of (3.3) and the fixed (initial) mesh in the logical domain. If the difference is
smaller than a preassigned tolerance, then the mesh-redistribution at the given time level is
complete. Otherwise, do

(b): obtain the direction and the magnitude of the movement for �x by using the difference
obtained in part (a) [see (4.10) in Section 5], and then move the mesh based on (4.11);

(c): update �u on the new grid by solving a system of ODEs [see (4.17) in Section 5];
(d): update the monitor function by using �u obtained in part (c), and go to part (a).

In part (a), a preassigned tolerance TOL is chosen so that the iteration is stopped when

∥∥ξ ∗ − ξ (0)
∥∥

L∞ ≤ TOL. (3.5)

The iteration above determines progressively better locations of the mesh grids in the phys-
ical domain. Typically about one or two iterations are required. Parts (b) and (c) above have
been discussed in detail in Li et al. [21]. We refer the reader to that paper for the algorithm
details, although some necessary details will be mentioned in the next section.

3.3. Time-Forwarding

After the interior and boundary grids are well redistributed based on the solution at t = tn ,
we can use some appropriate numerical methods to solve the underlying PDEs at t = tn+1

on the updated mesh in the physical space. This step is simple: it is irrelevant with the
adaptive method and can be any appropriate finite element codes. The following is one of
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the possible methods, which will be used in our numerical experiment sections. It follows
from Eq. (2.1) that ∫

�

{�ut − L(�u)}v d �x = 0 ∀v ∈ VT (�),

where VT (�) is a finite element space. Using the expression for �u in the finite element
space, i.e., �u = Ui (t)�i (�x), and letting v be the basis function � j , we obtain∫

�

{
∂Ui

∂t
�i� j − L(�u)� j

}
d �x = 0, (3.6)

which is a system of ODEs for Ui (t). It can be solved by any efficient ODE solver such as
multistage Runge–Kutta schemes.

We point out that the method based on (3.6) only serves for the numerical experiments
in this paper. In fact, this step is very flexible: any available methods/codes for the equation
(2.1) can be employed in this step.

Remark. To extend the above theory to 3D, the only modification needed is to change
the definition K in (3.1) slightly. In this case, the physical boundary is approximated by
some piecewise planes, which will be mapped into the corresponding boundaries in the
logical domain.

4. MESH-REDISTRIBUTION AND SOLUTION-UPDATING

This section gives some necessary details for Algorithm 1, the mesh-redistribution al-
gorithm. Again, for simplicity we will demonstrate the main ideas for 2D geometry in
this section. Let us discretize the optimization problem (3.3) in the linear finite element
space. The triangulation of the physical domain is T , with Ti as its elements, and Xi

as its nodes. The corresponding triangulation on the computational domain is Tc, with
Ti,c as its elements, and Ai as its nodes. The linear finite element space on the mesh is
denoted as H 1

h (�). If the basis function on node Xi is denoted by φi , then ξ can be ap-
proximated by ξiφ

i (here the standard summation convention is assumed). The coordinates
of Xi are (X1

i X2
i )

T . Let the inner nodes be indexed from 1 to Ninner and the boundary
nodes be indexed from Ninner + 1 to N . The coordinates of the nodes Ai in the compu-
tational domain are denoted as (A1

i A2
i )

T . Denote X = (X1 X2)T ,A = (A1 A2)T , where
Xk = (Xk

1 · · · Xk
N )T ,Ak = (Ak

1 · · · Ak
N )T , k = 1, 2. The objective function in (3.3) is

approximated by

∑
k

∫
�

Gi j ∂φα

∂xi

∂φβ

∂x j
d �xξ k

αξ k
β . (4.1)

As for the boundary points, we recall the assumption that ξ map a boundary (linear) segment
L on ∂� to a linear segment Lc on ∂�c. This gives that

〈Ai , ni 〉 = bi , (4.2)

where 〈 〉 denotes the standard inner product, ni is the normal direction of a fixed segment
of the boundary of �c, and bi is a given number. Since each Xi ∈ �i is mapped to a known
segment of �i,c, the relevant ni and bi are determined.
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4.1. Mesh-Redistribution

We now discuss the part (b) of Algorithm 1. First, a linear system for A will be formed
to determine the motion of the computational grids. Denote

H =
(∫

�

Gi j ∂φα

∂xi

∂φβ

∂x j
d �x
)

1≤α,β≤N .

