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Abstract

Level set method is an appropriate mathematical tool for solving two-phase flow problems. It is used here for the first
time to track the interface evolution during the process of casting a second alloy into mold, partly displacing the first to
achieve a casing with a different alloyed skin. Projection method for Navier—Stokes equations was adopted and the
algorithm was implemented in finite element method. The numerical example shows that though in those cases where
the layer of liquid metal above is lighter than that below, the interface is not always stable for density ratios less than
one of the two liquid metals. The stability of the interface is sensitive to the density ratio and inlet velocity and relatively
insensitive to the viscosity ratio or other parameters. It is believed that level set method has potential to be further used
in real double casting processes. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

The process of mold filling in the metal forming
industry had long been based on the intuition and
experience of foundry engineers and designers. In
order to bring the industry to a more scientific
basis, many researchers have tried to integrate the
design process with numerical simulation, such as
fluid flow and heat transfer. The difficulty of
simulating mold filling is to track the evolution of
free surface. In general, Mark and Cell (MAC) [1]
or Volume of Fraction (VOF) [2] algorithm is
adopted. But insufficient precision and computa-
tional instability hindered their application, espe-
cially for two-phase flow arising in casting a
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second liquid metal. In this technique, the mold is
filled with the first liquid metal, which is allowed
to solidify to a desired layer. After that, the second
liquid metal is poured, flushing the remaining first
un-solidified liquid metal away, and leaving the
second liquid metal occupying the space left by the
first metal.

This process, which is a typical two-phase flow,
is often applied for the production of cast rolls.
Sometimes because the processing parameters are
incorrect, the interface is broken down, two kinds
of liquid metal mix, and cause waste of materials.
It is difficult to determine how much the inlet ve-
locity should be and when to make the second
pour using only experiences. With the help of fill-
ing simulation, engineers will visualize the evolu-
tion of the interface between the two kinds of
liquid metal. Although it may not be easy to sim-
ulate because of the complexity of the flow pattern
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and the interaction of two kinds of fluid, now it is
feasible to realize with the aid of the powerful
mathematical tools, level set algorithm.

Level set method, developed especially for
tracking the interface between two kinds of fluid,
can compute the interface change, and interaction
between two kinds of fluid. It is a good way for
interface tracking in solving two-phase flow
problems compared with other methods. The core
idea of level set method is to introduce a transition
layer at the free interface of the two different fluids,
and try to connect the two fluid fields as an inte-
grate field. The main virtue of level set is that the
fluid field is treated as a single one, so special code
for the free boundary is not needed, and it’s effi-
cient to deal with complex interface, even if to-
pology changes. Level set method incorporate the
boundary condition at the interface into the gov-
erning equation, and it is not necessary to locate
the position of interface as VOF or MAC method.
The method has been applied in simulations such
as the falling of water drops in air and the rising of
air bubbles in water [3].

In this paper, level set method is used for the
first time in simulating the flushing of a second
alloy through a mold filled with a first alloy. The
effects of the density ratio of the two kinds of
liquid metal, the viscosity and inflow velocity are
investigated. Although only a simple test is dem-
onstrated in this first case, level set promises to be
a powerful aid for the design of real parameters of
the double casting technique.

2. Level set method

Here we give the scheme for applying the level
set method on the incompressible two-phase flow.
The governing Navier—Stokes equation for the
incompressible two-phase flow in two dimensions,
which describes the case of mold filling, is as:
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in which
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where g is the gravity, u is the viscosity coefficient,
Kk is surface tension coefficient, d(d) is the delta
function, d is the distance from the interface and 7
is the normal vector of the interface. The boundary
condition is set as &|,, = 0 according the no-slip
boundary condition on the mold wall and the
constant boundary condition on the inflow and
outflow boundary. The Webb number, which is
the ratio of the fluid inertia and the surface ten-
sion, is about 200 [6]. This rather large value tells
us that the surface tension will not significantly
influence the velocity field, and is hence ignored in
our computation as other authors did [6,7]. The
level set method introduces a function ¢, called
level set function, whose physical meaning is the
signed distance from the current position to the
interface, which implies

Vol =1. 3)
Its governing equation is

)
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from which we can see that the zero contour of ¢
will follow the interface of the two kinds of fluids.
The level set function cannot be kept as distance
with the evolution of the governing equation (4).
So a so-called ‘re-initialization” operation is
adopted so that Eq. (3) is satisfied.

Re-initialization for a given function ¢, is im-
plemented by solving the following equation to the
stable state:

%~ sign(d0)(1 ~ [V9)) (5)

with the initial condition
¢|r:0 = d)()'

Then p, p are dependent on ¢, by a given heaviside
function H as:

p=p+H(P)(py—p1)s (6)
=+ H(P) (s — ) (7)
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in which the subscripts 1 and 2 mean the physical
amounts for the two kinds of fluids, respectively.
The heaviside function should be a function which
increases from 0 to 1 smoothly when the current
position moves across the interface, and will be 0
or 1 when ¢ is less than —o or greater than « for a
previously given small positive number o. The
same heaviside function as in [3] is adopted in our
computation such that

1 if ¢ >0,
p=1q p+Apsin(ng/20) —a<Pp<a,
P2/ P if ¢ < —u

N p= 2
in which 4 P = (P1+p2)/2p1,
{ Ap = (p1 = p2)/2p1,

1 if ¢ > a,
u=1< i+ Ausin(ng/20) —oa<Pp<a,
o/ if ¢ < -—u

Ap = (1 — 1)/ 2.

Generally, o is given as ¢ = %dh in which dh is the
typical element size [3].

The projection method is used for Navier—
Stokes equation, which is an often-adopted tech-
nique for two-dimensional fluid computation. It
can remove the term of the gradient of the pressure
from the Navier-Stokes equation, which is a con-
ventional difficulty in fluid dynamics. Though
there are other methods that can smooth the same
difficulty, such as the vortex-stream function
method and SIMPLER method, we did not adopt
these two methods because the boundary condi-
tion given is of velocity, while vortex-stream
function method needs the boundary condition of
vortex, and the SIMPLER method is suitable for
the staggered difference scheme, while we should
work on an un-constructed mesh (see part 3).
According to the Hodge-Helmholtz decomposi-
tion, every two-dimensional vector field can be
divided into two parts, one of which is divergence
free, and the other is curl free, and these two parts
are orthogonal. At first, the Navier—Stokes equa-
tion in two-dimensional case is re-written as

in which { ,a = (:ul + ,u2)/2:u17

u 1 -
5——;VP+L(”) (8)

in which
T |
L(u) :—u~Vu+g+R—eV(2,uD). 9)

It can be seen that the left-hand side of (8) is di-
vergence free and the gradient of the pressure is
curl free. So the right-hand side of (8) should be
the divergence free part of L(u). By introducing
the stream function

Y =(0,0,%) (10)
the projection operator can be expressed as
P:L(u)— P(L(u)) =V x ¥ (11)

in which ¥ can be obtained by solving the Poisson
equation

~V(pV¥) =V x (pL(u)) (12)
with boundary condition
P|so =0.

This boundary condition is obtained from the zero
boundary condition for Ou /0t

3. Implementation of the level set algorithm

There are plentiful references for level set
method. We will concentrate on the finite element
method implementation. The finite element meth-
od which is used mainly for the computational
domain is fairly irregular, and the tangential vis-
cosity plays an important role for the problem at
the boundary of the mold so that the zigzag by
finite difference method at the boundary is not
acceptable. The weak formation of the Navier—
Stokes equation, governing equation of ¢, and an
upwind scheme for the re-initialization equation
are given.

We triangulate the domain Q into simplex ele-
ments and denote the nodes as X;, and elements as
T;; we choose the finite element space on the dis-
cretized domain Vh(ﬁ), Vi(9), Viu(P) for u, ¢, ¥,
respectively. In our numerical example, we choose
Vi(u) and V,(¥) as H}(Q), and V(¢) as H'(Q).
Because what the engineers need is the pattern of
the flow, we would like to choose lower order finite
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element space. And for the convenience to con-
struct an upwind scheme required by the re-ini-
tialization equation, the level set function is set as
piecewise constant.