(4.3)

We further split the matrix H into the following form:

H =
(

H11 H12

H21 H22

) ← 1 to Ninner row
← Ninner + 1 to N row

↑ ↑
1 to Ninner column Ninner + 1 to N column

Correspondingly, we use Ainner and Abound to denote the interior and boundary part of the
node coordinates, respectively. Then the objective function is given by

(A1,T A2,T )

(
H 0
0 H

)(A1

A2

)
. (4.4)

Recall the earlier assumption that ξ maps a (linear) boundary segment L on ∂� to a linear
segment Lc on ∂�c. This assumption leads to the following linear system

(0 A12 0 A22)




A1
inner

A1
bound

A2
inner

A2
bound


 = �b, (4.5)

where the matrices A12 and A22, based on (4.2), are the entries of the unit normal of the
boundary segments.

With the above preparation, the optimization problem (3.3) is equivalent to solving the
linear system




H11 H12 0 0 0

H21 H22 0 0 A′
12

0 0 H11 H12 0

0 0 H21 H22 A′
22

0 A12 0 A22 0







A1
inner

A1
bound

A2
inner

A2
bound

λ




=




0
0
0
0
�b


, (4.6)

where λ is the Lagrange multiplier. As the number of points in the computational domain
increases, solving the above system efficiently becomes crucial. In our computations, two
methods were tested: the first one uses BiCG with an LU preconditioner to solve the system
(4.6), and the second is somehow more efficient but not an exact method. Here we briefly
outline the idea of the second method. It is to decouple the above system to the following
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forms:




H22 0 A′
12

0 H22 A′
22

A12 A22 0





A1

bound

A2
bound

λ


 =




−H21A1
inner

−H21A2
inner

�b


 (4.7)

and

(
H11 0

0 H11

)(A1
inner

A2
inner

)
= −

(−H12A1
bound

−H12A2
bound

)
. (4.8)

The system (4.7) is small and is solved efficiently by using BiCG and GMRES. The system
(4.8) is symmetric and positive definite and is solved by using a multigrid solver. Since the
accuracy of the system is not very crucial [the solution of the system (4.6) is for the location
of mesh but not for the physical solution], a nonexact but efficient algorithm is more useful.
Therefore, we prefer to use the second method in obtaining the approximate solutions of
the system (4.6). Since a very good initial guess is available at each time step, we first solve
(4.7), with the previous information for the right-hand side Ainner, to update the boundary
nodes. Then these new Abound are used to update the interior nodes by solving (4.8). In
general, no iteration is needed: solving each of (4.7) and (4.8) once is sufficient.

After obtaining the solution of (4.6), we can obtain a new logical mesh T ∗
c with nodes

T ∗. For a given element E in T , with X Ek , 0 ≤ k ≤ 2 as its vertices, the piecewise linear
map from VT ∗

c
(�c) to VT (�) has constant gradient on E and satisfies the following linear

system:(A∗,1
E1

− A∗,1
E0

A∗,1
E2

− A∗,1
E0

A∗,2
E1

− A∗,2
E0

A∗,2
E2

− A∗,2
E0

) ∂x1

∂ξ 1
∂x1

∂ξ 2

∂x2

∂ξ 1
∂x2

∂ξ 2


 =

(
X1

E1
− X1

E0
X1

E2
− X1

E0

X2
E1

− X2
E0

X2
E2

− X2
E0

)
. (4.9)

Solving the above linear system gives ∂ �x/∂ξ in E . If we take the volume of the element as
the weight, the weighted average error of X at the i-th node is defined by

δXi =
∑

E∈Ti
|E | ∂ �x

∂ξ

∣∣
inE

δAi∑
E∈Ti

|E | , (4.10)

where |E | is the volume of the element E , and δA=A(0) −A∗ is the difference between
the fixed mesh Tc (with nodes A(0)) and the logical mesh T ∗

c (with nodes A∗). It can be
shown that the above volume weighted average converges to a smooth solution in measure
when the size of mesh goes to 0. The location of the nodes in the new mesh T ∗ on the
physical domain is taken as

X∗ = X + τδX, (4.11)

where τ is a parameter in [0, 1] and is used to prevent mesh tangling. In our numerical
experiments, it is found that the selection of τ is quite insensitive. In 2D, one choice of τ is
the following:

τ = min(0.5/‖δA‖2,0.618).
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FIG. 2. A demonstration of the element motion.

In 3D, one of the choices for τ is given by (5.2). The motion of one element based on (4.11)
is illustrated in Fig. 2.

4.2. Solution-Updating

After the mesh-redistribution in the physical domain �, we need to update the solution
�u on the new mesh. This part has been described in [21], and for the sake of clarity we will
outline it again. Each element of T with X as its nodes corresponds uniquely to an element
of T ∗(τ ) with X + τδX as its nodes. There is also an affine map between the two elements.
By combining all those affine maps from each element of T ∗(τ ) to T , we obtain a map
from �c to � piecewise affine. The surface of �u on � will not move, though the nodes of the
mesh may be moved to new locations. Then �u, as the function of �x at time tn , is independent
of the parameter τ . That is

∂ �u
∂τ

= 0. (4.12)

During the mesh redistribution, �u is expressed as

�u = �u(�x) = �u(�x, τ ).

In the finite element space, �u is expressed as

�u = Ui (τ )�i (�x, τ ), (4.13)

where �i (�x, τ ) is the basis function of the finite element space at its node Xi + τδXi . Direct
computation gives

∂�i (�x, τ )

∂τ
= −∂�i (�x, τ )

∂x j
(δ �x) j , (4.14)
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where δ �x := δXi�
i . Differentiating �u with respect to τ gives

0 = ∂ �u
∂τ

= ∂Ui

∂τ
�i (�x, τ ) + Ui (τ )

∂�i

∂τ
= ∂Ui

∂τ
�i (�x, τ ) − Ui (τ )

∂�i

∂x j
(δ �x) j . (4.15)

Using the expression for �u in the finite element space, i.e., (4.13), we obtain from the above
result that

∂Ui

∂τ
�i (�x, τ ) − ∇�x �uδ �x = 0. (4.16)

Then a semidiscrete system for updating �u follows from the above result:∫
�

{
∂Ui

∂τ
�i (�x, τ ) − ∇�x �u δ �x

}
v d �x = 0 ∀v ∈ VT (�).

By letting v be the basis function of VT (�), i.e., v = � j (�x, τ ), we obtain a system of
(linear) ODEs for Ui :∫

�

�i� j d �x ∂Ui

∂τ
=
∫

�

∂�i

∂xk
(δ �x)k�

j d �xUi (τ ), 1 ≤ j ≤ N . (4.17)

The above ODE system can be solved by a 3-stage Runge–Kutta scheme. This procedure,
based on the fact that the surface of �u in � is unchanged, provides an interpolation-free
solution-updating on the new mesh.

Remark. We close this section with two remarks, one concerns with the computational
complexity and another with the boundary projection.

1. Computational complexity: Let us make some comparison on operation numbers with
the method used in [21] and the one proposed in this work. In the former approach, the
major work in obtaining the new grids are to find Ainner by solving (4.8), where its right-
hand side is given. So the extra effort in the present approach is to solve (4.7). Since
the sizes of H21, H12, H22, A12 and A22 are substantially smaller than that of H11, the
workload for the method used in [21] is similar, at least asymptotically, to the one in this
work.