Then the weak formation of the projection is:

/QpV'PVa)dx: /QVX (pL(u)w)dx

. / pL() - (V x 0)dv,  (13)

du

[ A= /VX ¥ dx (14)

in which the test function € V,o(¥) and
A€ Vho(u)
The weak formation of Eq. (4) is

| =~ [ Im@nas (15)

in which y € V,(¢), ¢ is a piecewise constant
function according to our choice for ¥, (¢) so that
Eq. (15) needs no boundary condition and the
scheme we obtained from it turns into an explicit
one at last. There is an interpolation operator 7,
from piecewise constant space to piecewise linear
on ¢ so the gradient operator can be applied. We
solve the re-initialization equation (5) of the level
set function with an upwind scheme as

i sign(90,)(1 - 191, (16)

3
|4l = D max(sign(; — ¢, )sign(,),0))
=1

=0y -
|Ci — Ci|

in which 7;,, 1< ;< 3 are the neighbor elements of

T;, and C,j, 1 <j<3 are its centers. Numerically,

sign(¢,,) is approximated as ¢/ / ¢(2),1~ + & witha
given positive number ¢. When the time step length
is small enough, scheme (16) and (17) is upwind,
and will converge to the solution uniformly with
one order accuracy. In our computation, the step
length of time is 0.2 times the step length of space
and the scheme is converge.

The three-stage Runge-Kutta scheme is adop-
ted in the temporal direction to discretize Egs. (14)
and (15). That is

1 _n

u —Uu 1 —n
-~ —_PL
= SP@),
%2 —n 1
u —u TN |
=—P(L 1
), (18)
—n+1 —n
u —u %2

Fig. 1. Meshes in L-shape domain with different mesh densities.
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Fig. 2. The velocity field and free interface at several moments.
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Fig. 2. (Continued).

High order Runge—Kutta scheme is nearly A-sta-
ble. This is the reason why we use it. In Egs. (18)
and (19), the projection is operated on the right-
hand side term only, then the continuity equation
(2) will not be satisfied after a period of time be-
cause of the accumulation of the residual error of
the projection. We introduce a correction proce-
dure when this happens. Similar to the projection
method, we use the vortex-stream function method
to implement the procedure. The vortex function
{ =V x u, and the stream function ¥ satisfy

—V(pVY) =¢ (21)
with the Neumann boundary condition
Vx Wlg = ;|a9~

Then the velocity can be restored with u = V x V.
This procedure can be implemented after one or
several step forward operations.

4. Numerical convergence study and numerical test
with physical data

We give a numerical example in a very simple
L-shape domain, and compute on different meshes.
Then the meshes are as in Fig. 1. The inflow speed
is set as 1, and outflow speed is 1 too. The inlet
boundary is the top boundary, and outlet bound-
ary is the right down boundary. The gravity is 980.
The velocity field and the free interface are in
Fig. 2. From the numerical results, we can see that
the method is really grid convergent.

The computation domain is triangulated as in
Fig. 3. This mold is often used as the benchmark
experiment [6] for the mold filling. Though the
mold is far from the shape of practical interest, the
roll casting process, it is chosen as a numerical test
domain because a far more complex flow pattern is
expected to appear in such geometric region, thus
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Fig. 3. The physical domain of computation.

constituting a good test of the level set simulation
approach.

The velocity of inlet is 5 m/s, and gravity is 9.8
m/s?. The boundary condition is

(0,—500)" on T,
il =14 (0,130)"  on Toy, (22)
0,0)" elsewhere.

Other data are generally as following:

p, = 2500 kg/m’,

P,y = 2569 kg/m’ s,

u = 1.0 x 10* kg/m s,

1 = 1.2 x10* kg/m s,

Re = 100.

The height of the mold is 200 mm, and the width
of the grating is 13 mm. It means the flow in the
mold is like a typhoon in our common scale with a

speed of about 100 m/s. For simplification, the
heat transfer between metal and mold is not con-

sidered, which means the solidified shell is assumed
to be zero. After the mold is filled with the liquid
metal, then the second liquid metal begins to pour,
and first kind of liquid metal will be displaced, and
overflow along the outlet.

5. Results and discussion

Level set algorithm is used for a check of the
processing parameters of the liquid displacement
process in the mold. Figs. 4-8 illustrate the evo-
lution of the free interface, and the velocity chan-
ges under gravity.