2. Boundary projection: In practical computation, we also need to project the moving
vector of the boundary nodes onto the boundary. Otherwise, the residual error accumulation
will cause the boundary nodes away from the physical boundary. Although the direction of
the motion on the logical boundary is always following the boundary, the mesh-redistribution
using the formula (4.11) may push some boundary points away from the physical bound-
ary. One of the remedies is to project them back to the physical domain, as illustrated in
Fig. 3.

5. NUMERICAL EXPERIMENTS

In this section, we will implement the moving mesh method described in the last two
sections to some test problems. To make some useful comparisons, we begin by revisiting
some 2D examples whose moving mesh results have been obtained by several authors; see,
e.g., [9, 26, 21].
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FIG. 3. A demonstration of boundary projection.

5.1. 2D Examples

EXAMPLE 5.1. Our first example in 2D is to compute a moving oblique shock whose
governing equation is the Burgers’ equation

∂U

∂t
+ UUx + UUy = a�U, (5.1)

defined in the unit square � = (0, 1)2. The initial condition and Dirichlet boundary condi-
tion are chosen such that the exact solution to the underlying problem is

U (x, y; t) = (1 + exp((x + y − t)/(2a))−1.

It should be pointed out that (5.1) is just a special case of Burgers’ equation. The standard
Burgers’ equations in 2D are a system of two PDEs for the velocity components derived
from the Navier–Stokes equations. In our computation the viscosity coefficient is chosen
as a = 0.005, and the monitor function is chosen as

√
1 + |∇U |2 I . It is noted that the

smaller a is, the more convection dominates, and the higher the concentration of mesh
points required around the wave front, which makes the use of the moving mesh methods
meaningful. Since the exact solution of the underlying problem is given, it is convenient to
compare the errors obtained by various methods.

In [21], a simple redistribution strategy is proposed as follows. The basic idea is to move
the boundary points by solving 1D moving mesh equations (refer to as the 1D boundary grid
redistribution method). Without loss of generality, we consider a simple boundary [a, b] in
the x direction. Solving the two-point boundary value problem for (ωxξ )ξ = 0 with uniform
mesh in ξ will lead to a new boundary redistribution. Assume [x j , x j+1] ⊂ [a, b]. Then there
exists exactly one element Tj whose one edge is [x j , x j+1]. Note that the gradient monitor in
Tj is a constant (due to the use of the linear element). We let the monitor function ω|[x j ,x j+1]

equal this constant, which establishes a connection between the boundary and interior grid
redistributions.

In Fig. 4, the L1-errors obtained by using the 1D boundary grid redistribution method
of [21] and the optimization-based approach proposed in this work are compared, with no
significant difference observed. In Fig. 5, we plot the moving meshes obtained by using
the moving mesh approach proposed in this work with 20 × 20 nodes (about 930 triangular
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FIG. 4. Example 5.1: The L1-error in time obtained by solving the Euler-Lagrange equation [21] (solid line)
and by using the optimization-based method proposed in this work (dashed line), with 20 × 20 nodes.

elements). It is observed that they are very similar to those obtained in [21] where the
meshes are moved by solving the Euler–Lagrange equations.

Our next numerical example is a coupled nonlinear reaction–diffusion system modeling
a combustion process [1, 17]. The main purpose of this example is to demonstrate that
for some problems there is indeed some difference between the moving mesh methods
described in [21] and in this work.

EXAMPLE 5.2. The mathematical model is a system of coupled nonlinear reaction–
diffusion equations

∂u

∂t
− ∇2u = − R

αδ
ueδ(1−1/T ),

∂T

∂t
− 1

Le
∇2T = − R

δLe
ueδ(1−1/T ),

for �x = (x1, x2)
T ∈ � = (−1, 1)2, t > 0, and where u and T represent, respectively, the

dimensionless species concentration and temperature of a chemical which is undertaking a
one-step reaction. The initial and boundary conditions are

u|t=0 = T |t=0 = 1, in �,

u|∂� = T |∂� = 1, for t > 0.

The physical parameters are set to be Le = 0.9, α = 1, δ = 20, and R = 5. In this
problem, a sharp wave front is moving toward the boundary ∂�. A detailed numerical
procedure for time discretization of this problem was provided in [21]. In our computation,
we used 30 × 30 nodes and the monitor function is chosen as

√
1 + |∇T |2 I . Figure 6

depicts the adaptive meshes at t = 0.283 obtained by solving the Euler–Lagrange equation



A MOVING MESH ALGORITHM FOR 3D PROBLEMS 379

FIG. 5. Example 5.1: The adaptive meshes using 202 nodes from t = 0.15 to t = 1.85, with the moving mesh
approach proposed in this work.
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FIG. 6. Example 5.2: The adaptive mesh and temperature T obtained by using the method of [21] (top) and
the one proposed in this work (bottom), at t = 0.283.

together with the 1D boundary grid-redistribution technique and by the method proposed
in this work. It is observed that both methods can efficiently solve this nonlinear system.
However, it is quite obvious that the meshes obtained by using the optimization method
appear to be more reasonable, which adapts more grid points into the reaction interface. The
solution errors, obtained by using a benchmark solution with very fine mesh, are compared in
Fig. 7. The results indicate that the L1- and L∞-errors are reduced by using the optimization
approach, although the reduction is not significant.

5.2. 3D Examples

For simplicity, we assume that the solution domain is a unit cube [0, 1]3. Initially, the
physical domain is divided into some small cubes (with same size), and then every cube is
cut into six tetrahedron. In this case, the logical domain and its initial mesh are chosen as
the same as the corresponding counterpart in the physical domain.

In order to avoid possible mesh tangling, the following strategy is proposed. In the
mesh-motion step, consider a tetrahedron with vertices �xi , whose moving directions are
δ �xi , 0 ≤ i ≤ 3. It can be shown that the mesh may be tangled if the step length τ used in
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FIG. 7. Numerical errors for Example 5.2 obtained by using the 1D boundary-grid re-distribution (dashed
line) and by using the optimization approach proposed in this work (solid line): upper figure is for L1-error and
lower one is for L∞-error.

the mesh motion formula (4.11) is larger than a critical number τ ∗, which is defined as the
least positive root for the equation

det

(
1 1 1 1

�x0 − τδ �x0 �x1 − τδ �x1 �x2 − τδ �x2 �x3 − τδ �x3

)
= 0. (5.2)
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The parameter τ used in (4.11) will be set as half of the minimal τ ∗ over all the tetrahedron.
In our numerical computations, it is found that the selection of τ = 0.5 for (4.11) causes
no numerical difficulties (i.e. no mesh tangling) in almost all situations.

EXAMPLE 5.3. Our first example in 3D is concerned with a special Burgers’ equation

3

2

∂U

∂t
+ UUx + UUy + UUz = a�U, (5.3)

defined in � = (0, 1)3. The initial condition and Dirichlet boundary condition are chosen
such that the exact solution to the underlying problem is

U (x, y, z; t) = (1 + exp((x + y + z − t)/2a))−1.

The problem (5.3) is now a very special case of Burgers’ equation. The standard Burgers’
equations in 3D are a system of three PDEs for the velocity components derived from the
Navier–Stokes equations. In our computation, the diffusion coefficient is again chosen as
a = 0.005, and the monitor function is chosen as

√
1 + |∇U |2 I . For this small coefficient

a, the underlying physical problem corresponds to a viscous shock traveling from the lower
left corner to the upper right corner. Note that the exact solution has very large gradients
along the 2D plane x + y + z = t for 0 < t < 3.

In Fig. 8, the L1- and L∞-errors obtained by using the uniform mesh and the moving mesh
are displayed. In both cases, the solution domain is divided into 17 × 17 × 17 small cubes,
and then every cube is cut into six tetrahedron. It is observed that the L1-error, as a function
of time, is almost oscillation free, and in average is about 10 times smaller than that for the
uniform mesh. Moreover, Fig. 8(b) indicates that the moving mesh solution yields about
four times error reduction. In Fig. 9, the grid distribution at various times is demonstrated.
In the region before the viscous shock front, the numerical solution is approximately 1,
and after the viscous shock it is about 0. Figure 9 clearly indicates that our moving mesh
algorithms cluster quite a number of grid points in the region where the solution has very
large gradients. It is also seen that the locations of the viscous shock at various times are
clearly presented, which provides one of the most useful information for the viscous shock
problems.