The interface shown in Fig. 4 is seen to be stable
under such parameters as density ratio 1:1.025,
and inlet velocity 5 m/s. Most of the first liquid
metal will be flushed away, which is the case ex-
pected by the engineer. The interface in Fig. 5 is
not so stable; when the density ratio was increases
to 1:1.02625, the two liquid metals are mixed, and
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Fig. 4. The evolution of the interface and velocity field when density ratio is 1:1.025, and inlet velocity is 5 m/s. (a) Time =0.050 s;
(b) time = 0.080 s; (c) time=0.112 s; (d) time =0.185 s; (e) time = 0.220 s; (f) time =0.310 s.
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Fig. 5. Topological change of the interface occurred when the density ratio is 1:1.02625, and the inlet velocity is 5 m/s. This density
ratio is very close up to the stability threshold for such inlet velocity. (a) Time=0.276 s; (b) time=0.279 s; (c) time=0.282 s;
(d) time=10.297 s; (e) time =0.300 s; (f) time =0.303 s; (g) time =0.309 s; (h) time=0.312 s.
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Fig. 6. The interface evolves unstably when the density ratio is 1:1.05, and the inlet velocity is 5 m/s. (a) Time=0.140 s;

(b) time=0.146 s; (c) time =0.152 s; (d) time =0.155 s.

complex topological changes of the interface oc-
cur. The first liquid metal is seen to contaminate
the second liquid metal. In Fig. 6, when the density
ratio increases to 1:1.05, the second liquid metal
rushes to the right wall of the mold. The interface
breaks down and the violent mixing of the fluids
occurs, destroying the possibility of a separate and
distinct core and surface alloy regions. In Fig. 7,
the density ratio is comparably large at 1:1.15.
When the second liquid metal enters the rectangle
volume of the mold, the velocity field changes
dramatically, causing the splash of the second fluid
into the first. In Fig. 8, the inlet velocity is de-
creased to a low value, 0.1 m/s. With such a low
inlet velocity the fluid is far more stable. Gravity
plays an important role, conferring stability on the
interface so that the second liquid metal spreads
out quietly in the bottom of the rectangular part of
the mold. This implies that, if productivity and

solidification time allow, the inlet velocity should
be set at a low value. In practice casting, a com-
parative lower casting temperature is needed to
avoid complex solidification pattern. Such con-
sideration makes engineers preferring a fairly high
inlet velocity to prevent premature solidification.
Then with the guarantee to prevent premature
solidification, lower inlet velocity is our advice to
the engineers. From the figures above, it is seen
that though the metal above is lighter than that
below, the surface is not always stable. There is a
threshold of density ratio for the surface to be
stable at about 1:1.0275 for that particular mold
and inlet velocity, 5 m/s. The fact of the existence
of a threshold is new finding that it is hoped to
explain many of the previously baffling features of
attempt at double casting.

The threshold is sensitive to the inflow velocity
more than on the viscosity, etc. In the calculation,
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Fig. 7. The flow field wash away from right to left like a faucet when the density ratio is 1:1.15, and the inlet velocity is 5 m/s.
(a) Time =0.058 s; (b) time =0.061 s; (c) time =0.067 s; (d) time =0.076 s; (¢) time =0.082 s; (f) time =0.091 s.

viscosity ratio of 1:1, 1:10, and 1:100 with Rey-
nolds number 100, and 1000, respectively, has been
checked, the velocity field and interface stability
has little change. This shows that viscosity and its
ratio plays little role in determining the interface
stability.

6. Conclusion

Level set algorithm has been used for the first
time in simulating double casting technique. It
seems now possible to give some insight into the
design of the mold filling technique and choice of
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Fig. 8. The interface and velocity field evolution when density ratio is

(b) time=3.919 s; (c) time =15.999 s; (d) time =9.498 s.

processing parameters. This method is preferable

to VOF and MAC method in tracking the inter-

face evolution of two phases. In this paper, a

benchmark numerical test is adopted to visualize

the mold filling process. The following initial re-
sults are drawn:

1. Level set algorithm is suitable method to deal
with two-phase flow. The flushing procedure
can be given in detail by the algorithm. Be-
cause the fluid fields are combined into one
whole, the work of programming is less, while
the code is more efficient. By adapting the
width of the transition layer, a numerical re-
sult can be obtained with more stable fluid
field or with less mass exchange and higher
resolution.

1:1.05, and the inlet velocity is 0.1 m/s. (a) Time=2.999 s;

. It is found that for the flushing through a mold,

density ratio is the critical parameter for the
forming of a stable interface, and viscosity is un-
important. With the same density ratio, when
inlet velocity increases, an unstable interface
will form, and the interface will break down.

. Further research work is planned to apply the

level set method to the practical process of cast
roll, and the energy conservation equation, cou-
pled with Navier—Stokes equations, will be
solved.

. Uncited references

[4,5].
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