EXAMPLE 5.4. The last example is the same as Example 5.2, except that the solution
domain becomes � = (−1, 1)3.

In Example 5.3, the special viscous Burgers’ problem is a scalar equation whose largest
solution gradients occur in a simple 2D plane. In Example 5.4, the problem is a nonlinear
system whose largest solution gradients occur in a quite complicated surface, which are more
or less like a sphere x2 + y2 + z2 = r2, where the radius r is a function of time. We solve
the underlying PDEs by simply extending the 2D finite element codes developed in [21]:
we first consider a finite element spatial discretization, leaving the time variable continuous
(method of lines); and then a RK3 is used for the time discretization. The mesh-motion
strategy proposed in Algorithm 1 is employed. The monitor function used is

√
1 + |∇T |2 I .

Figure 10 depicts the moving meshes at various times on the plane y + z = 0 obtained
by using the same number of nodes as in the last example. The numerical solution for the
temperature is 1 outside the circular region and a constant greater than 1 inside the circle.
It is observed that although the temperature T has a very thin layer of large variation, our
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FIG. 8. Numerical errors for 3D Burgers’ equation: upper figure is for L1-error and lower is for L∞ error. In
each figure, the dashed curve is with the uniform mesh and the solid curve is with the moving mesh.

moving mesh scheme adapts the mesh extremely well to the regions with large solution
gradients. Unlike the regular finite element meshes, an arbitrary cut-plane may not have
enough grid points for the moving meshes. With the graphics software, the nearby points
are projected to the chosen plane. As observed in Fig. 10, the projection may yield a few
spurious elements, since there are only (in average) 17 × 17 nodes on each given plane.
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FIG. 9. The grid distribution for Example 5.3 at (a): t = 0.4, (b): t = 0.7, (c): t = 1 and (d): t = 1.5.
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FIG. 9—Continued
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FIG. 10. Example 5.4: The grid distribution on the cut-plane y + z = 0 at (a): t = 0.312, (b): t = 0.324,
(c): t = 0.331 and (d): t = 0.335.
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FIG. 10—Continued
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5.3. Some Computational Details

We close this section with some discussions on some computational details. The first
issue concerns the monitor function (Gi j )−1. There are several papers investigating the
selection of the monitor functions, including Beckett et al. [5, 6] and Brackbill [7]. One
observation in our numerical experiments is that the numerical algorithm developed in this
work is robust for the selection of the monitor functions. For both the viscous shock and the
combustion problems, a simple monitor function

√
1 + c|∇u|2 I works very well, where u is

the underlying physical solution and c > 0 is some constant. In our numerical experiences,
some moving mesh methods, such as moving finite-volume method (see, e.g., [31]), and
finite-difference method (see, e.g., [30]), depend heavily on the choice of feasible values of
c, in particular for three-dimensional computations. However, in the numerical experiments
of this work, we can always choose c = 1, and the numerical solutions are found quite
insensitive to the choice of the parameter c. Possible reasons leading to this good property are
the use of the harmonic mapping and/or the interpolation-free on the updated moving grids.

The second issue is about the number of iterations needed in the construction of the
harmonic map, which is crucial in order to access the computational cost of the proposed
method. The answer to this question is related to the choice of the tolerance TOL in (3.5).
In our computations, it is found that setting

TOL = minimum element diameter in �c × 10%

is sufficient in giving satisfactory mesh-redistributions. For all of the examples considered
in this section,

• TOL used is of the order 10−2;
• the initial mesh constructions require 10 to 20 iterations;
• at any time level tn > 0, one or two iterations are sufficient to realize Algorithm 1 in

Sect. 3.2.

There is no difference for the number of iterations between 2D and 3D. However, when the
geometry becomes quite complicated, the number of iterations may increase. For example,
with the U-shape domain of Example 6.3 in [21] 1 to 5 iterations are needed at various time
steps, but in average the number of iterations is not more than two.

The third issue concerns filtering or smoothing of the monitor functions. In practice it is
common to use some temporal or spatial smoothing on the monitor function or directly on
the mesh map �x to obtain smoother meshes. One of the reasons for using smoothing is to
avoid very singular meshes and large approximation error around the stiff solution areas.
Several smoothing techniques have been proposed to enhance the quality of the meshes. In
Li et al. [21], a smoothing procedure was proposed: The monitor function M := G−1 was
firstly interpolated from L2(�) into H1,h(�), namely from piecewise constant to piecewise
linear, by the following formula:

(πh M)|at P =
∑

τ :P is vertex of τ M |onτ |τ |∑
τ :P is vertex of τ |τ | . (5.4)

Then it is projected back into L2(�) by the following formula:

M |on τ = 1

n + 1

∑
P is vertex of τ

(πh M)at P , (5.5)
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FIG. 11. The adaptive meshes (left) and pointwise errors (right) for Example 6.1: (a) N = 416, 13 iterations;
(b) N = 1558, 18 iterations; (c) N = 6068, 26 iterations.

where n is the dimension of �. The same smoothing technique is applied in this work, for
both 2D and 3D computations. Our numerical experiments have shown that this smoothing
procedure not only enhances the quality of the meshes but also increases the accuracy of
the numerical approximations.
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6. QUALITY OF THE GENERATED MESHES

It would be interesting to know how close the generated meshes obtained by our moving
mesh algorithm are to an optimal mesh. Mesh optimality in this context means that L2-
or H 1-error of the finite element approximation converges with the optimal order as the
mesh size tends to zero. To this end, we will consider a 2D time-independent problem with
a corner singularity. The convergence rate of the finite element approximation on uniform
grids is determined by the strength of the singularity. On optimally graded meshes, the
optimal convergence can be recovered.

EXAMPLE 6.1. The governing equation is a Laplace’s equation with a Dirichlet boundary
condition,

�u = 0, (x, y) ∈ �,

u = r2/7 sin(2θ/7), (x, y) ∈ ∂�,

where � = {r < 1, 0 < θ < 7π/4}, and r and θ are the usual polar coordinates.

The above example has been used by many authors; see, e.g., Tourigny and Hülsemann
[32] where a moving finite element algorithm was proposed for variational problems and a
detailed analysis for convergence rate in H 1

0 (�) is presented. We point out that this is not
the most appropriate example for our purpose to test the mesh quality, since quite weak
singularity appears at an isolate point. Our main objective for the moving mesh methods is
to resolve large gradients on a curve (in 2D) or on a plane (in 3D), such as the problems in
Section 5. Moreover, this is not a time-dependent problem. However, since this problem is
well studied and the exact solution is known, we will use it to obtain some ideas on the mesh
quality. For the time-independent problem, the Algorithm 1 will be modified as below:

ALGORITHM 2 (MOVING MESH ALGORITHM FOR ELLIPTIC EQUATIONS)

(a): solve the optimization problem (3.3) and compute the L∞-difference between the
solution of (3.3) and the fixed (initial) mesh in the logical domain. If the difference is smaller
than a preassigned tolerance TOL, then the mesh-redistribution is complete. Otherwise, do

(b): obtain the direction and the magnitude of the movement for �x by using the difference
obtained in part (a), see (4.10) in Section 5, and then move the mesh based on (4.11);

(c): solve the Laplace’s problem with finite element method on the new mesh obtained
in part (b);

(d): update the monitor function by using �u obtained in part (c), and go to part (a).

TABLE I

Example 6.1: The Rate of Convergence of Error in L2-Norm

Moving mesh Uniform mesh

N ‖Ihu − uh‖L2(�) Order N ‖Ihu − uh‖L2(�) Order

416 1.62422e-2 — 416 3.21009e-2 —
1558 6.04666e-3 1.50 1558 1.97644e-2 0.73
6068 2.04652e-3 1.59 6068 1.15090e-2 0.80

24,142 6.24831e-4 1.72 24,142 6.58991e-3 0.81
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TABLE II

Example 6.1: The Rate of Convergence of Error in H1
0-Norm

Moving mesh Uniform mesh

N ‖Ihu − uh‖H1
0

(�)
Order N ‖Ihu − uh‖H1

0
(�)

Order

416 1.53211e-1 — 416 2.07425e-1 —
1558 1.03804e-1 0.59 1558 1.73109e-1 0.27
6068 6.69192e-2 0.65 6068 1.46320e-1 0.25

24,142 4.06005e-2 0.72 24,142 1.23653e-1 0.24

It should be pointed out that due to weak singularity, large adaptation constant c in
the monitor

√
1 + c|∇u|2 I has to be used for this example, which is in contrast to the

examples in Section 5 where c ≡ 1 is used. For this problem, c should be chosen in the range
106 ∼ 108; otherwise almost no adaptation effects can be obtained. In Fig. 11, the meshes,
with 238, 838, and 3150 vertices and 416, 1558, and 6038 triangles, are shown respectively.
The parameter values TOL = 2 ∗ 10−3 for the tolerance in the above algorithm and c = 108

for the monitor constant are used. The tolerance used is demonstrated sufficiently small
by comparing the solution errors. The numbers of iteration used for are 13, 18 and 26,
respectively.

Following Tourigny and Hülsemann [32], we will denote by eN the error for a mesh with
N triangles, and

eN ∼ N−γ /2.

Therefore, a local decay rate γM N is given by

γM N = log(eM/eN )

log
√

M/N
, M > N .

Moreover, ‖Ihu − uh‖ will be used to represent the errors of ‖u − uh‖, where Ihu is the
interpolant of the exact solution u. The reates of convergence in L2 and H 1

0 are shown in
Tables I and II. It is observed that the approximation on the adaptive meshes appears to
converge at higher convergence orders than that on uniform meshes. However, the optimal
rates of convergence in neither L2 nor H 1

0 are recovered, although the improvement with
adaptive mesh is quite substantial, in particular in L2 space.

7. CONCLUDING REMARKS

In this work, we have extended an earlier work of moving mesh methods based on
harmonic maps [21] to deal with mesh adaptation in three space dimensions. The main
difference between the numerical scheme proposed in this work and the one proposed in
[21] is the following: In obtaining the variational mesh, we solve an optimization problem
with some boundary-point constraints. But in [21], the moving meshes are obtained by
solving the Euler–Lagrange equation, together with the boundary-point adjustments. In the
latter case, the grid redistributions for the interior domain and boundaries are carried out
separately. However, this approach seems difficult when being extended to 3D problems, in
particular if a finite element approach is employed for spatial discritization. In this work, by
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solving the constrained optimization problem we are able to implement the moving mesh
mehods to three-dimensional problems successfully. Several goods features of our moving
mesh algorithm have been observed: e.g., the commonly used solution interpolation can be
avoided; the algorithm is robust to the adaptation constant in front of the derivatives in the
monitor functions; very few iterations are needed in the mesh-redistribution process.

The next step of the research is to apply our moving mesh algorithm to solve some practical
problems. Some useful applications based on various moving mesh techniques can be found
in a number of papers, including [3, 11, 28, 31] for computational fluid dynamics, [12, 18] for
computational geometry and [27] for simulations of the reactive flows. In solving real-life
problems with moving mesh strategy, some additional difficulties may occur. For example,
when using the moving mesh methods to solve hyperbolic system of conservation laws, the
additional requirements, such as mass conservation and entropy consistency, may introduce
extra numerical difficulties in the mesh moving process. As a result, there are only very few
successful moving mesh results for multidimensional hyperbolic system, in particular for
3D. In our future study, we will apply the moving mesh algorithms developed in this work
to some practical problems in areas such as fluid mechanics, chemical engineering, and
image processing. Our particular attention will be given to solving the practical problems
in higher space dimensions.
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